Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T14:18:37.970Z Has data issue: false hasContentIssue false

Chronology of Wetland Hydrological Dynamics and the Mesolithic-Neolithic Transition along the Lower Scheldt: A Bayesian Approach

Published online by Cambridge University Press:  09 February 2016

Jeroen Verhegge*
Affiliation:
Dept. of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium
Tine Missiaen
Affiliation:
Renard Centre for Marine Geology, Dept. of Geology & Soil Science, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
Mark van Strydonck
Affiliation:
14C laboratory, Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
Philippe Crombé
Affiliation:
Dept. of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium
*
2. Corresponding author. Email: Jeroen.Verhegge@ugent.be.

Abstract

The Mesolithic-Neolithic transition in the wetland margins of the southern North Sea basin occurred well over a millennium after the transition in neighboring loess regions. This article investigates the possible role of hydrological dynamics in the presence of the last hunter-gatherer-fishermen in these wetland regions. A Bayesian modeling approach is used to integrate stratigraphic information and radiocarbon dates both from accurately datable archaeological remains and key horizons in peat sequences in the Scheldt floodplain of northwestern Belgium. This study tests whether the Swifterbant occupation of the study area was contemporaneous with hiatuses in peat growth caused by organic clastic sedimentation due to increased tidal influences and local groundwater rise. The results suggest that the appearance of this culture followed shortly after the emergence of a brackish tidal mudflat landscape replacing a freshwater marsh.

