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Abstract

Distributed Acoustic Sensing (DAS) is increasingly recognised as a valuable tool for glaciological
seismic applications, although analysing the large data volumes generated in acquisitions poses
computational challenges. We show the potential of active-source DAS to image and characterise
subglacial sediment beneath a fast-flowing Greenlandic outlet glacier, estimating the thickness of
sediment layers to be 20–30 m. However, the lack of subglacial velocity constraint limits the
accuracy of this estimate. Constraint could be provided by analysing cryoseismic events in a
counterpart 3-day record of passive seismicity through, for example, seismic tomography, but
locating them within the 9 TB data volume is computationally inefficient. We describe experi-
ments with data compression using the frequency-wavenumber (f-k) transform ahead of training
a convolutional neural network, that provides a ∼300-fold improvement in efficiency. In combin-
ing active and passive-source and our machine learning framework, the potential of large DAS
datasets could be unlocked for a range of future applications.

Introduction

Seismic methods are widely used to explore the internal and basal properties of glaciers and ice
sheets (Podolskiy and Walter, 2016). Although seismic phenomena can be recorded at high
temporal resolution, the spatial resolution of passive seismic data is often limited by the spars-
ity of seismometer arrays. This is partly addressed by the use of nodal seismic technologies
(Karplus and others, 2021), but the recent development of Distributed Acoustic Sensing
(DAS) offers the potential for metre-scale sampling along profiles that are many kilometres
in length. The principle of DAS is reported elsewhere (Hartog, 2017; Lindsey and Martin,
2021) and it is sufficient here to understand that DAS effectively converts a length of
fibre-optic cable into a continuous string of pseudo-seismometers (Zhu and others, 2021).
DAS allows seismic vibrations to be recorded wherever fibre-optic cable can be deployed
and coupled sufficiently well to the ground. Glaciological deployments of DAS include exam-
ples in the European Alps (Walter and others, 2020), Antarctica (Brisbourne and others, 2021;
Hudson and others, 2021), Greenland (Booth and others, 2020) and Iceland (Fichtner and
others, 2022), for both controlled-source and passive seismic applications.

Borehole DAS can be particularly valuable since fibre-optic cable is installed more simply and
inexpensively than the same number of conventional seismic sensors for equal sample density.
Booth and others (2020) reported the first glaciological deployment of borehole DAS, at
RESPONDER project site S30 (70.56793°N, 50.08697°W) on Sermeq Kujalleq (Store Glacier),
a major marine-terminating outlet of the Greenland Ice Sheet (Fig. 1a). Fibre-optic cable was
installed in a 1043m-long vertical borehole drilled to the glacier bed. A Silixa iDASTM system
was used to acquire active-source vertical seismic profiles (VSPs) at various offsets and azimuths
around the borehole, and a 3-day record of passive seismicity.

The vertical borehole geometry allows englacial and subglacial seismic structure to be
determined more robustly than from surface seismic deployments, and thus improves the
characterisation of physical properties including englacial water and ice fabric. Booth and
others (2020) used active-source VSPs to determine a high-resolution depth profile of com-
pressional (P-) wave velocity (Fig. 1b), detecting the transition from isotropic to anisotropic
ice at 84% of Store Glacier’s thickness. Basal temperate ice was detected in the lowermost
100 m, confirmed separately by distributed temperature sensing in the same cable (Law and
others, 2021). Reflections in the VSPs (Fig. 2a) were observed but did not originate from
the glacier bed. These were generated instead at a deeper horizon interpreted as the base of
subglacial sediment. The time lag between a pair of direct and reflected waves implied a
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sediment thickness of 20 [−2, +17] m, assuming a sediment vel-
ocity of 1873 [−94, +1618] m s−1 (Hofstede and others, 2018).

The same approach was applied to the full suite of reflections in
the active-source VSPs, allowing sediment thickness estimates to be
mapped around the borehole up to radial distances of 200m. This
is possible because reflected energy measured at shallower borehole
depth must reflect from a subsurface point at greater lateral offset
(Fig. 2b). Direct and reflected rays were traced through a 1-D vel-
ocity model, with deviations indicating a change in sediment thick-
ness and/or velocity. Having no additional velocity constraint, we
attributed all deviations to a thickness change, but our interpret-
ation also neglects anisotropy and any local change in glacier thick-
ness. Under these assumptions, preliminary estimates show
sediment thickness varies between 20 and 30m, with thinner sedi-
ment typically observed north of the borehole (Fig. 2c).

Although the active-source shots provide rich azimuthal cover-
age, the velocity through the subglacial sediment remains uncon-
strained. The necessary constraint is potentially available, subject
to location uncertainties, through analysis of subglacial cryoseis-
micity in the passive DAS record, via (e.g.) travel-time tomog-
raphy (Zhang and others, 2020) but this is challenging given
the volume of the recorded dataset: although only 3 days long,
the record features 1043 seismic channels sampled at 4000 Hz
and thus exceeds 9 TB in size. We are therefore exploring the
implementation of convolutional neural networks (CNN) to effi-
ciently identify and isolate cryoseismic events in the passive data-
set, partly to complement active-source velocity analysis but also
to elucidate the focal mechanism of seismic emissions.

