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Abstract

We consider a modified version of the classical optimal dividends problem of de Finetti
in which the objective function is altered by adding in an extra term which takes account
of the ruin time of the risk process, the latter being modeled by a spectrally negative Lévy
process. We show that, with the exception of a small class, a barrier strategy forms an
optimal strategy under the condition that the Lévy measure has a completely monotone
density. As a prerequisite for the proof, we show that, under the aforementioned condition
on the Lévy measure, the q-scale function of the spectrally negative Lévy process has a
derivative which is strictly log-convex.
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1. Introduction

In this paper we consider the classical de Finetti’s optimal dividends problem, but with an
extra component regarding the ruin time added to the objective function. Within this problem
we assume that the underlying dynamics of the risk process are described by a spectrally
negative Lévy process, which is now widely accepted and used as a replacement for the classical
Cramér–Lundberg process (cf. [1], [3], [8], [9], [11], [14], [16], [19], [20], and [23]). Recall
that a Cramér–Lundberg risk process {Xt : t ≥ 0} corresponds to

Xt = x + ct −
Nt∑
i=1

Ci,

where x > 0 denotes the initial surplus, the claims C1, C2, . . . are independent and identically
distributed positive random variables with expected value µ, c > 0 represents the premium
rate, andN = {Nt : t ≥ 0} is an independent Poisson process with arrival rate λ. Traditionally,
it is assumed in the Cramér–Lundberg model that the net profit condition c > λµ holds, or,
equivalently, that X drifts to ∞. In this paper, X will be a general spectrally negative Lévy
process and the condition that X drifts to ∞ will not be assumed.

We will now state the control problem considered in this paper. As mentioned before,
X = {Xt : t ≥ 0} is a spectrally negative Lévy process which is defined on a filtered probability
space (�,F ,F = {Ft : t ≥ 0},P) satisfying the usual conditions. Within the definition of a
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spectrally negative Lévy process, it is implicitly assumed thatX does not have monotone paths.
We denote by {Px, x ∈ R} the family of probability measures corresponding to a translation
of X such that X0 = x, where we write P = P0. Furthermore, Ex denotes the expectation with
respect to Px , with E being used in the obvious way. The Lévy triplet ofX is given by (γ, σ, ν),
where γ ∈ R, σ ≥ 0, and ν is a measure on (0,∞) satisfying∫

(0,∞)

(1 ∧ x2)ν(dx) < ∞.

Note that even thoughX has only negative jumps, for convenience, we choose the Lévy measure
to have mass only on the positive instead of the negative half line. The Laplace exponent of X
is given by

ψ(θ) = log(E(exp(θX1))) = γ θ + 1

2
σ 2θ2 −

∫
(0,∞)

(1 − e−θx − θx1{0<x<1})ν(dx),

and is well defined for θ ≥ 0. Note that the Cramér–Lundberg process corresponds to the case
in which σ = 0, ν(dx) = λF(dx), where F is the law of C1, and γ = c − ∫

(0,1) xν(dx). The
processX will represent the risk/surplus process of an insurance company before dividends are
deducted.

We denote a dividend or control strategy by π , where π = {Lπt : t ≥ 0} is a nondecreasing,
left-continuous, F-adapted process which starts at 0. The random variable Lπt will represent
the cumulative dividends the company has paid out until time t under the control π . We define
the controlled (net) risk process Uπ = {Uπt : t ≥ 0} by Uπt = Xt − Lπt . Let σπ = inf{t >
0 : Uπt < 0} be the ruin time, and define the value function of a dividend strategy π by

vπ(x) = Ex

(∫ σπ

0
e−qt dLπt + S exp(−qσπ)

)
,

where q > 0 is the discount rate and S ∈ R is the terminal value. By definition, it follows that
vπ(x) = S for x < 0. A strategy π is called admissible if ruin does not occur due to a lump
sum dividend payment, i.e. Lπt+ −Lπt ≤ Uπt ∨ 0 for t ≤ σπ . Let	 be the set of all admissible
dividend policies. The control problem consists of finding the optimal value function v∗ given
by

v∗(x) = sup
π∈	

vπ(x)

and an optimal strategy π∗ ∈ 	 such that

vπ∗(x) = v∗(x) for all x ≥ 0.

When S = 0, the above optimal control problem transforms, albeit within the more general
framework of a spectrally negative Lévy risk process, to the original optimal dividends problem
introduced firstly in a discrete-time setting by de Finetti [7] and later studied in, amongst others,
[3], [4], [12], [19], and [20]. The general case when S ∈ R that we consider here is not new.
Thonhauser and Albrecher [26] studied in the Cramér–Lundberg setting the case in which
S < 0. In this case the extra term added to the value function penalizes early ruin and so this
model can be used if, besides the value of the dividend payments, we also want to take into
consideration the lifetime of the risk process. The parameter S can then be used to find the
desired ‘balance’ between optimizing the value of the dividends and maximizing the ruin time.
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When S > 0, the model can be used if the company, when it becomes bankrupt, has a salvage
value equaling S which is distributed to the same beneficiaries as the dividends are; see also
the discussion in [22, Section 3]. In a Brownian motion/diffusion setting, this control problem
has been studied in [5] and [24].