Type
Statistics and Modeling
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baeteman, C. 2004. A discussion of Gullentops, F. & De Moor, G. (2001): Quaternary lithostratigraphic units (Belgium). 2.2 Remaining marine-estuarine deposits. Geologica Belgica, 2001, 4/1–2:153–164. Geologica Belgica 7(1–2):77–8.Google Scholar
Baeteman, C. 2005. How subsoil morphology and erodibility influence the origin and pattern of late Holocene tidal channels: case studies from the Belgian coastal lowlands. Quaternary Science Reviews 24(18–19):2146–62.Google Scholar
Bastiaens, J, Deforce, K, Klinck, B, Meersschaert, L, Verbruggen, C, Vrydaghs, L. 2005. Features: palaeobotanical analyses. The Last Hunter-Gatherer-Fishermen in Sandy Flanders (NW Belgium): The Verrebroek and Doel Excavation Projects, Volume 1: Palaeo-environment, Chronology and Features 3:251–78.Google Scholar
Beets, DJ, van der Spek, AFJ. 2000. The Holocene evolution of the barrier and back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Geologie en Mijnbouw 79(1):316.Google Scholar
Berendsen, MA, Makaske, B, Van De Plassche, O, Van Ree, MHM, Das, S, van Dongen, M, Ploumen, S, Schoenmakers, W. 2007. New groundwater-level rise data from the Rhine-Meuse delta – implications for the reconstruction of Holocene relative mean sea-level rise and differential land-level movements. Geologie en Mijnbouw 86(4):333–54.Google Scholar
Blaauw, M, Christen, JA. 2005. Radiocarbon peat chronologies and environmental change. Journal of the Royal Statistical Society: Series C (Applied Statistics) 54(4):805–16.Google Scholar
Blaauw, M, Bakker, R, Christen, JA, Hall, VA, van der Plicht, J. 2007. A Bayesian framework for age modeling of radiocarbon-dated peat deposits: case studies from the Netherlands. Radiocarbon 49(2):357–67.Google Scholar
Bogemans, F. 1997. Toelichting bij de Quartairgeologische kaart, kaartblad 1–7 Essen-Kapellen: Vrije Universiteit Brussel; Departement Leefmilieu, Natuur en Energie, Dienst Natuurlijke Rijkdommen, Vlaamse overheid. 38 p.Google Scholar
Boudin, M, Van Strydonck, M, Crombé, P. 2009. Radiocarbon dating of pottery food crusts: reservoir effect or not? The case of the Swifterbant pottery from Doel “Deurganckdok.” In: Crombé, P, Van Strydonck, M, Sergant, J, Bats, M, editors. Chronology and Evolution within the Mesolithic of North-West Europe: Proceedings of an International Meeting: Newcastle Upon Tyne: Cambridge Scholars Publishing. p 727–45.Google Scholar
Boudin, M, Van Strydonck, M, Crombé, P, De Clercq, W, van Dierendonck, RM, Jongepier, H, Ervynck, A, Lentacker, A. 2010. Fish reservoir effect on charred food residue 14C dates: Are stable isotope analyses the solution? Radiocarbon 52(2):697705.Google Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2):4260.Google Scholar
Bronk Ramsey, C. 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):1023–45.Google Scholar
Chiverrell, RC, Thorndycraft, VR, Hoffmann, TO. 2011. Cumulative probability functions and their role in evaluating the chronology of geomorphological events during the Holocene. Journal of Quaternary Science 26(1):1685.Google Scholar
Cohen, KM. 2003. Differential subsidence within a coastal prism: Late-Glacial - Holocene tectonics in the Rhine-Meuse Delta, The Netherlands. Netherlands Geographical Studies 316:1172.Google Scholar
Crombé, P. 2005. The Last Hunter-Gatherer-Fishermen in Sandy-Flanders (NW Belgium). The Verrebroek and Doel Excavation Projects. Volume 1: Palaeo-environment, Chronology and Features. Ghent: Universiteit Gent.Google Scholar
Crombé, P, Sergant, J, Perdaen, Y. 2009. The neolithisation of the Belgian lowlands: new evidence from the Scheldt Valley. In: McCartan, SB, Schulting, R, Warren, G, Woodman, P, editors. Mesolithic Horizons. Papers presented at the Seventh International Conference on the Mesolithic in Europe. Oxford: Oxbow Books. p 564–9.Google Scholar
Crombé, P, Sergant, J, Lombaert, L. 2011a. L'occupation du nord-ouest de la Belgique aux IVe et IIIe millénaires: bilan des recherches récentes en région sablonneuse. Service regional de l'archéologie en Picardie. p 103–18.Google Scholar
Crombé, P, Boudin, M, Van Strydonck, M. 2011b. Swifterbant pottery in the Scheldt basin and the emergence of the earliest indigenous pottery in the sandy lowlands of Belgium. In: Hartz, S, Lüth, F, Terberger, T, editors. Early Pottery in the Baltic – Dating, Origin and Social Context, International Workshop at Schleswig on 20–21 October 2006. Frankfurt: Bericht der Römisch-Germanischen Kommission 89. p 465–83.Google Scholar
Deforce, K. 2011. Middle and late Holocene vegetation and landscape evolution of the Scheldt estuary. A palynological study of a peat deposit from Doel (N-Belgium). Geologica Belgica 14(3–4):277–87.Google Scholar
Deforce, K, Bastiaens, J, Van Neer, W, Ervynck, A, Lentacker, A, Sergant, J, Crombé, P. 2013. Wood charcoal and seeds as indicators for animal husbandry in a wetland site during the Late Mesolithic-Early Neolithic transition period (Swifterbant culture, ca. 4600-4000 BC) in NW Belgium. Vegetation History and Archaeobotany 22(1):5160.Google Scholar
Denys, L, Baeteman, C. 1995. Holocene evolution of relative sea level and local mean high water spring tides in Belgium - a first assessment. Marine Geology 124(1–4):119.Google Scholar
Gearey, BR, Marshall, P, Hamilton, D. 2009. Correlating archaeological and palaeoenvironmental records using a Bayesian approach: a case study from Sutton Common, South Yorkshire, England. Journal of Archaeological Science 36(7): 1477–87.CrossRefGoogle Scholar
Gelorini, V, Verleyen, E, Verbruggen, C, Meersschaert, L. 2006. Paleo-ecologisch onderzoek van een Holocene sequentie uit het Deurganckdok te Doel (Wase Scheldepolders, Noord-België). Belgeo 3:243–64.Google Scholar
Gullentops, F, Bogemans, F, De Moor, G, Paulissen, E, Pissart, A. 2001. Quaternary lithostratigraphic units (Belgium). Geologica Belgica 4(1/2):153–64.Google Scholar
Haslett, J, Parnell, A. 2008. A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society: Series C (Applied Statistics) 57(4):399418.Google Scholar
