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Abstract. We study the linear evolution of a Gaussian pulse injected at different locations
along a one-dimensional (1D), hot (T � 6.3 MK) coronal loop, including the dissipative effects
of thermal conduction, viscosity, heating, and radiative cooling. We consider both homogeneous
and stratified loops of different lengths (50 � L � 400 Mm) and values of the pulse width
(or standard deviation, βg /L) between 0.005 and 0.02. We find that a Gaussian velocity pulse
can generate propagating waves whose amplitudes increase with increasing width of the pulse.
The shape of the waves is quite irregular owing to the superposition of the several harmonics
composing the Gaussian pulse. Wave damping due to the combined effects of thermal conduction
and viscosity is faster in the shortest and hottest loops. The decay times and periods of the waves
are within the observed values of decaying modes of hot SUMER loop oscillations.
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1. Introduction
The damping of MHD oscillations and waves (fast or slow) in coronal loops is of great

interest because they are natural carriers of energy and possible sources for heating
of the coronal plasma and for solar wind acceleration (Banerjee et al. 2007). Recent
numerical hydrodynamics simulations of wave dissipation in hot coronal loops have shown
results that agree with the observations, predicting periods and damping times close to
SoHO and TRACE measurements. In particular, Sigalotti, Mendoza-Briceño & Luna-
Cardozo (2007) studied the dissipation of an initial velocity perturbation of the form
V0 sin(2πs/L), using 1D hydrodynamical models of hot coronal loops (T > 6.3 MK).
They found that for typical conditions of the hot corona, thermal conduction increases
the periodicity of damped oscillations over the sound crossing time, while the decay times
are mostly shaped by the effects of viscosity. Also, they found that under the effects of
gravity, nonlinear viscous dissipation leads to a reduction of the decay time compared to
the homogeneous case.

Nevertheless coronal loops are often perturbed by nearby flares (Taroyan et al. 2007). In
this case, the pertubation is highly localized and the waves (standing and propagating) are
generated impulsively. In this work, we study the impulsive generation and dissipation of
such waves by initially perturbing the loop with a localized Gaussian velocity distribution
and consider the effects of injecting the pulse at different locations along the loop length.

208

https://doi.org/10.1017/S1743921308014890 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308014890


Gaussian pulse propagation 209

2. Governing Equations and Loop Models
In the solar corona the β-plasma is much less than 1 and the velocities are less than the

Alfvén velocity. As a consequence, the plasma is confined along the magnetic field lines
and the loop can be approximately modelled as a 1D flux tube. Thus the assumption is
made that the mass flow and heat conduction occurs primarily along the field lines. The
evolution can therefore be determined by the usual 1D hydrodynamic equations, with the
variable s denoting the position along the loop. Under these assumptions, the equations
that govern the dynamics, including the effects of thermal conduction, viscosity, and
radiative cooling and heating, are:

∂ρ

∂t
+

∂(ρv)
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= 0, (2.1)
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where t is time, s is the distance along the loop, ρ is the mass density, v is the velocity,
T is the plasma temperature, µ(= 0.6) is the mean molecular weight, γ(= 5/3) is the
ratio of specific heats, Rg is the gas constant, and p = RgρT/µ is the gas pressure. The
terms Fη , Eη , and Eκ on the right-hand sides of Equations (2.2) and (2.3) represent the
viscous forces, the viscous heating, and the conductive heating, respectively, given by
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where η is the coefficient of viscosity defined as (e.g., Braginskii, 1965)

η =
0.72(mpk

5
B )1/2

π1/2e4 ln λ
T 5/2 , (2.7)

in units of g cm−1 s−1 , and κ = 10−6T 5/2 ergs cm−1 s−1 K−1 is the coefficient of thermal
conduction along the magnetic field lines (Braginskii, 1965). In Equation (2.7), mp is the
proton mass, kB is the Boltzmann constant, e is the electron charge, and ln λ ≈ 23 is
the Coulomb logarithm. The gravitational acceleration term on the right-hand side of
Equation (2.2) is assumed to depend only on distance along the loop and is given by

g(s) = −g� cos
(πs

L

)
, (2.8)

where g� ≈ 2.74×104 cm s−2 is the solar surface gravity and L is the loop length. Implicit
in this form is a magnetic field line of perfect semicircular shape and zero inclination
angle at the footpoints, with g(0) = −g� and g(L) = g� on the right and left footpoint,
respectively, and g(L/2) = 0 at the symmetric loop top.