We will now introduce two types of dividend strategies and state our main theorem. We
denote by πa = {Lat : t ≥ 0} the barrier strategy at level a ≥ 0 with corresponding value
function va and ruin time σa . This strategy is defined by La0 = 0 and

Lat =
(

sup
0≤s<t

Xs − a
)

∨ 0 for t > 0.

Note that πa ∈ 	. So, if dividends are paid out according to a barrier strategy with the barrier
placed at a, then the corresponding controlled risk process will be a spectrally negative Lévy
process reflected in a.

We further introduce the take-the-money-and-run strategy πrun = {Lrun
t : t ≥ 0}, which

is the strategy where all of the surplus of the company is directly paid out and immediately
thereafter ruin is forced (note that ruin is defined as the state when the controlled risk process
is strictly below 0). The value of this strategy is vrun(x) = x + S for x ≥ 0. In case X is
not a Cramér–Lundberg risk process, this strategy is the same as the barrier strategy with the
barrier placed at 0 (i.e. almost surely (a.s.), L0

t = Lrun
t for all t ≥ 0). But, if X is a Cramér–

Lundberg risk process then the barrier strategy at 0 does not imply immediate ruin; ruin occurs
only after the first jump/claim which takes an exponentially distributed with parameter ν(0,∞)

amount of time. Therefore, the value of the latter strategy might be different than the value
of the take-the-money-and-run strategy. In particular, for large terminal values, vrun might be
bigger than v0 since it can be beneficial to become ruined as soon as possible. Note that in the
Cramér–Lundberg case, ruin can be forced in an admissible way by paying out dividends at a
rate which is larger than the premium rate immediately after taking out all the surplus.

Recall that an infinitely differentiable functionf : (0,∞) → [0,∞) is completely monotone
if its derivatives alternate in sign, i.e. (−1)nf (n)(x) ≥ 0 for all n = 0, 1, 2, . . . and all x > 0.
The main theorem of this paper reads as follows.

Theorem 1. Suppose that the Lévy measure of the spectrally negative Lévy process X with
Lévy triplet (γ, σ, ν) has a completely monotone density. Let c = γ + ∫ 1

0 xν(dx). Then the
following statements hold.

(i) If σ > 0, or ν(0,∞) = ∞, or ν(0,∞) < ∞ and S ≤ c/q, then an optimal strategy for
the control problem is formed by a barrier strategy.

(ii) If σ = 0, ν(0,∞) < ∞, and S > c/q, then the take-the-money-and-run strategy is an
optimal strategy for the control problem.

Note that the parameter c is strictly positive since we assumed that the paths of X are not
monotone decreasing. ForX being equal to a Brownian motion with drift, this control problem
has been solved in [5] and [24]. In the case when X is a Cramér–Lundberg process with
exponentially distributed claims, the control problem was solved by Gerber [12] for S = 0
and by Thonhauser and Albrecher [26] for S < 0 (note that Thonhauser and Albrecher [26,
Lemma 10] distinguished between the cases of the optimal strategy being a barrier strategy
where the barrier is placed at 0 and where the barrier is placed at a strictly positive level,
whereas we in Theorem 1 distinguish between the cases where a barrier strategy is optimal
and where the take-the-money-and-run strategy is optimal). Note that both cases are examples
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for which the Lévy measure has a completely monotone density and, thus, are contained in
Theorem 1. Some other examples of spectrally negative Lévy processes which have a Lévy
measure with a completely monotone density can be found in [20].

Building on the work of Avram et al. [3], Loeffen [20] proved Theorem 1 for S = 0. In
particular, it was shown that optimality of the barrier strategy depends on the shape of the
so-called scale function of a spectrally negative Lévy process. To be more specific, the q-scale
function ofX,W(q) : R → [0,∞), where q ≥ 0, is the unique function such thatW(q)(x) = 0
for x < 0, and on [0,∞) is a strictly increasing and continuous function characterized by its
Laplace transform which is given by∫ ∞

