DERIVATIONS WITH INVERTIBLE VALUES

JEFFREY BERGEN, I. N. HERSTEIN AND CHARLES LANSKI

In this paper we study a question which, although somewhat special, has the virtue that its answer can be given in a very precise, definitive, and succinct way. It shows that the structure of a ring is very tightly determined by the imposition of a special behavior on one of its derivations.

The problem which we shall examine is: Suppose that R is a ring with unit element, 1 , and that $d \neq 0$ is a derivation of R such that for every $x \in R, d(x)=0$ or $d(x)$ is invertible in R; must R then have a very special structure?

As we shall see, the answer to this question is yes, in particular we show that except for a special case which occurs when $2 R=0, R$ must be a division ring D or the ring D_{2} of 2×2 matrices over a division ring. More precisely we shall prove:

Theorem. Let R be a ring with 1 and $d \neq 0$ a derivation of R such that, for each $x \in R, d(x)=0$ or $d(x)$ is invertible in R. Then R is either

1. a division ring D, or
2. D_{2}, or
3. $D[x] /\left(x^{2}\right)$, where char $D=2, d(D)=0$ and $d(x)=1+a x$ for some a in the center Z of D.
Furthermore, if $2 R \neq 0$ then $R=D_{2}$ is possible if and only if D does not contain all quadratic extensions of Z, the center of D; equivalently if and only if some element in Z is not a square in D.

We shall also see that if $R=D_{2}$ then d must be inner, provided $2 R \neq 0$; however, d may fail to be inner when $2 R=0$. In addition, we shall see that if $R=D[x] /\left(x^{2}\right)$, then d cannot be inner.

Finally, we consider a similar situation, one in which $d(x)=0$ or is invertible not for all $x \in R$, but for all x in a suitable subset. In that context we also obtain results that say that $R=D, R=D_{2}$, or $R=$ $D[x] /\left(x^{2}\right)$; however the relationship between d and R will be somewhat different, from that described in the theorem.

In all that follows, unless otherwise specified, R will be a ring with 1 and $d \neq 0$ will be a derivation of R such that $d(x)=0$ or is invertible, for all $x \in R$.

[^0]We begin with
Lemma 1. If $d(x)=0$ then either $x=0$ or x is invertible.
Proof. Suppose that $x \neq 0$; since $d \neq 0$ there is a $y \in R$ such that $d(y) \neq 0$. Hence $d(y)$ is invertible. Now $d(y x)=d(y) x \neq 0$ since $x \neq 0$ and $d(y)$ is invertible; therefore $d(y x)$ is invertible, that is, $d(y) x$ is invertible. This forces x to be invertible.

As an easy consequence of Lemma 1 we have
Lemma 2. If $L \neq 0$ is a one-sided ideal of R then $d(L) \neq 0$.
Proof. Since $d \neq 0$ the lemma is certainly true if $L=R$. Suppose, then, that $L \neq R$. If $0 \neq a \in L$ then, by Lemma $1, d(a) \neq 0$ since a is not invertible. Thus $d(L) \neq 0$; in fact we saw that d is not zero on the nonzero elements of L.

Another immediate consequence of Lemma 1 is
Lemma 3. If $2 x=0$ for some $x \neq 0$ in R then $2 R=0$.
Proof. Since $2 x=0, d(2 x)=2 d(x)=0$. If $d(x)=0$ then, by Lemma 1, x is invertible, and since $2 x=0$ we get $0=(2 x) x^{-1}=2$, and so $2 R=0$. On the other hand, if $d(x) \neq 0$ then $d(x)$ is invertible and since $2 d(x)=0$ we get, once again, that $2 R=0$.

What the lemma says is that R can have 2 -torsion if and only if R is of characteristic 2 .

We continue with the important
Lemma 4. If L is a proper left ideal of R then L is both minimal and maximal.

Proof. It certainly suffices to show that every proper left ideal of R is maximal. Let $L \subset T$ be proper left ideals of R. As is easy to verify, $L+d(L)$ is also a left ideal of R. Since, by Lemma $2, d(L) \neq 0$, and so $L+d(L)$ contains invertible elements, we must have $L+d(L)=R$. Therefore if $t \in T$ there exist $a, b \in L$ such that $t=a+d(b)$. Consequently, $d(b)=t-a \in T \cap d(L)=0$; therefore $t=a \in L$. Thus $L=T$ and L is maximal.

