AVERAGING OPERATORS ON THE RING OF CONTINUOUS FUNCTIONS ON A COMPACT SPACE¹

BARRON BRAINERD *

(received 26 June 1963, revised 11 March 1964)

1. Introduction

In this note we answer the following question: Given C(X) the latticeordered ring of real continuous functions on the compact Hausdorff space X and T an averaging operator on C(X), under what circumstances can X be decomposed into a topological product $\mathfrak{A} \times \mathfrak{L}$ such that \mathfrak{L} supports a measure m and Tf = h where

$$h(\alpha,\beta) = \int_{\mathfrak{L}} f(\alpha,\xi) dm(\xi)?$$

By an averaging operator we mean a linear transformation T on C(X) such that:

1. T is positive, that is, if f > 0 ($f(x) \ge 0$ for all $x \in X$ and f(x) > 0 for some $x \in X$), then Tf > 0.

2. T(fTg) = (Tf)(Tg).

3. T = 1 where 1(x) = 1 for all $x \in X$.

If X is the unit square $[0, 1] \times [0, 1]$, $f(x_1, x_2) \in C(X)$, then the linear operator T given by the relation,

$${Tf}(x_1, x_2) = \int_0^1 f(x_1, \xi) d\xi,$$

is clearly an averaging operator. Our problem in effect is to characterize those pairs (X, T) where X is a compact Hausdorff space and T an averaging operator such that X can be decomposed into a product and T can be written as an integration over one factor of that product.

Averaging operators have been the object of considerable attention. A recent survey of the literature is given by G. Birkhoff in [1]. In [2] the author discusses the above question when the role of C(X) is played by a

¹ This paper was written while the author was a Visiting Fellow in the Institute of Advanced Studies, Australian National University.

¹ The author wishes to express his gratitude to the referee whose suggestions greatly simplified the proof of the results.

bounded F-ring. Bounded F-rings are one of the more natural generalizations of L^{∞} -spaces.

2. When X is known to be a product space

Let X be a topological product $\mathfrak{A} \times \mathfrak{Q}$ of compact Hausdorff spaces \mathfrak{A} and \mathfrak{Q} . Let D be the subalgebra of C(X) consisting of all $f \in C(X)$ such that $f(\alpha, \beta)$ depends only on $\alpha \in \mathfrak{A}$, that is $f(\alpha, \beta) = f_1(\alpha)$ for all $\alpha \in \mathfrak{A}$ and $\beta \in \mathfrak{Q}$ where f_1 is a continuous function on \mathfrak{A} . Let E be the subalgebra consisting of all functions f which depend only on β .

THEOREM 1. A necessary and sufficient set of conditions for the existence of a normalized Borel measure 3 m on \mathfrak{L} such that

$$(Tf)(\alpha, \beta) = \int_{\mathfrak{L}} f(\alpha, \xi) dm(\xi)$$

for all $f \in C(X)$, $\alpha \in \mathfrak{A}$, $\beta \in \mathfrak{L}$ is the following:

(i) for all $f \in E$, Tf should be a constant function,

(ii) for all $f \in D$, $g \in E$, $T(fg) = f \cdot T(g)$.

PROOF. (A) The necessity is trivial.

(B) Sufficiency. For each continuous function φ on \mathfrak{L} , let φ^* be the continuous function on X given by

$$\varphi^*(\alpha,\beta)=\varphi(\beta).$$

Define $U(\varphi)$ to be the value of the constant function $T\varphi^*$. Then, since T is a positive linear operator on X, U is a positive Radon measure and hence by the Riesz representation theorem, there exists a normalized Borel measure m on \mathfrak{L} such that

$$U(\varphi) = \int_{\mathfrak{L}} \varphi(\xi) dm(\xi)$$

for every continuous function φ on \mathfrak{L} .

For all $f \in C(X)$, let

$$(Vf)(\alpha, \beta) = \int_{\mathfrak{L}} f(\alpha, \xi) dm(\xi).$$

Since for fixed α , $f(\alpha, \beta)$ is continuous in β and hence a continuous function on \mathfrak{L} , it follows that $Vf(\alpha, \beta)$ is a well defined function on X. Since m is a normalized Borel measure, it follows that $Vf \in C(X)$ and V is a bounded linear operator.

Now for $f \in D$ and $g \in E$,

³ A normalized Borel measure on X is a non-negative countably additive measure μ on the Borel sets of X for which $\mu(X) = 1$.