0
e−θxW(q)(x) dx = 1

ψ(θ)− q
for θ > 
(q),

where 
(q) = sup{θ ≥ 0 : ψ(θ) = q} is the right inverse of ψ . Loeffen [20] showed that
when W(q) is sufficiently smooth and W(q)′ is increasing on (a∗,∞), where a∗ is the largest
point where W(q)′ attains its global minimum, then the barrier strategy at a∗ is optimal for the
control problem (in the S = 0 case). Here W(q) being sufficiently smooth means that W(q) is
once or twice continuously differentiable when X is of bounded or, respectively, unbounded
variation. It was then shown in [20] that when X has a Lévy measure which has a completely
monotone density, these conditions on the scale function are satisfied and, in particular, that
W(q)′ is strictly convex on (0,∞). Shortly thereafter, Kyprianou et al. [19] showed that W(q)′
is strictly convex on (a∗,∞) (but not necessarily on (0,∞) (see [19, Section 3])) under the
weaker condition that the Lévy measure has a density which is log-convex. Though the scale
function in that case is not necessarily sufficiently smooth, Kyprianou et al. [19] were able
to circumvent this problem and proved that the barrier strategy at a∗ is still optimal when the
Lévy measure has a log-convex density. Note that without a condition on the Lévy measure the
barrier strategy is not optimal in general. Indeed, Azcue and Muler [4] have given an example
for which no barrier strategy is optimal.

The proof of Theorem 1 in the case when S 
= 0 relies on the assumption thatW(q)′ is strictly
log-convex on (0,∞). Though in [20] it was only shown, under the complete monotonicity
assumption on the Lévy measure, that W(q)′ is strictly convex on (0,∞), we will show in
Section 2 that the stronger property of strict log-convexity actually holds in that case. Then in
Section 3 the proof of Theorem 1 will be given.

2. Scale functions

Associated to the functions {W(q) : q ≥ 0}mentioned in the previous section are the functions
Z(q) : R → [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W(q)(y) dy for q ≥ 0.

Together, the functions W(q) and Z(q) are collectively known as scale functions and predomi-
nantly appear in almost all fluctuation identities for spectrally negative Lévy processes. As an
example, we mention the one-sided exit below problem for which

Ex(e
−qτ−

0 1{τ−
0 <∞}) = Z(q)(x)− q


(q)
W(q)(x), (1)

where τ−
0 = inf{t > 0 : Xt < 0}.
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We will now recall some properties of scale functions which we will need later on. When
the Lévy process drifts to ∞ or, equivalently, ψ ′(0+) > 0, the 0-scale function W(0) (which
will be denoted from now on by W ) is bounded and has a limit limx→∞W(x) = 1/ψ ′(0+).
Furthermore, for q ≥ 0, there is the following relation between scale functions:

W(q)(x) = e
(q)xW
(q)(x), (2)

where W
(q) is the (0-)scale function of X under the measure P
(q) defined by

dP
(q)

dP

∣∣∣∣
Ft

= exp(
(q)Xt − qt).

The processX under the measure P
(q) is still a spectrally negative Lévy process and its Laplace
exponent is given by ψ
(q)(θ) = ψ(
(q) + θ) − ψ(
(q)). When q > 0, it is known that
ψ ′

(q)(0+) = ψ ′(
(q)) > 0.
From [15, (8.18)] and the fact that W is strictly positive on (0,∞), it follows that we can

write, for x, a > 0,

log(W(x)) = log(W(a))+
∫ x

a

g(t) dt,

where g is a decreasing function and, hence, log(W(x)) is concave on (0,∞) (see, e.g. [27,
Theorem 1.13]). Recall here that a strictly positive function f is said to be log-concave or
log-convex whenever log(f ) is concave or, respectively, convex. From (2), it now follows that,
for q ≥ 0, log(W(q)(x)) is concave on (0,∞) and, thus, W(q) is log-concave on (0,∞) for all
q ≥ 0.

The initial value of the scale function W(q)(0) is equal to 1/c, where c is as in Theorem 1.
Note that if X is of unbounded variation then c = ∞ and, thus,W(q)(0) = 0. The initial value
of the derivative of the scale function is given by (see, e.g. [18])

W(q)′(0) := lim
x↓0

W(q)′(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

σ 2 when σ > 0,

ν(0,∞)+ q

c2 when σ = 0 and ν(0,∞) < ∞,

∞ otherwise.

Despite the fact that the scale function is in general only implicitly known through its Laplace
transform, there are plenty of examples of spectrally negative Lévy processes for which there
exists closed-form expressions for their scale functions, although most of these examples only
deal with the q = 0 scale function. In case no explicit formula for the scale function exists,
we can use numerical methods, as described in [25], to invert the Laplace transform of the
scale function. We refer the reader to the papers [13], [17], and [19] for an updated account on
explicit examples of scale functions and their properties.

In the sequel, for a ∈ R, a function f , and a Borel measure µ, we will use the notation∫ ∞
a
f (x)µ(dx) and

∫ ∞
a+ f (x)µ(dx) to mean integration over the interval [a,∞) in the first case

and integration over the interval (a,∞) in the second case. In particular,
∫ ∞
a
f (x)µ(dx) =

f (a)µ{a} + ∫ ∞
a+ f (x)µ(dx). We recall Bernstein’s theorem (cf. [10, Chapter XIII.4]) which

says that a real-valued function f is completely monotone if and only if there exists a Borel
measure µ such that f (x) = ∫ ∞

0 e−xtµ(dt), x > 0. We now strengthen the conclusion of
Theorem 3 in [20]. First we need the following proposition.
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Proposition 1. Suppose that q > 0. Then

lim inf
x→∞ e
(q)xW ′


(q)(x) = 0.