We can now narrow in on the structure of R :
Lemma 5. (a) If I is a proper ideal of R then $I^{2}=0$.
(b) If $2 R \neq 0$ then R is simple.

Proof. (a) If $I \neq R$ is an ideal of R then

$$
d\left(I^{2}\right) \subset d(I) I+I d(I) \subset I
$$

hence by Lemma $2, I^{2}=0$ as I cannot contain any invertible elements.
(b) Suppose $2 R \neq 0$ and let $I \neq 0$ be a proper ideal of R, then, by Lemma 2 , there is a $b \in I$ such that $d(b) \neq 0$, so $d(b)$ is invertible. Now, since $b^{2}=0$,

$$
0=d^{2}\left(b^{2}\right)=d^{2}(b) b+2 d(b)^{2}+b d(b)^{2}
$$

in consequence of which, $2 d(b)^{2} \in I$, hence

$$
0=\left(2 d(b)^{2}\right)^{2}=4 d(b)^{4}
$$

Since $d(b)$ is invertible we get $4=0$, so, by Lemma $3,2 R=0$, in contradiction to $2 R \neq 0$. Therefore if $2 R \neq 0, R$ is simple.

By combining Lemmas 4 and 5 we see that if $2 R \neq 0$ then $R=D$ or $R=D_{2}$. For any division ring D and every non-zero derivation, d, of D we certainly have that $d(x)=0$ or $d(x)$ is invertible for every $x \in R$. For D_{2}, under what conditions on D, is there a non-zero derivation d with this property? To answer this question we need to analyze the derivations of the 2×2 matrices over an arbitrary ring. In the following two lemmas we assume that S is any ring with $1, R=S_{2}$, and d is any derivation of R. The first lemma is well known; since its proof is obtained by a straightforward computation, we omit the proof.

Lemma 6. Let S be any ring with 1 and let $R=S_{2}$. If dis a derivation of R then there exist $\alpha, \beta, \gamma \in S$ and a derivation f of S such that:

$$
\begin{aligned}
& d\left(e_{11}\right)=\left(\begin{array}{ll}
0 & \alpha \\
\beta & 0
\end{array}\right), \quad d\left(e_{12}\right)=\left(\begin{array}{cc}
-\beta & \gamma \\
0 & \beta
\end{array}\right), \quad d\left(e_{21}\right)=\left(\begin{array}{cc}
-\alpha & 0 \\
-\gamma & \alpha
\end{array}\right) \\
& d\left(e_{22}\right)=\left(\begin{array}{cc}
0 & -\alpha \\
-\beta & 0
\end{array}\right),
\end{aligned}
$$

and, for $a \in S$,

$$
d\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)=\left(\begin{array}{cc}
f(a) & a \alpha-\alpha a \\
-(a \beta-\beta a) & f(a)+a \gamma-\gamma a
\end{array}\right)
$$

We use the formulas in Lemma 6 to prove the following fact interrelating d and f :

Lemma 7. Let R, S, d, and f be as in Lemma 6. Then d is inner on R if and only iff is inner on S.

Proof. If d is the inner derivation on R induced by $\left(\begin{array}{ll}s & t \\ u & v\end{array}\right)$, where $s, t, u, v \in S$, then it is immediate that $f(x)=s x-x s$ for all $x \in S$, hence f is inner on S.

Conversely, if f is the inner derivation on S defined by $f(x)=r x-x r$, where $r \in S$, then

$$
d(T)=\left(\begin{array}{cc}
r & -\alpha \\
\beta & r-\gamma
\end{array}\right) T-T\left(\begin{array}{cc}
r & -\alpha \\
\beta & r-\gamma
\end{array}\right)
$$

for all $T \in R$, where α, β, γ are as in Lemma 6. This is verified by noting that d and the inner derivation induced by $\left(\begin{array}{cc}r & -\alpha \\ \beta & r-\gamma\end{array}\right)$ agree on all matrix units and on the elements of S, hence on all of R.