Averaging operators

$$\{T(f \cdot g)\}(\alpha, \beta) = f(\alpha, \beta) \cdot \{(Tg)(\alpha, \beta)\}$$
 (by (ii))
= $f(\alpha, \beta) \int_{\alpha} g(\alpha, \xi) dm(\xi)$

because g does not depend on α . Since $f(\alpha, \beta)$ is independent of β

$$T(f \cdot g)(\alpha, \beta) = \int_{\mathfrak{B}} f(\alpha, \beta) g(\alpha, \xi) dm(\xi)$$
$$= \{V(f \cdot g)\}(\alpha, \beta).$$

Thus $T(f \cdot g) = V(f \cdot g)$ for all $f \in D$, $g \in E$. However, the subalgebra of C(X) generated by $D \cup E$ is dense in C(X) and by linearity T and V coincide on this subalgebra. Therefore T = V on C(X).

3. The main result

In order to prove our main result (Theorem 3) we employ certain results of MacDowell [3]. MacDowell makes the following definitions:

(i) A subalgebra A of C(X) is analytic if it contains the constant functions.

(ii) Two subalgebras A_1 and A_2 are additively related if for $f \in A_1$ and $g \in A_2$ either ||f+g|| = ||f||+||g|| or ||f-g|| = ||f||+||g||.⁴

We define A_1 and A_2 to be multiplicatively related if for $f \in A_1$ and $g \in A_2$,

$$||fg|| = ||f|| ||g||.$$

It is a matter of direct verification that subalgebras A_1 and A_2 are additively related if and only if they are multiplicatively related.

THEOREM 2. Let X be an arbitrary compact Hausdorff space. If A is a subalgebra of C(X) such that for all $g \in A$, Tg is a constant function, then TC and A are multiplicatively (and hence additively) related.

PROOF. First note that TC is closed under multiplication, because if $f_1, f_2 \in TC$ and $f_1 = Th_1, f_2 = Th_2$, then

$$T(h_1Th_2) = Th_1Th_2 = f_1f_2.$$

Suppose TC and A are not multiplicatively related. Then there exists $f \in TC$ and $g \in A$ such that

(1)
$$||fg|| < ||f|| ||g||.$$

Thus |f(x)| < 1 when |g(x)| = 1. Therefore there is an $x \in X$ for which

$${f(x)}^2 \cdot {g(x)}^2 < {g(x)}^2$$

and so

• By ||f|| we mean the usual sup norm: $||f|| = \sup_{x \in X} |f(x)|$.

[3]

Barron Brainerd

(2)
$$0 \leq T(f^2g^2) < T(g^2)$$

because T is a positive operator. Now since $g^2 \in A$, $T(g^2)$ is constant and

(3)
$$||T(f^2g^2)|| < T(g^2).$$

On the other hand $f^2 \in TC$ and so $f^2 = Th$ for some $h \in C(X)$. Thus

$$T(f^2g^2) = T(g^2)f^2$$

and

$$||T(f^2g^2)|| = T(g^2) ||f^2|| = T(g^2)$$

which contradicts Equation (3). Thus TC and A are multiplicatively related.

LEMMA. Let $X = \mathfrak{A} \times \mathfrak{D}$ be a topological product of compact Hausdorff spaces \mathfrak{A} , \mathfrak{D} . Let D consist of all $f \in C(X)$ such that $f(\alpha, \beta)$ depends only on α and let E consist of those $f \in C(X)$ such that $f(\alpha, \beta)$ depends only on β . If A, B are analytic subalgebras of C(X) such that $A \subset D$ and $B \subset E$ and if the subalgebra generated by $A \cup B$ is dense in C(X), then A is dense in D and B is dense in E.

PROOF. Follows from the Stone-Weierstrass theorem.

Now we come to prove our main result and answer the question posed in the Introduction.

THEOREM 4. Let T be an averaging operator on C(X) where X is a compact Hausdorff space and let A be an analytic subalgebra of C(X) such that for all $g \in A$, Tg is a constant function. If $TC \cup A$ separates points of X, then X can be decomposed into a topological product $\mathfrak{A} \times \mathfrak{D}$ of compact Hausdorff spaces and there is a normalized Borel measure m on \mathfrak{D} such that

(i) for every $f \in C(X)$

(4)
$$(Tf)(\alpha, \beta) = \int_{\Omega} f(\alpha, \xi) dm(\xi)$$

and

(ii) A is contained in the subalgebra E of C(X) consisting of all $f \in C(X)$ such that $f(\alpha, \beta)$ depends only on β .

PROOF. TC is clearly an analytic subalgebra of C(X). By Theorem 2, TC and A are additively related. Since $TC \cup A$ separates points of X, the algebra generated by it is dense in C. Therefore by [3] T14, X is a product space $\mathfrak{A} \times \mathfrak{L}$. Let D be the subalgebra of C consisting of all $f \in C$ such that $f(\alpha, \beta)$ depends only on α and let E be the subalgebra of C consisting of $f \in C$ such that $f(\alpha, \beta)$ depends only on β .