Proof. Taking derivatives on both sides in (1) and using (2), we obtain

d

dx
Ex(exp(−qτ−

0 )1{τ−
0 <∞}) = − q


(q)
e
(q)xW ′


(q)(x).

Suppose now that the conclusion of the proposition does not hold. Then e
(q)xW ′

(q)(x) will

eventually be bounded from below by a strictly positive constant. It then follows that

lim
x→∞ Ex(exp(−qτ−

0 )1{τ−
0 <∞}) = −∞,

which contradicts the positivity of the expectation.

Theorem 2. Suppose that the Lévy measure ν has a completely monotone density and that
q > 0. Then the q-scale function can be written as

W(q)(x) = e
(q)x

ψ ′(
(q))
− f (x), x > 0,

where f is a completely monotone function.

Proof. It was shown in [20] that if the Lévy measure ν has a completely monotone density
then W
(q) is a Bernstein function and, therefore, admits the representation

W
(q)(x) = a + bx +
∫ ∞

0+
(1 − e−xt )ξ(dt), x > 0, (3)

where a, b ≥ 0 and ξ is a measure on (0,∞) satisfying
∫ ∞

0+(t ∧ 1)ξ(dt) < ∞. Since q > 0,
W
(q) will be bounded and, therefore, b = 0, and by using Fatou’s lemma,

ξ(0,∞) =
∫ ∞

0+
lim
x→∞(1 − e−xt )ξ(dt)

≤ lim
x→∞

∫ ∞

0+
(1 − e−xt )ξ(dt)

= lim
x→∞W
(q)(x)− a

< ∞.

We now deduce from Proposition 1, (3), and Fatou’s lemma that

0 = lim inf
x→∞ e
(q)xW ′


(q)(x)

= lim inf
x→∞

∫ ∞

0+
e−x(t−
(q))tξ(dt)

≥
∫ ∞

0+
lim inf
x→∞ e−x(t−
(q))tξ(dt)

≥ 
(q)ξ(0,
(q)].
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It follows that ξ(0,
(q)] = 0, and using (2) and (3), we can write

W(q)(x) = e
(q)x(a + ξ(
(q),∞))−
∫ ∞


(q)+
e−x(t−
(q))ξ(dt)

= e
(q)x(a + ξ(
(q),∞))−
∫ ∞

0+
e−xt ξ(dt +
(q)).

(4)

Now the conclusion of the theorem follows by Bernstein’s theorem and the fact that a +
ξ(
(q),∞) = limx→∞W
(q)(x) = 1/ψ ′(
(q)).

Denote by W(q,n)(x) the nth derivative of W(q)(x) for x > 0 and n = 0, 1, 2, . . . .

Corollary 1. Suppose that the Lévy measure ν has a completely monotone density, that q > 0,
and that n is an odd integer. Then log(W(q,n)(x)) has a strictly positive second derivative for
all x > 0. Consequently, the function W(q,n) is strictly log-convex on (0,∞).

Proof. Suppose that the Lévy measure has a completely monotone density, that q > 0, and
that n is an odd integer. Let

f (x) = e
(q)x

ψ ′(
(q))
−W(q)(x) and g(x) = −f ′(x).

By Theorem 2, f and g are completely monotone functions and

W(q,n)(x) = 
(q)n

ψ ′(
(q))
e
(q)x + g(n−1)(x), (5)

where g(n−1) is the (n − 1)th derivative of g. Since n is odd, g(n−1) is completely monotone
and, hence, positive (in the weak sense). Furthermore, as q > 0, 
(q) > 0 and, therefore,
W(q,n)(x) > 0 for x > 0. This means that the following is well defined for x > 0:

hn(x) = (W(q,n)(x))2[log(W(q,n)(x))]′′
= W(q,n)(x)W(q,n+2)(x)− (W(q,n+1)(x))2.