We now return to our original situation, assuming that R is a ring with 1 and a derivation $d \neq 0$ such that for each $x \in R$ either $d(x)=0$ or $d(x)$ is invertible. We shall characterize those D for which $R=D_{2}$ has such a derivation, at least when the characteristic of D is not 2 . To do so we need

Lemma 8. If $R=D_{2}$ and $2 R \neq 0$ then d is inner.
Proof. Given d let f, α, β, γ be as in Lemma 6. Then, by Lemma 7, it is enough to prove that f is inner on D. If $a, b, c, e \in D$, then, by Lemma 6 and by the multiplicative law for derivations we have
(1) $\quad d\left(\begin{array}{ll}a & b \\ c & e\end{array}\right)=\left(\begin{array}{cc}f(a)-b \beta-\alpha c & f(b)+a \alpha+b \gamma-\alpha e \\ f(c)+\beta a-e \beta-\gamma c & f(e)+e \gamma-\gamma e+\beta b+c \alpha\end{array}\right)$.

By Lemma 2, $d\left(e_{11}\right)$ is invertible, therefore $\alpha \neq 0$. By (1) we have for $a \in D$ that

$$
d\left(\begin{array}{cc}
a & 0 \\
\alpha^{-1} f(a) & \alpha^{-1} a \alpha
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
u & v
\end{array}\right)
$$

where

$$
\begin{aligned}
& u=f\left(\alpha^{-1} f(a)\right)+\beta a-\alpha^{-1} a \alpha \beta-\gamma \alpha^{-1} f(a) \text { and } \\
& v=f\left(\alpha^{-1} a \alpha\right)+\alpha^{-1} a \alpha \gamma-\gamma \alpha^{-1} a \alpha+\alpha^{-1} f(a) \alpha .
\end{aligned}
$$

Since $\left(\begin{array}{ll}0 & 0 \\ u & v\end{array}\right)$ is not invertible we must have $u=v=0$. Since f is a derivation,

$$
f\left(\alpha^{-1}\right)=-\alpha^{-1} f(\alpha) \alpha^{-1}
$$

thus $v=0$ gives us

$$
\begin{align*}
0=v=-\alpha^{-1} f(\alpha) \alpha^{-1} a \alpha+\alpha^{-1} f(a) & \alpha+\alpha^{-1} a f(a) \tag{2}\\
& +\alpha^{-1} a \alpha \gamma-\gamma \alpha^{-1} a \alpha+\alpha^{-1} f(a) \alpha .
\end{align*}
$$

Thus relation (2) can be re-written as

$$
2 \alpha^{-1} f(a) \alpha=\alpha^{-1} f(\alpha) \alpha^{-1} a \alpha+\gamma \alpha^{-1} a \alpha-\alpha^{-1} a f(\alpha)-\alpha^{-1} a \alpha \gamma,
$$

which gives us

$$
2 f(a)=\left(f(\alpha) \alpha^{-1}+\alpha \gamma \alpha^{-1}\right) a-a\left(f(\alpha) \alpha^{-1}+\alpha \gamma \alpha^{-1}\right) .
$$

Since char $D \neq 2$, dividing by 2 we see that f is the inner derivation on D induced by $\frac{1}{2}\left(f(\alpha) \alpha^{-1}+\alpha \gamma \alpha^{-1}\right)$. This proves the lemma.

We now completely characterize those division rings D (independent of characteristic) such that D_{2} has an inner derivation with our special property. In doing so, in light of the results we have obtained so far, we shall completely describe all rings R such that $2 R \neq 0$ for which there is a derivation $d \neq 0$ with our special property.
The condition: " D does not contain all quadratic extensions of Z " will come up. By this we mean that there are elements δ and σ in Z such that the polynomial $t^{2}+\delta t+\sigma$ has no root in D.

Lemma 9. If D is a division ring then $R=D_{2}$ has an inner derivation $d \neq 0$ such that for $x \in R$ either $d(x)=0$ or $d(x)$ is invertible if and only if D does not contain all quadratic extensions of Z.

Proof. Suppose that R has such an inner derivation induced by the matrix $M \in R$. We claim that M cannot be a diagonal matrix; for if $M=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, where $a, b \in D$, computing

$$
M e_{12}-e_{12} M=\left(\begin{array}{cc}
0 & a-b \\
0 & 0
\end{array}\right)
$$

we have, by our basic hypothesis, that $a=b$. Computing

$$
M\left(\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right) M=\left(\begin{array}{cc}
a c-c a & 0 \\
0 & 0
\end{array}\right),
$$

for all $c \in D$, we get that $a \in Z$. Hence $M \in Z$, whence $d=0$, contrary to hypothesis.
Since M is not diagonal there exists an invertible matrix $T \in D_{2}$ such that

$$
T M T^{-1}=\left(\begin{array}{cc}
0 & 1 \\
\alpha & \beta
\end{array}\right) \quad \text { where } \alpha, \beta \in D
$$

The inner derivation induced by $T M T^{-1}$ also has the property that all its values are 0 or invertible. So, without loss of generality, we may assume that d is induced by $\left(\begin{array}{ll}0 & 1 \\ \alpha & \beta\end{array}\right), \alpha, \beta \in D$.