The radiative cooling is quantified by the optically-thin radiation-loss function Q(T ),
which is approximated by a piecewise continuous function of the form

Q(T ) =
χ

m2
p

T α , (2.9)
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Figure 1. Time evolution of the density, velocity and temperature oscillations at s = 0.35L
for s0/L = 0.1 and βg /L = 0.01 in a homogeneous loop for different lengths and temperatures.

where χ and α are the Hildner’s (1974) cooling coefficient and exponent, respectively.
The heating rate H = H(s) is set equal to the initial value of ρ2Q(T ) so that initially
there are no thermal losses. The assumption is also made that the heating rate is kept
fixed to its initial value for t > 0.

3. Solution Method
Equations (2.1)-(2.3) are solved in linearized form by expressing the perturbed quan-

tities in terms of a Fourier series expansion, which for a given function f , where f may
be either ρ, v, T , or p, has the form:

f(s, t) =
C0(t)

2
+

∞∑
n=1

Cn (t) cos(nπs) +
∞∑

n=1

Ĉn (t) sin(nπs). (3.1)

In this way, the temporal and spatial dependence of the perturbed variables is sepa-
rated and the linearized equations reduce to a set of 6n ordinary differential equations
for the time rate of change of the 6n perturbation amplitudes Cn (t) and Ĉn (t). The time
integration is performed numerically using finite-differences for the time derivatives. A
predictor-corrector approach is implemented so that the Fourier coefficients (or ampli-
tudes) are calculated with temporal second-order accuracy. We use boundary conditions
appropriate for a standing wave problem (De Moortel & Hood 2003), i.e., all the per-
turbed variables are set equal to zero at the loop footpoints. Initially, all variables are
also set to zero, except the velocity perturbation, which is assumed to take the form

v(s) = v0 exp

[
−

(
s − s0

βg

)2
]

, (3.2)

where v0 = 86.683 km s−1 is the initial amplitude of the velocity perturbation, βg/L
is the pulse width (either 0.005, 0.01, or 0.02), and s0/L(= 0.1, 0.3, and 0.5) specifies
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Figure 2. Time evolution of the density, velocity and temperature oscillations at s = 0.35L in
a homogeneous loop of L = 400 Mm and temperature T = 10 MK for different values of βg /L
and s0/L.

the location of the pulse along the loop, respectively. A value of s0/L= 0.1 refers to a
pulse near the left footpoint, while a value of s0/L= 0.5 refers to a pulse centered at the
loop top. For sufficiently narrow pulses, keeping the velocity perturbation equal to zero
at the loop footpoints represent a fairly good approximation. We consider only loops of
constant temperature between 6.3 and 14 MK and lengths between 50 and 400 Mm.

4. Results and Conclusions
Figures 1 and 2 depict the wave evolution at the observation point s=0.35L for varying

initial perturbation and loop parameters. As seen in Figure 1, wave dissipation is signif-
icantly more rapid in the shortest (L = 50 Mm) and hottest loops (T = 14 MK), where
the waves effectively decay after about 1 to 2 periods. The wave amplitudes are seen
to decrease with increasing loop temperature and decreasing loop length. The irregular
wave shapes are a signature of the Gaussian pulse being composed of a large number of
harmonic modes.

Figure 2 shows the wave evolutions for different pulse widths and pulse locations at
the same observation point as before. Changing the width of the Gaussian pulse does
not affect the wave period. However, the wave amplitude increases with the pulse width
almost independently of the pulse location along the loop. At a fixed observation point,
the wave forms may look differently depending on whether the pulse has been injected
near the footpoint or at the loop top. We find that narrower pulses act on the way of
producing oscillations that damp out more rapidly because of the lower energy content
in the initial perturbation.

We predict wave periods between 0.45 and 10.7 minutes and decay times between 1.52
and 35 minutes. For comparison, De Moortel et al (2002)reported observed periods in
the ranges 2.2 − 10, for propagating disturbances detected by TRACE.
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We conclude that narrow Gaussian pulses may generate loop oscillations which are
quite efficiently dissipated by the effects of thermal conduction and viscosity in both
short and long hot coronal loops. The predicted periods and decay times are seen to
compare well with those of the observed rapidly decaying modes of hot SUMER loop os-
cillations. Future work in this line will consider full hydrodynamic simulations to study
the nonlinear effects on wave form and wave dissipation. At the same time, it would
be interesting to consider the effects of a Gaussian pulse in the initial temperature per-
turbation distribution on wave generation and damping. This would be equivalent to
an energy pulse. On the other hand, a similar analysis to the one presented here shows
that for stratified loops the results are not much changed in agreement with previous
linear predictions, where the rate of damping is not affected by gravity. Non-equilibrium
ionization would be also interesting to be included in the model (Bradshaw and Erdélyi
2007).
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