We need to prove that hn(x) > 0 for all x > 0. Using (5), we obtain

hn(x) = [g(n−1)(x)g(n+1)(x)− (g(n)(x))2]
+ 
(q)n

ψ ′(
(q))
e
(q)x{
(q)2g(n−1)(x)+ g(n+1)(x)− 2
(q)g(n)(x)}. (6)

By Bernstein’s theorem and Hölder’s inequality, for any completely monotone function v, we
have, for some Borel measure µ,

v(x)v′′(x)− (v′(x))2 =
∫ ∞

0
e−xtµ(dt)

∫ ∞

0
t2e−xtµ(dt)−

(∫ ∞

0
te−xtµ(dt)

)2

≥ 0,

and, therefore, v is log-convex. Since g(n−1) is completely monotone, it is log-convex and,
therefore, the expression between the square brackets in (6) is positive. Furthermore, the
complete monotonicity of g(n−1) implies that each of the terms between the curly brackets
in (6) is positive and, hence, hn(x) ≥ 0. As
(q) > 0, it suffices to prove that one of the terms
between the curly brackets, say g(n+1)(x), is strictly positive. We do this by contradiction.
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Suppose that g(n+1)(x) = 0. Then it is easily seen from Bernstein’s theorem that the function
f has to be equal to a constant. In this case, (4) implies that f ≡ 0. But this means that, for
λ > 
(q),

1

ψ(λ)− q
=

∫ ∞

0
e−λxW(q)(x) dx =

∫ ∞

0

e−(λ−
(q))x

ψ ′(
(q))
dx = 1

(λ−
(q))ψ ′(
(q))
.

Thus,ψ(λ) is the Laplace exponent of a subordinator (consisting of just a single drift term). But
subordinators were excluded from the definition of a spectrally negative Lévy process, which
gives us the desired contradiction.

3. Proof of Theorem 1

In this section the proof of Theorem 1 will be given with the aid of a series of lemmas. The
approach is similar to [3] and [20], namely, calculating the value of a barrier strategy where the
barrier is arbitrary, then choosing the ‘optimal’ barrier, and finally putting this particular barrier
strategy (or the take-the-money-and-run strategy) through a verification lemma.

First we recall what we mean by the term sufficiently smooth. A function f : R → R which
vanishes on (−∞, 0) and which is right continuous at 0 is called sufficiently smooth at a point
x > 0 if f is continuously differentiable at x when X is of bounded variation and is twice
continuously differentiable at x when X is of unbounded variation. A function is then called
sufficiently smooth if it is sufficiently smooth at all x > 0. Note that we implicitly assume that
a sufficiently smooth function is right continuous at 0 and that it equals 0 on (−∞, 0). We let
 be the operator acting on sufficiently smooth functions f , defined by

f (x) = γf ′(x)+ σ 2

2
f ′′(x)+

∫ ∞

0+
(f (x − y)− f (x)+ f ′(x)y1{0<y<1})ν(dy).

Lemma 1. (Verification lemma.) Suppose that π̂ is an admissible dividend strategy such that
(vπ̂ − S) is sufficiently smooth, vπ̂ (0) ≥ S, and, for all x > 0,

max{vπ̂ (x)− qvπ̂ (x), 1 − v′
π̂
(x)} ≤ 0. (7)

Then vπ̂ (x) = v∗(x) for all x ≥ 0 and, hence, π̂ is an optimal strategy.

Proof. By the definition of v∗, it follows that vπ̂ (x) ≤ v∗(x) for all x ≥ 0. We write
w := vπ̂ , and show that w(x) ≥ vπ(x) for all π ∈ 	 and all x ≥ 0. First we suppose that
x > 0. We define, for π ∈ 	, the stopping time σπ0 by σπ0 = inf{t > 0 : Uπt ≤ 0}, and denote
by 	0 the following set of admissible dividend strategies:

	0 = {π ∈ 	 : σπ0 = σπ Px-a.s. for all x > 0}.
Note that, when X is of unbounded variation, 	0 = 	, but that 	0 is a strictly smaller set
than 	 when X is of bounded variation. We claim that any π ∈ 	 can be approximated by
dividend strategies from 	0 in the sense that, for all ε > 0, there exists πε ∈ 	0 such that
vπ(x) ≤ vπε (x) + ε and, therefore, it is enough to show that w(x) ≥ vπ(x) for all π ∈ 	0.
Indeed, we can take πε to be the strategy where you do not pay out any dividends until the
stopping time κ := inf{t > 0 : Lπt ≥ ε}, then at that time point κ pay out a dividend equal to the
size of the overshoot ofLπ over ε and afterwards follow the same strategy as π until ruin occurs
for the latter strategy, at which point you force ruin immediately. Note that πε ∈ 	0 because
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if σπε0 < κ then σπε0 = σπε since until the first dividend payment is made, the process Uπε is
equal to X and, for the spectrally negative Lévy process X, the first entry time in (−∞, 0] is
equal a.s. to the first entry time in (−∞, 0), provided that X0 > 0. Furthermore, if σπε0 ≥ κ

and κ < ∞, then, since Uπεκ > Uπκ , we have σπε0 ≥ σπ and, thus, σπε0 = σπε since σπ = σπε

on the event {σπε0 ≥ κ, κ < ∞} by construction.
We now assume without loss of generality that π ∈ 	0, and we let L̃π and Ũπ be the right-