Jelgersma, S. 1961. Holocene sea level changes in the Netherlands [PhD thesis]. Leiden: Leiden University.Google Scholar
Kiden, P. 1989. Holocene water level movements in the Lower Scheldt perimarine area. In: Baeteman, C, editor. Quaternary Sea-Level Investigations from Belgium: A Contribution to IGCP Project 200. Geological Survey of Belgium. Professional Paper 1989/6(241): 119.Google Scholar
Kiden, P. 1995. Holocene relative sea-level change and crustal movement in the southwestern Netherlands. Marine Geology 124(1–4):2141.Google Scholar
Kiden, P. 2006. De evolutie van de Beneden-Schelde in België en Zuidwest-Nederland na de laatste ijstijd. Belgeo 3:279–94.Google Scholar
Kiden, P, Denys, L, Johnston, P. 2002. Late Quaternary sea-level change and isostatic and tectonic land movements along the Belgian-Dutch North Sea Coast: geological data and model results. Journal of Quaternary Science 17(5–6):535–46.Google Scholar
Kiden, P, Makaske, B, Van De Plassche, O. 2008. Waarom verschillen de zeespiegelreconstructies voor Nederland? Tijdschrift Grondboor en Hamer 3/4:5461.Google Scholar
Louwe Kooijmans, LP. 2010. Mesolithic Europe: diversity in uniformity. Antiquity 84(323):241–6.Google Scholar
Makaske, B, van Smeerdijk, DG, Peeters, H, Mulder, JR, Spek, T. 2003. Relative water-level rise in the Flevo lagoon (The Netherlands), 5300–2000 cal. yr BC: an evaluation of new and existing basal peat time-depth data. Geologie en Mijnbouw 82(2):115–31.Google Scholar
Minnaert, G, Verbruggen, C. 1986. Palynologisch onderzoek van een veenprofiel uit het Doeldok te Doel. Buitengewone uitgaven van de Koninklijke Oudheidkundige Kring van het Land van Waas Bijdragen van de Archaeologische Dienst Waasland I 19:201–8.Google Scholar
Parnell, AC, Haslett, J, Allen, JRM, Buck, CE, Huntley, B. 2008. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27(19–20): 1872–85.CrossRefGoogle Scholar
Parnell, AC, Buck, CE, Doan, TK. 2011. A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction. Quaternary Science Reviews 30(21–22):2948–60.CrossRefGoogle Scholar
Raemaekers, DCM. 1999. The Articulation of a ‘New Neolithic.’ The Meaning of the Swifterbant Culture for the Process of Neolithisation in the Western Part of the North European Plain (4900–3400 BC). Leiden: Leiden University Press.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Roeleveld, W. 1974. The Holocene evolution of the Groningen Marine-Clay District. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 24(Supplement):8132.Google Scholar
Sergant, J, Perdean, Y, Crombé, P. 2006. The site of Doel “Deurganckdok” and the Neolithisation of the Sandy Lowland of Belgium. In: Guilaine, J, van Berg, JP, editors. La Neolithisation/The Neolithisation Process. Acts of the XIVth UISPP Congress, University of Ličge, Belgium, 2–8 September 2001. BAR International Series 1520. Oxford: Archeopress. p 5360.Google Scholar
Tornqvist, TE, Dejong, AFM, Oosterbaan, WA, van der Borg, K. 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34(3):566–77.Google Scholar
Tornqvist, TE, Hijma, MP. 2012. Links between early Holocene ice-sheet decay, sea-level rise and abrupt climate change. Nature Geoscience 5(9):601–6.Google Scholar
Van De Plassche, O. 1982. Sea-level change and water-level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst Nederland 36(1):193.Google Scholar
Van De Plassche, O, Bohncke, SJP, Makaske, B, van der Plicht, J. 2005. Water-level changes in the Flevo area, central Netherlands (5300–1500 BC): implications for relative mean sea-level rise in the Western Netherlands. Quaternary International 133–134:7793.Google Scholar
Van De Plassche, O, Makaske, B, Hoek, WZ, Konert, M, van der Plicht, J. 2010. Mid-Holocene water-level changes in the lower Rhine-Meuse delta (western Netherlands): implications for the reconstruction of relative mean sea-level rise, palaeoriver-gradients and coastal evolution. Geologie en Mijnbouw 89(1):320.Google Scholar
van der Spek, AJF. 1997. Tidal asymmetry and long-term evolution of Holocene tidal basins in The Netherlands: simulation of palaeo-tides in the Schelde estuary. Marine Geology 141(1–4):7190.Google Scholar
Van Dijk, GJ, Berendsen, HJA, Roeleveld, W. 1991. Holocene water level development in the Netherlands' river area; implications for sea-level reconstruction. Geologie en Mijnbouw 70:311–26.Google Scholar
Van Neer, W, Ervynck, A, Lentacker, A, Bastiaens, J, Deforce, K, Thieren, E, Sergant, J, Crombe, P. 2013. Hunting, gathering, fishing and herding: animal exploitation in Sandy Flanders (NW Belgium) during the second half of the fifth millennium BC. Environmental Archaeology 18(2):87101.CrossRefGoogle Scholar
Van Roeyen, J-P, Minnaert, G, Van Strydonck, M, Verbruggen, C. 1991. Melsele-Hof ten Damme: prehistorische bewoning, landschappelijke ontwikkeling en kronologisch kader. Notae Praehistoricae 11:41–9.Google Scholar
Van Strydonck, M. 2005. Radiocarbon dating. In: Crombé, P, editor. The Last Hunter-Gatherer-Fishermen in Sandy Flanders (NW Belgium). The Verrebroek and Doel Excavation Projects (Volume 1). Ghent: Ghent University. Archaeological Reports Ghent University 3. p 127–38.Google Scholar
Van Strydonck, M, Van Roeyen, JP, Minnaert, G, Verbruggen, C. 1995. Problems in dating Stone-Age settlements on sandy soils: the Hof ten Damme site near Melsele, Belgium. Radiocarbon 37(2):291–7.Google Scholar
Vink, A, Steffen, H, Reinhardt, L, Kaufmann, G. 2007. Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quaternary Science Reviews 26(25–28):3249–75.Google Scholar
Vos, PC, van Heeringen, RM. 1997. Holocene geology and occupation history of the province of Zeeland. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO 59:5109.Google Scholar
Yeloff, D, Bennett, KD, Blaauw, M, Mauquoy, D, Sillasoo, U, van der Plicht, J, Geel, B. 2006. High precision 14C dating of Holocene peat deposits: a comparison of Bayesian calibration and wiggle-matching approaches. Quaternary Geochronology 1(3):222–35.CrossRefGoogle Scholar