Developing an efficient CNN for recognising cryoseismic
events

The complete architecture and performance of our CNN will be
reported in a forthcoming publication, and the following sum-
mary is intended to provide sufficient information to appreciate
preliminary results. The CNN was trained with an Adam opti-
mizer (Kingma and Ba, 2015), using 36 680 data windows of
0.25 s duration labelled as to whether they did (18 360 windows,

∼50%), or did not (18 320 windows, ∼50%), contain a cryoseis-
mic arrival. Figure 3a shows an example of a prominent cryoseis-
mic event, labelled (i), interpreted as arising from a crevassing
event originating ∼300 m deep in the glacier (consistent with cre-
vasse observations at this depth in optical televiewer images;
Hubbard and others, 2021). The arrivals at (i) are interpreted
as the shear- (S-) wave component of the seismic wavefield;
they are preceded, by ∼0.1 s, by (ii) low-amplitude arrivals inter-
preted as the P-wave component. With velocities of 1800 m s–1

and 3750 m s–1 fit to the S- and P-wave components, the 0.1 s
lag between them implies that crevassing occurs at a radial dis-
tance of ∼350 m from the borehole. S-wave reflections from the
glacier surface are observed at (iii).

29 344 such windows were initially used to train the CNN,
and 7336 were used for validation. Training took 100 epochs
and was run on a standard specification laptop, but proved to
be computationally inefficient: 129 s was required for the CNN
to process 30 s of passive data, representing just 0.01% of the
full data volume. We therefore explored an approach of training
the CNN on data windows transformed into the frequency-
wavenumber (f-k) domain. To the best of our knowledge, this
strategy has not been explored before, likely because passive seis-
mic arrays conventionally lack the high density of spatial samples
of the DAS cable to make the f-k transformation worthwhile. On
making this conversion (e.g., Fig. 3b), the information contained
in time domain windows is expressed using fewer data samples:
the shape information in the time domain is preserved in the
spread of apparent velocities in the f-k image, yet frequencies
and wavenumbers outside of the range 0–150 Hz and ± 0.04m–1,
respectively, are redundant. When transformed to the f-k domain,
the data volume in each 0.25 s window is reduced by a factor of
∼350, and the analysis of 30 s data windows takes just 1.2 s
(plus an additional 5.6 s to implement the transform). The suc-
cess of the CNN is currently being assessed with a validation data-
set that incorporates englacial, basal and subglacial seismicity and
their different f-k expressions. We obtain an accuracy of 98%
when testing with this validation dataset. CNN performance in
the f-k domain is therefore considered promising both from

Fig. 1. (a) Site S30 on Store Glacier. Active-source shots (stars) are at various offsets and azimuths around a DAS-instrumented borehole. The offset VSP shown in
Figure 2a uses the highlighted shotpoint. Inset panel: location in West Greenland. (b) Vertical P-wave velocity trend, derived from zero-offset VSP data (Booth and
others, 2020).
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Fig. 2. (a) VSP record highlighting direct and reflected waves, and the lag time between them. (b) Schematic VSP ray diagram for direct raypaths (blue) and sub-
glacial reflections (red) from the base of a 30 m thick sediment layer. The lateral offset of the reflection point from the borehole increases the shallower the reflec-
tions are observed. (c) Subglacial sediment thickness around the borehole, from analysis of lag times in VSP data.

Fig. 3. A cryoseismic event recorded in the passive DAS acquisition, shown as (a) time-space domain, labelling (i) S-, (ii) P-wave arrivals and (iii) S-wave surface
reflections, and (b) frequency-wavenumber (f-k) response, and the apparent velocities (m s–1; white annotations) it implies. Meaningful information to reconstruct
the event in the time-space domain is captured with fewer samples in the f-k domain.

Annals of Glaciology 81

https://doi.org/10.1017/aog.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2023.15


accuracy and efficiency standpoints. Although more sophisticated
machine learning approaches may be available (e.g., the residual
neural network described by Dumont and others, 2020), we con-
sider that the capabilities of our CNN may be sufficient for reli-
able event identification.

Outlook

Interest is growing in DAS deployments, but these need to happen
alongside methodological developments to make data analysis prac-
tical. Our efficient compression of the passive seismic wavefield
with frequency-wavenumber transforms makes analysis of the data-
set tractable on standard CPUs, rather than GPUs or with specialist
accelerators. The implementation of such algorithms could be vital
for real-time monitoring of passive DAS deployments, allowing
efficient recognition of crysoseismic events to trigger storage and/
or transmission of data from a remote monitoring station.

Further development of such tools can benefit passive DAS
applications for many glaciological studies. In addition to con-
straining subglacial velocities, integrated passive DAS and syn-
chronous 3-component seismometer records allows the focal
mechanism of cryoseismicity to be determined, thus improving
our understanding of glacier dynamics. DAS data are also amen-
able to ambient noise cross-correlation, and recent results
(Tribaldos and Ajo-Franklin, 2021) highlight how variations in
seismic velocity are linked to changes in thermoelastic strain
and hydrological dynamics.
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