The spaces \mathfrak{A} , \mathfrak{L} are evidently compact. Since they have for their points certain closed subsets of C and for their topologies the usual topologies for spaces of closed sets, they are Hausdorff.

[4]

296

In his statement of T14, MacDowell does not say that

$$(5) TC \subset D, \quad A \subset E,$$

but these relations can easily be deduced from the proof of his T13 in the following manner. To use his notation, put $F_1 = TC$, $F_2 = A$, $\mathfrak{S}_1 = \mathfrak{A}$, $\mathfrak{S}_2 = \mathfrak{A}$. In his proof ([3]T12) a homeomorphism φ of X onto a space \mathfrak{S} is constructed by letting

$$\varphi(x) = \{f \in C \mid |f(x)| = ||f||\}.$$

The points of \mathfrak{S} are there subsets of C. A homeomorphism F of \mathfrak{S} onto $\mathfrak{S}_1 \times \mathfrak{S}_2$ is then constructed by putting

$$F(S) = (S \cap F_1, S \cap F_2).$$

If $h \in F_1$ then $h\varphi^{-1}F^{-1}(\mu_1, \mu_2)$ depends only on U_1 , because if

$$x_0 = \varphi^{-1}F^{-1}(\mu_1, \mu_2), \quad x'_0 = \varphi^{-1}F^{-1}(\mu_1, \mu'_2)$$

then for

$$S_{0} = \{ f \in C \mid |f(x_{0})| = ||f|| \}$$

$$S_{0}' = \{ f \in C \mid |f(x_{0}')| = ||f|| \}$$

we have

$$\mu_1 = S_0 \cap F_1 = S'_0 \cap F_1,$$

and so for every $f \in F_1$ either

(a)
$$|f(x_0)| = ||f||$$
 and $|f(x'_0)| = ||f||$

or

(b)
$$|f(x_0)| < ||f||$$
 and $|f(x_0')| < ||f||$.

Now, using $h \in F_1$, construct the non-negative function

$$g = ||\{h-h(x_0)\}^2||-\{h-h(x_0)\}^2|$$

in F_1 . It is clear that

$$0 \leq g(x) \leq ||\{h - h(x_0)\}^2||$$

for all $x \in X$ and that

$$g(x_0) = ||\{h-h(x_0)\}^2||.$$

Therefore

$$||g|| = g(x_0),$$

and from (a) it follows that $g(x'_0) = ||g||$. Thus $\{h(x'_0) - h(x_0)\}^2 = 0$ so $h(x_0) = h(x'_0)$. Since for each $h \in TC = F_1$,

$$(h\varphi^{-1}F^{-1})(\mu_1, \mu_2)$$

depends only on μ_1 , it follows that $TC \subset D$. Similarly $A \subset E$. Therefore statement (5) is valid.

By the Lemma, TC is dense in D, and A is dense in E. Hence every $f \in D$ is a limit of functions in TC and every $g \in E$ is a limit of functions in A. However, for $h \in A$, Th is constant, and so Tg is a constant for each $g \in E$. Similarly if $f \in D$ and $g \in E$, then by the density of TC in D

$$T(fg) = fTg.$$

Thus the conditions for the application of Theorem 1 are satisfied and so there exists a normalized Borel measure m on \mathfrak{L} for which Equation (4) is valid.

Remarks. (1) It is clear that any operator on C(X) of the form given in Equation (4) is an averaging operator. Then TC is the set of functions which depend only on α , and A can be taken as the set of functions depending only on β . In this case $TC \cup A$ generates an algebra dense in C(X).

(2) For an averaging operator T, it is possible that the only subalgebra A of C(X) for which $g \in A$ implies Tg is constant is exactly the algebra of constant functions. This occurs when $X = \{1, 2, 3\}$ and Tf = gwhere

$$g(1) = g(2) = \frac{f(1)+f(2)}{2}$$
 and $g(3) = f(3)$.

(3) It is also possible that an analytic subalgebra A of C(X) exists which is maximal relative to the condition that for each $g \in A$, Tg is constant while $TC \cup A$ does not separate points in X. See, for example, Example 11.1 in [2].

References

- [1] Birkhoff, G., Averaging Operators, Symposium in Lattice Theory. Amer. Math. Soc. 1960.
- [2] Brainerd, B., On the structure of averaging operators, J. Math. Analysis and Applications, 5 (1962), 347-377.
- [3] MacDowell, R., Banach spaces and algebras of continuous functions, Proc. Amer. Math. Soc. 6 (1955), 67-78.

Department of Mathematics University of Toronto Toronto, Canada.

298