If $\gamma \in D$ then

$$
d\left(\begin{array}{ll}
\gamma & 0 \\
0 & \gamma
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
\alpha \gamma-\gamma \alpha & \beta \gamma-\gamma \beta
\end{array}\right)
$$

which is not invertible, therefore $\alpha \gamma=\gamma \alpha, \beta \gamma=\gamma \beta$. In short, α and β are both in Z. Since $d\left(\begin{array}{ll}0 & 1 \\ \alpha & \beta\end{array}\right)=0$, by Lemma 1 we have that $\left(\begin{array}{ll}0 & 1 \\ \alpha & \beta\end{array}\right)$ is invertible, hence $\alpha \neq 0$. For $\gamma \in D$,

$$
d\left(\begin{array}{ll}
0 & 1 \\
0 & \gamma
\end{array}\right)=\left(\begin{array}{cc}
-\alpha & \gamma-\beta \\
-\alpha \gamma & \alpha
\end{array}\right)
$$

cannot be 0 by Lemma 1 , so is invertible. This gives us that

$$
\alpha\left(\gamma^{2}-\beta \gamma-\alpha\right) \neq 0 \quad \text { for all } \gamma \in D
$$

In other words the quadratic polynomial $t^{2}-\beta t-\alpha$ over Z has no root in D, and so D does not contain all quadratic extensions of Z.

Conversely, if D does not contain all quadratic extensions of Z there exist $\alpha, \beta \in Z$, with $\alpha \neq 0$, such that $\alpha x^{2}-\beta x-1$ has no solutions in D. Let d be the inner derivations of D_{2} induced by $\left(\begin{array}{ll}0 & 1 \\ \alpha & \beta\end{array}\right)$. We claim that every non-zero value of d is invertible. Let a, b, c, and e be in D; then

$$
d\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{cc}
c-\alpha b & e-a-\beta b \\
\alpha(a-e)+\beta c & \alpha b-c
\end{array}\right)
$$

If we let $m=c-\alpha b$ and $n=e-a-\beta b$ then

$$
\begin{aligned}
& \alpha(a-e)+\beta c=-\alpha n+\beta m, \quad \text { and } \\
& d\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{cc}
m & n \\
-\alpha n+\beta m & -m
\end{array}\right) .
\end{aligned}
$$

Suppose, for the moment, that $m=0$; in that case

$$
d\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{cc}
0 & n \\
-\alpha n & 0
\end{array}\right)
$$

which is either 0 or invertible, since $\alpha \neq 0$.
If, on the other hand, $m \neq 0$ then

$$
d\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{cc}
m & n \\
-\alpha n+\beta m & -m
\end{array}\right)=\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right)\left(\begin{array}{cc}
1 & w \\
-\alpha w+\beta & -1
\end{array}\right)
$$

where $w=m^{-1} n$. Since $m \neq 0, d\left(\begin{array}{ll}a & b \\ c & e\end{array}\right)$ is invertible if and only if $\left(\begin{array}{cc}1 & w \\ -\alpha w+\beta & -1\end{array}\right)$ is invertible, that is, if and only if

$$
-1-w(-\alpha w+\beta) \neq 0
$$

However, by our choice of α and $\beta, \alpha w^{2}-\beta w-1 \neq 0$ for all $w \in D$. Thus d is an inner derivation of D_{2} all of whose non-zero values are invertible.

The only piece that remains in order to prove our main theorem is the case where $2 R=0$ and R is neither D nor D_{2}. We handle this case with

Lemma 10. If R is not simple then $R=D[x] /\left(x^{2}\right)$ where char $D=2$, $d(D)=0, d(x)=1+$ ax for some a in Z, the center of D; moreover, d is not inner.

Proof. By Lemmas 4 and 5, $2 R=0$, all proper ideals of R have square zero, and all proper one-sided ideals of R are both minimal and maximal. As a result, we easily obtain that R contains a unique (left, right, twosided) ideal M and $M^{2}=0$. Therefore, as in the proof of Lemma 4, $R=M+d(M)$, hence if $r \in R$ there exist $m, n \in M$ such that $d(r)=$ $m+d(n)$. Consequently, $d(r-n)=m \in M \cap d(R)=0$ and so, if $D=\operatorname{ker} d$ then, by Lemma $1, D$ is a division ring and $R=D+M$.

