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Abstract

A one-sided one-dimensional random walk with repulsion from the origin is
solved exactly. The walk imitates the self-avoiding walk problem insofar as the
mean end-to-end distance of an n-step walk tends asymptotically to n as n
tends to infinity.

1. Introduction

Consider a walker on a regular lattice with equal step probability on bonds, but
constrained so that lattice points or vertices cannot be visited more than once.
This is the self-avoiding random walk problem, one of the many celebrated
unsolved problems in lattice statistics on lattices with dimensionality greater than
unity.

In one dimension the problem is supertrivial, since the entire walk is determined
from the first step. The mean-square end-to-end distance, R2, of an «-step walk,
for example, is precisely n2 in one dimension. In two and three dimensions, various
heuristic [2, 3, 4], enumeration [1] and simulation [5] methods suggest the asymp-
totic forms R2 ~n3'2 and R2 ~ 6/s respectively, while in four and higher dimensions
it is generally believed that the self-avoiding walker behaves in the same way as
an ordinary random walker with R2 ~«.

A standard variational approach to the problem [4], which gives the above
results, consists of replacing the hard pairwise repulsive potential by an effective
single-particle repulsive potential that is determined self-consistently.

Here we consider a one-dimensional random walk with a particular single-
particle repulsive potential that can be solved exactly. We find that this walk
imitates the self-avoiding walk insofar as R2~n2. We have not yet succeeded in
constructing a generalization of this model to imitate the suspected behaviour of
higher-dimensional self-avoiding walkers.
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2. The model and statement of results

Consider a one-dimensional lattice of points, r = 0,1,2,.. . , and a walker
starting at the origin, with step probability from r to r' given by

pir, r') = •

1

r+\

i —
f + 1

0

if r ' = r -

if/•' =

if r' = r+l = 1,

otherwise.

(2.1)

In this example, the origin is a reflecting barrier and it is clear that the walker is
repelled from the origin with increasing r.

Let Pn(r) denote the probability that the walker is at point r after n steps. Then
from (2.1), we have for «>0,

-H> itr>2,

and

(2.2)

and, for n = 0,
Po(r) = dr0. (2.3)

We are particularly interested in the mean end-to-end distance of an n-step walk,

rn= I rPJir). (2.4)

Our main result is the following.

THEOREM. The mean end-to-end distance, rn, of the random walk defined by (2.2)
and (2.3) has the asymptotic form

rn~n—2logn asw->oo. (2.5)

This result is to be compared with rn = n for the one-sided self-avoiding walker.

3. Generating functions

In order to establish our main result (2.5) we first introduce the generating function

G(r,z)= £ z-Pn(r).
n = O

(3.1)
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Multiplying equations (2.2) and (2.3) by z" and summing on n we immediately
obtain

and

G ( 0 , Z ) = | G ( 1 , Z ) + 1 .

(3.2)

These recursion relations are only marginally easier to handle than the relations
(2.2) but various precise statements can be made about them. For our present
purposes we need only the following:

LEMMA. lim G(0, z) < 1 + y/i. (3.3)

This result and other properties of the G(r, z) are established in the Appendix.
It is perhaps of interest to note here in passing that for the self-avoiding walk,

G(0, z) is trivially unity, where as for the one-sided ordinary walk with neighbouring
step probability \ away from the origin,

G(0,z) = ( l - z 2 ) -* . (3.4)

The above Lemma is also somewhat surprising since from (3.1) and conservation
of probability alone

£ G(r,z) = (l-z)-1. (3.5)

To proceed with the proof of the Theorem, we next define a generating function
for G(r,z) by

F(x,z) = £ (r+l^ 'x^Gfoz). (3.6)

Multiplying (3.2) by x' and summing on r, noting that

8I= £ x-G{r,z) (3.7)
ox r = 0

we obtain finally the following differential equation for F{x, z):

:). (3.8)

In order to calculate the mean end-to-end distance, rn, we note from (2.4),
(3.1) and (3.6) that

82F ™

ox2
 x=i n=0

so that the asymptotic form of rn as n-+ oo is determined from the asymptotic form
of (3 .9)asz-*l- .
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Very roughly, one can see from (3.8) that as x-* 1

(3.10)

and hence Fxx{\,z)~z(\ - z ) " 2 as z ->l - , from which it follows that rn~n as
n-*co.

The differential equation (3.8), however, is an elementary first-order linear
equation, and since from (3.6) we require F{x, z) to be analytic in a neighbourhood
of the origin x = 0 for (all) fixed \z\ < 1, the appropriate solution is

Fix,z) = [fix)]-1 [il+z(x-^\G{O,z)\fix)(l-zx)-ldx, (3.11)

where the integrating factor fix) is given by

fix) = (1 -zxy2-1 *-z2exp(z/x). (3.12)

In principle, (3.11) represents an exact solution to the problem. In practice, of
course, the expression (3.11) is extremely unwieldy. It is, nevertheless, ideally
suited to asymptotic analysis. Thus, guided by the intuitive result (3.10), we
integrate (3.11) by parts to obtain

F(x,z) = -[z/Oc)]"1 J j l+zfx--^ GiO,z)\fix)-jLlog(X-zx)dx

^ (3.13)

Writing fix) = — z-1(l— zx)fix)(d/dx)log(l — zx) in the integral appearing in
(3.13) and integrating by parts once more we obtain terms of order

(l-z2)[ log(l-zx)]2 and (l-zx)[log(l-zjc)]2.

It follows then to leading order in (1 -z ) that

F( l , z )~- log( l -z ) a s x - > l - . (3.14)

To determine Fxx(l,z) for use in (3.9), we divide (3.8) through by (1-zx) and
differentiate with respect to x to obtain

Fxx(\,z) = z( l -2) - 2 + 2z(l-z)-1{G(0,z)-F(l,z)}

~ z ( l - z ) - 2 + 2z( l -z)-1 log(l -z) a sz -> l - (3.15)

where, in the second step, we have made use of our Lemma.
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The theorem is finally established by expanding the right-hand side of (3.15)
and using the result

n

]T k~1~logn as

Appendix

In order to establish the Lemma we first re-express (3.2) for r ^ 2 as

?M G(r,z)
z-1G(r)z)-[l/(r + 2)]G(r+l,z) " [l-(l/r)]G(i-l,z>" i A )

Defining
A(r) = G(r, z)\ G(r-l,z), (A2)

we then have

l-fi,A(r+l)

£l ' (A3>

where

() £? (A4)
Now since

Pr + p«r+p+l**Pr«T+l fOir,p>l (A5)

it follows from (A3) that

A ( ) / ^ 1
. Pr<Xr — —

2Pr«r+l

{1 - ( 1 -4firar+1)*} (A6)

In particular when r = 2, (Al) and (A6) yield

W (A7,

By definition (3.1), G(r,z) is finite and non-zero in the interval 0<z< 1 so that
on multiplying (A7) through by G(l,z) and substituting into (3.2) for r = 1 we
then have (for 0<z< 1),
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G(l^). (A8)

Substituting the resulting inequality for G(l,z) into (3.2) with r = 0 then gives

G(0,z)^{l +(1 -2Z 2 /3)*}{1 - z 2 + (l -2z2/3)*}- • (A9)

which is certainly valid for 0 < z < 1. The Lemma then follows from (A9) by taking
the limit z-> 1 —.
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