continuous modifications of Lπ and Uπ . Note that since the filtration F was assumed to be
right continuous, L̃π and Ũπ are adapted processes. Let (Tn)n∈N be the sequence of stopping
times defined by Tn = inf{t > 0 : Ũπt > n or Ũπt < 1/n}. Since Ũπ is a semimartingale and
w is sufficiently smooth—in particular, w and its derivatives are bounded on [1/n, n] for each
n—we can use the change of variables/Itô’s formula (cf. [21, Theorems II.31 and II.32]) on
exp(−q(t ∧ Tn))w(Ũπt∧Tn) together with (7) to deduce that

w(Ũπ0 ) ≥
∫ t∧Tn

0+
e−qs dL̃πs + exp(−q(t ∧ Tn))w(Ũπt∧Tn)+Mt, (8)

where {Mt : t ≥ 0} is a zero-mean Px-martingale. The details yielding this inequality are given
in Appendix A. Using the fact that w ≥ S, which follows from the assumptions w(0) ≥ S

and w′ ≥ 1, taking expectations, letting t and n go to ∞, and using the monotone convergence
theorem, we obtain

w(Ũπ0 ) ≥ Ex

(∫ σπ

0+
e−qs dL̃πs

)
+ S Ex(exp(−qσπ)).

Note that we used here the fact that Tn ↗ σπ Px-a.s., which follows because π ∈ 	0. Now,
using the mean value theorem together with the assumption thatw′(·) ≥ 1 on (0,∞), we obtain

w(Ũπ0 ) = w(x − Lπ0+) ≤ w(x)− Lπ0+,

and combining this with

Ex

(∫ σπ

0+
e−qs dL̃πs

)
= Ex

(∫ σπ

0
e−qs dLπs

)
− Lπ0+ = vπ(x)− S Ex(exp(−qσπ))− Lπ0+,

we deduce that w(x) ≥ vπ(x) and, hence, we have proved w(x) ≥ v∗(x) for all x > 0.
To complete the proof, note that v∗ is an increasing function (in the weak sense) since the

set of admissible strategies is larger when the initial reserves are higher and, hence, because w
is right continuous at 0, v∗(0) ≤ limx↓0 v∗(x) ≤ limx↓0 w(x) = w(0).

Proposition 2. Assume thatW(q) is continuously differentiable on (0,∞). The value function
of the barrier strategy at level a ≥ 0 is given by

va(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
SZ(q)(x)+W(q)(x)

(
1 − qSW(q)(a)

W(q)′(a)

)
if x ≤ a,

x − a + SZ(q)(a)+W(q)(a)

(
1 − qSW(q)(a)

W(q)′(a)

)
if x > a.

Proof. Clearly, the proposition only needs to be proved for 0 ≤ x ≤ a. Let x ∈ [0, a]. By
Avram et al. [3, Proposition 1], it follows that

Ex

(∫ σa

0
e−qt dLat

)
= W(q)(x)

W(q)′(a)
.
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Since

σa = inf{t > 0 : Xt − Lat < 0} = inf
{
t > 0 :

(
sup

0≤s<t
Xs

)
∨ a −Xt > a

}
,

it follows from [2, Theorem 1] that

Ex(exp(−qσa)) = Z(q)(x)−W(q)(x)
qW(q)(a)

W(q)′(a)
.

This completes the proof.

Define the function ζ : [0,∞) → R by

ζ(x) = 1 − qSW(q)(x)

W(q)′(x)
for x > 0

and ζ(0) = limx↓0 ζ(x). We now define the (candidate) optimal barrier level by

a∗(S) = sup{a ≥ 0 : ζ(a) ≥ ζ(x) for all x ≥ 0}.
Hence, a∗(S) is the last point where ζ attains its global maximum. Note that a∗(0) is the point
a∗ mentioned in Section 1. In the sequel we will write a∗ instead of a∗(0).

Proposition 3. Suppose thatW(q) is continuously differentiable on (0,∞). Then a∗(S) < ∞.

Proof. Define

f (x) = ζ(x)+ qS


(q)
= 1 + qS(
(q)−1W(q)′(x)−W(q)(x))

W(q)′(x)
.

Since limx→∞W(q)(x)/W(q)′(x) = 1/
(q) (see, e.g. [3, Section 3.3]) and W(q) is continu-
ously differentiable, it follows that limx→∞ f (x) = 0 and f is continuous. Hence, a∗(S) < ∞
if there exists x ≥ 0 such that f (x) > 0. But, by (2),

f (x) = 1 + (qS/
(q))e
(q)xW ′

(q)(x)

W(q)′(x)
,

and, thus, by Proposition 1, there exists x ≥ 0 such that f (x) > 0. This completes the proof.

Note that when a∗(S) > 0 andW(q) is twice continuously differentiable, then ζ ′(a∗(S)) = 0.
Furthermore, it is easily seen that if an optimal strategy is formed by a barrier strategy then the
barrier strategy at a∗(S) has to be an optimal strategy.