By the uniqueness of M, if $0 \neq x \in M$ then $R=D+D x$ and thus $d(x)=s+t x$ where $s, t \in D$ and $s \neq 0$. Since $d(D)=0$, if we replace x by $s^{-1} x$, we may assume $d(x)=1+a x$ for some $a \in D$.

If $s \in D$, we can use the facts $M=R x, M^{2}=0, d(s)=0$, and $d(x)=$ $1+a x$ to obtain

$$
\begin{aligned}
0=d\left((s x)^{2}\right)=s x d(s x)+d(s x) s x= & s x s \\
& (1+a x)+s(1+a x) s x \\
& =s x s+s^{2} x=s(x s+s x) .
\end{aligned}
$$

If $s \neq 0, s$ is invertible, hence $x s=s x$ and x is in the center of R. Therefore $R=D[x] /\left(x^{2}\right)$.

Now, if $s \in D$ then $s x+x s=0$, thus

$$
\begin{aligned}
0=d(s x+x s)=s(1+a x)+(1+a x) s & \\
& =s a x+a x s=(s a+a s) x
\end{aligned}
$$

Since all non-zero elements of D are invertible in $R, s a+a s=0$, hence a is in the center of D.

Finally, since $x \in M$ and $d(x) \notin M$, it is clear that d is not inner.
We can now prove our main result, which is the theorem stated at the outset, and which we record as

Theorem 1. Let R be a ring with 1 and $d \neq 0$ a derivation of R such that, for each $x \in R, d(x)=0$ or $d(x)$ is invertible in R. Then R is either

1. a division ring D, or
2. D_{2}, or
3. $D[x] /\left(x^{2}\right)$, where char $D=2, d(D)=0$, and $d(x)=1+a x$, for some a in the center Z of D.
Furthermore, if $2 R \neq 0$ then $R=D_{2}$ is possible if and only if D does not contain all quadratic extensions of Z, the center of D; equivalently if and only if some element in Z is not a square in D.

Proof. If R is simple, then by Lemma 4 either $R=D$ or $R=D_{2}$. Furthermore if $2 R \neq 0$, by Lemma $8 D_{2}$ has such a derivation if and only if it has an inner derivation with the special property. However Lemma 9 tells us that D_{2} has such an inner derivation if and only if D does not contain all quadratic extensions of Z.

If R is not simple, then by applying Lemma 10 we obtain our result. Theorem 1 is now proved.

One question concerning Theorem 1 remains. Namely, in the case $R=D_{2}$ is it necessary to assume $2 R \neq 0$ in order to prove that d is inner? We now present an example that shows if $2 R=0$ then $R=D_{2}$ can have an outer derivation d such that $d(x)=0$ or $d(x)$ is invertible, for all $x \in R$.

Example. Take $R=M_{2}(F)$ for $F=G F(2)(x) \ll y \gg$, the field of (finite) Laurent series with coefficients in the rational function field in one variable over $G F(2)$. Define a derivation δ on F by extending the action $\delta(f(x))=0$ and $\delta(y)=x y$. If $a \in F$ is written $a=a_{E}+a_{0}$, where a_{E} is the series of even powers of y appearing in a, and $a_{0}=a-a_{E}$, then $\delta(a)=x a_{0}$. Let $A=\left(\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right) \in M_{2}(F)$ and set $d=d_{A}+\bar{\delta}$ where d_{A} is the inner derivation of $M_{2}(F)$ induced by A and $\bar{\delta}$ is the derivation of $M_{2}(F)$ defined by componentwise application of δ. Note that d is not inner since

$$
d\left(\begin{array}{ll}
y & 0 \\
0 & y
\end{array}\right)=\left(\begin{array}{cc}
x y & 0 \\
0 & x y
\end{array}\right) .
$$

An easy computation shows

$$
d\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{ll}
b+c+x a_{0} & a+e+x b_{E} \\
a+e+x c_{E} & b+c+x e_{0}
\end{array}\right) .
$$

It can now be shown by a direct, if somewhat tedious computation that d has invertible values; and we omit the details.