Lemma 2. Suppose that W(q) is sufficiently smooth and that

ζ(a) ≥ ζ(b) for all a, b such that a∗(S) ≤ a ≤ b. (9)

Then the following statements hold.

(i) If ζ(a∗(S)) ≥ 0 then the barrier strategy at a∗(S) is an optimal strategy.

(ii) If a∗(S) = 0 and ζ(0) ≤ 0, then the take-the-money-and-run strategy is optimal.
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Note that Lemma 2 is a generalization of Theorem 2 of [20]. Indeed, when S = 0, ζ(a∗) =
1/W(q)′(a∗) > 0 and condition (9) transforms into the condition that W(q)′ is increasing on
(a∗,∞).

Proof of Lemma 2. We first prove (i) by showing that va∗(S) satisfies the conditions of the
verification lemma. Using (9), all the conditions of the verification lemma can be proved
following the same arguments as in the proofs of Lemma 5 and Theorem 2 of [20], with the
exception being the condition that va∗(S)(0) ≥ S. (Note that in deducing the analogue of
Equation (4) of [20], we also use the fact that (exp(−q(t ∧ τ−

0 ∧ τ+
a ))Z

(q)(Xt∧τ−
0 ∧τ+

a
))t≥0 is

a Px-martingale; cf. [15, p. 229].) The missing condition now follows from

va∗(S)(0) = SZ(q)(0)+W(q)(0)ζ(a∗(S)) ≥ S,

where the inequality follows from the assumption that ζ(a∗(S)) ≥ 0.
For case (ii), we prove that vrun satisfies the conditions of the verification lemma. Note that

since vrun(x) = x+S for x ≥ 0, the only nontrivial thing to show is that (−q)vrun(x) ≤ 0 for
all x > 0. This can be achieved by mimicking the proof of Theorem 2 of [20], which involves
proving that

lim
y↑x( − q)(vrun − vx)(y) ≤ 0 for x > 0.

Note that in order to prove the above inequality, we use the fact that vrun(0) ≥ vx(0), which
follows from ζ(x) ≤ 0, and the latter is due to the assumption that ζ(0) ≤ 0 and a∗(S) = 0
(combined with (9)).

Proof of Theorem 1. Since the case in which S = 0 was proved in [20], we assume without
loss of generality that S 
= 0. Note that, by Theorem 2, W(q) is infinitely differentiable (this
was proved for the first time in [6]) and, therefore, certainly smooth enough. Furthermore,
note that W(q)′′ is strictly negative on (0, a∗), strictly positive on (a∗,∞), and if a∗ > 0 then
W(q)′′(a∗) = 0. We will show that

ζ is strictly increasing on (0, a∗(S)) and strictly decreasing on (a∗(S),∞), (10)

from which it follows that a∗(S) is the only point where ζ has a local/global maximum and that
(9) holds.

First note that with g(x) = −qSW(q)′(x)/W(q)′′(x) for x ∈ (0,∞) \ {a∗}, the following
differential equation holds for ζ :

ζ ′(x) = −W
(q)′′(x)

W(q)′(x)
(ζ(x)− g(x)), x ∈ (0,∞) \ {a∗}.

From this, it follows that, for x ∈ (0, a∗),

ζ ′(x) > 0 if and only if ζ(x) > g(x), (11)

ζ ′(x) < 0 if and only if ζ(x) < g(x), (12)

ζ ′(x) = 0 if and only if ζ(x) = g(x), (13)

and, for x ∈ (a∗,∞),

ζ ′(x) > 0 if and only if ζ(x) < g(x), (14)

ζ ′(x) < 0 if and only if ζ(x) > g(x), (15)

ζ ′(x) = 0 if and only if ζ(x) = g(x). (16)
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Suppose that S > 0. Since

ζ ′(x) = qS[W(q)(x)W(q)′′(x)− (W(q)′(x))2] −W(q)′′(x)
(W(q)′(x))2

, (17)

where the expression between the square brackets is negative due to the log-concavity ofW(q),
it follows that ζ ′(x) < 0 on (a∗,∞) and, therefore, a∗(S) ≤ a∗. If a∗ = 0, (10) now holds,
so we can assume without loss of generality that a∗ > 0. Then limx↑a∗ g(x) = ∞ and (11)–
(13) imply that a∗(S) 
= a∗ and, thus, a∗(S) < a∗. By the strict log-convexity of W(q)′
(Corollary 1), g is strictly increasing on (0, a∗). The foregoing and (11)–(13) then imply that
either ζ intersects g exactly once on (0,∞) (at a∗(S)) and (10) holds or that ζ ′(x) < 0 for all
x > 0, and in that case a∗(S) = 0. Hence, (10) holds when S > 0.