We shall now consider a situation closely related to the one we have been discussing. Let R be a ring with 1 and $d \neq 0$ a derivation R. Suppose that $L \neq 0$ is a left ideal of R such that $d(L) \neq 0$, and such that for every $x \in L$ either $d(x)=0$ or $d(x)$ is invertible in R. Since we already know the answer when $L=R$, we suppose that $L \neq R$. We wish to determine the structure of R. Since the arguments will be similar to the ones we have given earlier we give then more sketchily here.

Let $x \neq 0 \in R$ be such that $d(x)=0$; then, since $x L \subset L$ and $d(x L)=$ $x d(L)$ we easily get the result of Lemma 1 , namely, that x is invertible in R. This immediately implies the results of Lemmas 2 and 3, that is, that if $d(W)=0$ for some left ideal W of R then $W=0$, and if R has 2 -torsion then $2 R=0$.

As before, from our assumptions on $L, L+d(L)=R$, hence if T is a proper left ideal of R containing L and $t \in T$ then $t=a+d(b)$, for some $a, b \in L$. Once again,

$$
t-a=d(b) \in T \cap d(L)=0
$$

and so, $T=L$. By this argument and our analog to Lemma $2, L$ and every non-zero left ideal of R contained in L are maximal, hence L is both minimal and maximal.

We now examine $l(L)=\{x \in R \mid x L=0\}$. Since $1=a+d(b)$, for $a, b, \in L$, if $x \in l(L)$ then

$$
x=x(a+d(b))=x d(b)=d(x b)-d(x) b=-d(x) b \in L
$$

and so, by the minimality of $L, l(L)=0$ or $l(L)=L$.
Suppose $l(L)=0$, then R is semiprime for if $I^{2}=0$ and $I \neq 0$ we obtain the contradiction $0=I^{2} L=I(I L)=I L=L$. It easily follows that R is simple, for if $I \neq 0$ then

$$
0 \neq d\left(I^{2} L\right) \subset d(L) \cap I
$$

hence $I=R$. By Wedderburn's theorem, $R=D$ or $R=D_{2}$.
On the other hand, suppose $l(L)=L$, that is $L^{2}=0$. By repeated use of the maximality and minimality of L we obtain that L is the unique left ideal of R, for if $I \neq L$ is a left ideal of R then $R=I+L$ and so,

$$
L=L R=L I+L^{2}=L I \subset I,
$$

a contradiction. It is now clear that L is the unique (left, right, two-sided) ideal of R. Now, as in Lemma 5 , if $b \in L$ such that $d(b) \neq 0$ then

$$
0=d^{2}\left(b^{2}\right)=b d^{2}(b)+2 d(b)^{2}+d^{2}(b) b,
$$

hence $2 d(b)^{2} \in L$, and so $4 d(b)^{4}=0$. Once again, $2 R=0$. Let $x \in R$ and $y \in L$ such that $d(x) \in L$ and $d(y) \neq 0$; in this case

$$
d(x y)=d(x) y+x d(y)=x d(y)
$$

and so, x is 0 or invertible. Therefore $D=\{x \in R \mid d(x) \in L\}$ is a division ring and by the identical argument used in the proof of Lemma 10 we obtain that $R=D[x] /\left(x^{2}\right)$ where $d(x)=1+a x$ for some a in the center of D. The only difference we obtain is that although $d(D) \subset L$, it need not be the case that $d(D)=0$. In fact, it is easy to see that for any $s \in D$, $d(s)=s^{\prime} x$ where $^{\prime}$ is a derivation of D.

We have now proved
Theorem 2. Let R be a ring with 1 and suppose that $d \neq 0$ is a derivation of R such that $d(L) \neq 0$ for some left ideal of R and $d(x)=0$ or $d(x)$ is invertible for every $x \in L$. Then $R=D, R=D_{2}$, or, $R=D[x]_{\left(x^{2}\right)}$ where $2 R=0$ for some division ring D.

We note that in the case $R=D[x] /\left(x^{2}\right)$, the hypothesis of d on L does not necessarily carry over to the behavior of d on all of R. We conclude this paper by showing that in the case $R=D_{2}$, not only does the behavior of d on L necessarily not carry over to all of R, but R may fail to have any derivation $\delta \neq 0$ such that $\delta(x)=0$ or $\delta(x)$ is invertible for all $x \in R$.