Suppose now that S < 0 and a∗ > 0. Then ζ is strictly positive on (0,∞) by definition and
g is strictly negative on (0, a∗). Hence, a∗(S) ≥ a∗. Due to the strict log-convexity of W(q)′,
g is in this case strictly decreasing on (a∗,∞) and combined with (14)–(16) and the fact that
limx↓a∗ g(x) = ∞, this implies that ζ and g intersect each other exactly once, a∗(S) > a∗,
and that (10) holds.

This leaves the final case when S < 0 and a∗ = 0. If ζ(0) ≥ g(0) then (14)–(16) and g
being strictly decreasing on (0,∞) imply that ζ is strictly decreasing on (0,∞) and, hence,
a∗(S) = 0. If ζ(0) < g(0) then a∗(S) > 0 and, furthermore, (10) holds by the same arguments
as before.

Suppose now that σ > 0, or ν(0,∞) = ∞, or ν(0,∞) < ∞ and S ≤ c/q. Then from
the values of W(q)(0) and W(q)′(0) given in Section 2, it follows that ζ(0) ≥ 0 and, hence,
ζ(a∗(S)) ≥ 0 by the definition of a∗(S). Thus, part (i) of the theorem follows from Lemma 2(i).

To prove part (ii), suppose that σ = 0, ν(0,∞) < ∞, and S > c/q. This implies that S > 0
and ζ(0) < 0. If a∗ = 0 then a∗(S) = 0 since S > 0. If a∗ > 0 then g(0) > 0 and, hence, by
(11)–(12) and (17), ζ ′(x) < 0 for all x > 0 and, therefore, a∗(S) = 0. Part (ii) now follows
from Lemma 2(ii).

Appendix A

We give here the details which lead to (8).

Applying the change of variables/Itô’s formula to exp(−q(t ∧ Tn))w(Ũπt∧Tn) gives

exp(−q(t ∧ Tn))w(Ũπt∧Tn)− w(Ũπ0 ) =
∫ t∧Tn

0+
e−qs

(
σ 2

2
w′′(Ũπs−)− qw(Ũπs−)

)
ds

+
∫ t∧Tn

0+
e−qsw′(Ũπs−) d(Xs − (L̃πs )

c)

+
∑

0<s≤t∧Tn
e−qs(�w(Ũπs )− w′(Ũπs−)�Xs), (18)

where we used the following notation: �Ũπs = Ũπs − Ũπs−, �w(Ũπs ) = w(Ũπs )− w(Ũπs−),
and (L̃πs )

c = L̃πs − ∑
0<u≤s �L̃πu . Note that we have used here the fact that the continuous
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martingale part of X is its Gaussian part. We can easily verify that∑
0<s≤t∧Tn

e−qs(�w(Ũπs )− w′(Ũπs−)�Xs)

=
∑

0<s≤t∧Tn
e−qs(�w(Ũπs− +�Xs)− w′(Ũπs−)�Xs)

−
∑

0<s≤t∧Tn
e−qs(w(Xs − L̃πs−)− w(Xs − L̃πs− −�L̃πs )). (19)

Since, by the admissibility ofLπ , we have�L̃πs ≤ Xs−L̃πs−, and so by the mean value theorem
and the hypothesis, w′ ≥ 1,

w(Xs − L̃πs−)− w(Xs − L̃πs− −�L̃πs ) ≥ �L̃πs for 0 < s < t ∧ Tn. (20)

Combining (18), (19), and (20) leads to

e−q(t∧Tn)w(Ũπt∧Tn)− w(Ũπ0 )

≤
∫ t∧Tn

0+
e−qs

(
σ 2

2
w′′(Ũπs−)− qw(Ũπs−)

)
ds

+
∫ t∧Tn

0+
e−qsw′(Ũπs−) d(Xs − (L̃πs )

c)

+
∑

0<s≤t∧Tn
e−qs(�w(Ũπs− +�Xs)− w′(Ũπs−)�Xs −�L̃πs )

=
∫ t∧Tn

0+
e−qs( − q)w(Ũπs−) ds −

∫ t∧Tn

0+
e−qsw′(Ũπs−) d(L̃πs )

c −
∑

0<s≤t∧Tn
e−qs�L̃πs

+
{∫ t∧Tn

0+
e−qsw′(Ũπs−) d

(
Xs − γ s −

∑
0<u≤s

�Xu1{|�Xu|≥1}
)}

+
{ ∑

0<s≤t∧Tn
e−qs(�w(Ũπs− +�Xs)− w′(Ũπs−)�Xs1{|�Xs |<1})

−
∫ t∧Tn

0+

∫ ∞

0+
e−qs(w(Ũπs− − y)− w(Ũπs−)+ w′(Ũπs−)y1{0<y<1})ν(dy) ds

}
.

By the Lévy–Itô decomposition, the expression between the first pair of curly brackets is a zero-
mean martingale and, by the compensation formula (cf. [15, Corollary 4.6]), the expression
between the second pair of curly brackets is also a zero-mean martingale. Now using (7),
inequality (8) follows.
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