Let D be a division ring and suppose that $\sigma \in D, \sigma \notin Z$, is such that σ is not a square in D. Define d on D_{2} by:

$$
\begin{aligned}
d\left(\begin{array}{cc}
r & s \\
t & u
\end{array}\right)=\left(\begin{array}{ll}
0 & \sigma \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
r & s \\
t & u
\end{array}\right)-\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)\left(\begin{array}{ll}
0 & \sigma \\
1 & 0
\end{array}\right) & \\
& =\left(\begin{array}{cc}
\sigma t-s & \sigma u-r \sigma \\
r-u & s-t \sigma
\end{array}\right) .
\end{aligned}
$$

If $L=\left\{\left.\left(\begin{array}{ll}r & 0 \\ t & 0\end{array}\right) \right\rvert\, r, r \in D\right\}$ then L is a left ideal of D_{2} and, for $\left(\begin{array}{ll}r & 0 \\ t & 0\end{array}\right) \neq$ $0 \in L$,

$$
d\left(\begin{array}{ll}
r & 0 \\
t & 0
\end{array}\right)=\left(\begin{array}{cc}
\sigma t & -r \sigma \\
r & -t \sigma
\end{array}\right) .
$$

If $\left(\begin{array}{cc}\sigma t & -r \sigma \\ r & -t \sigma\end{array}\right)$ is not invertible then $\left(\begin{array}{cc}\sigma t & r \\ r & t\end{array}\right)$ is not invertible, hence

$$
\left(\begin{array}{cc}
\sigma t & r \\
r & t
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

for some $x, y \in D$, not both 0 . This would imply that

$$
\sigma t x+r y=0=r x+t y ;
$$

since not both r, t are 0 we get $x \neq 0, y \neq 0$, so without loss of generality, $x=-1$. Thus $r=t y$ and $\sigma t=r y=t y^{2}$; this latter implies that

$$
\sigma=t y^{2} t^{-1}=\left(t y t^{-1}\right)^{2},
$$

a square in D. Thus we see that the non-zero values of d on L are invertible.
However, since $\sigma \in Z, \sigma a \neq a \sigma$ for some $a \in D$, hence

$$
d\left(\begin{array}{cc}
a & 0 \\
0 & \sigma^{-1} a \sigma
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
a-\sigma^{-1} a \sigma & 0
\end{array}\right) \neq 0
$$

and is not invertible.
We have shown that a sufficient condition that there exist a derivation $d \neq 0$ on D_{2} and a left ideal L of D_{2} such that $d(L) \neq 0$ and the non-zero elements of $d(L)$ invertible, is that some element of D not be a square in D. Compare this to Theorem 1, where the element in D which is not a square must be in Z.

Finally we take a special D in the discussion above. Let \mathbf{C} be the field of complex numbers and F the field of rational functions in x over \mathbf{C}. Consider the set of Laurent series, D, of all $\sum_{-n}^{\infty} f_{i} y^{i}$ in y over F, where $y r(x) y^{-1}=r(2 x)$, for any $r(x) \in F . D$ is a division ring with center \mathbf{C}, hence all elements of \mathbf{C} are squares in \mathbf{C}, hence in D. Thus, by Theorem 1 , there is no derivation of D_{2} with the property that all its non-zero values are invertible. However, as is easily verified, x is not a square in D. Thus
by the above there is a derivation $d \neq 0$ on D_{2} which on the left ideal $\left\{\left(\begin{array}{ll}r & 0 \\ t & 0\end{array}\right)\right\}$ has all its non-zero values invertible, yet there is no derivation $\delta \neq 0$ on D_{2} all of whose non-zero values are invertible.

One can give a rather awkward necessary and sufficient condition on D such that D_{2} have a derivation $d \neq 0$ and a left ideal L such that $d(L) \neq 0$ and all non-zero $d(x)$ be invertible for $x \in L$. For instance, to have an inner derivation with this property, for which the f of Lemma 6 is 0 , is that there exist $\alpha, \beta, \gamma \in D$ such that

$$
t^{2}-\beta t^{-1} \gamma \beta+\alpha \beta \neq 0 \quad \text { for all } t \in D
$$

De Paul University, Chicago, Illinois;
University of Chicago, Chicago, Illinois; University of Southern California, Los Angeles, California

[^0]: Received December 22, 1981 and in revised form May 4, 1982. The research of the second author was supported by the NSF grant, NSF MCS 810-2472 at the University of Chicago. This is dedicated to Professor G. Azumaya on his sixtieth birthday.

