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Abstract We are interested in proving the convergence of Monte Carlo approximations for vortex
equations in bounded domains of R

2 with Neumann’s condition on the boundary. This work is the first
step towards justifying theoretically some numerical algorithms for Navier–Stokes equations in bounded
domains with no-slip conditions.

We prove that the vortex equation has a unique solution in an appropriate energy space and can
be interpreted from a probabilistic point of view through a nonlinear reflected process with space-time
random births on the boundary of the domain.

Next, we approximate the solution w of this vortex equation by the weighted empirical measure of
interacting diffusive particles with normal reflecting boundary conditions and space-time random births
on the boundary. The weights are related to the initial data and to the Neumann condition. We prove
a trajectorial propagation-of-chaos result for these systems of interacting particles. We can deduce a
simple stochastic particle algorithm to simulate w.
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1. Introduction

We are interested in proving the convergence of Monte Carlo approximations for vor-
tex equations in bounded domains of R

2 with Neumann’s condition on the boundary.
This work is the first step towards justifying theoretically some numerical algorithms
for Navier–Stokes equations in bounded domains with no-slip conditions, as proposed by
Chorin or Cottet. To our knowledge, there was no proof of convergence of such particle
methods, even for the deterministic ones, and even in the simplified case we consider in
this paper.

We consider the Navier–Stokes equation which describes the evolution of the velocity
field of an incompressible viscous fluid in a bounded domain Θ of R

2 satisfying the no-slip
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boundary condition:

∂tu(t, x) + (u · ∇)u(t, x) = ν∆u(t, x) − ∇p in Θ,

∇ · u(t, x) = 0 in Θ, u(t, x) = (0, 0) for x ∈ ∂Θ,

where p is the pressure and ν > 0 the viscosity coefficient. Our aim is to obtain a prob-
abilistic interpretation of this equation which enables us to construct an efficient Monte
Carlo particle method for the simulation of the solutions. Another probabilistic approach
based on branching processes has already been developed by Benachour, Roynette and
Vallois [2], generalized in dimension 3 by Giet [10]. But even if the authors propose some
particle approximations, the convergence of the method is not shown and the particle
systems they describe are not of practical use. Our purpose is to construct some eas-
ily simulable particle systems, behaving as diffusion processes reflected on the boundary,
with space-time random births located at the boundary and to prove rigorously the prop-
agation of chaos of the laws of these processes to a probability measure associated with
the solution of the Navier–Stokes equation.

One associates classically with the two-dimensional Navier–Stokes equation in the
whole plane the simpler vortex equation satisfied by the curl of the velocity. This equa-
tion behaves as a McKean–Vlasov equation and justifies the famous vortex simulation
algorithm due to Chorin [6], the velocity being obtained as the convolution of the vortic-
ity by the Biot–Savart kernel. The probabilistic approach, first introduced by Marchioro
and Pulvirenti [17], has been developed in Méléard [19,20].

In a bounded domain, a similar approach would consist of replacing the Biot–Savart
kernel by the orthogonal gradient K of the Green function for the Dirichlet problem in
the domain. By this approach, one only obtains the nullity of the normal component of
the velocity of the fluid at the boundary. As pointed out by Chorin in his algorithm [6],
vorticity has to be produced at the boundary to ensure the nullity of the tangential
component. Several authors [1,3,7,8,26] have given different mathematical frameworks to
describe this creation of vorticity. The non-local Neumann boundary condition proposed
by Cottet [7] seems the most suitable formulation for a probabilistic interpretation. But,
unhappily, to our knowledge, no energy estimate is available for this formulation, which
makes its analysis difficult.

As a first step, in this paper, we deal with a fixed Neumann condition and consider
the vortex equation

∂tw(t, x) + ∇ · (wKw)(t, x) = ν∆w(t, x) in Θ,

w(0, x) = w0(x) in Θ,

∂nw = ∇w · n = g on ∂Θ,

where the function g is fixed. We will in particular see that this Neumann condition is
represented in our probabilistic framework by space-time random births located at the
boundary of the domain.

More generally, in this paper, we prove the existence of a unique solution to this vortex
equation with Neumann’s boundary condition, in an appropriate space for which we
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have obtained energy a priori estimates. Then we associate with the solution a nonlinear
diffusive and reflected process, with space-time random birth (with a law depending on
the functions g and w0). We construct interacting normally reflected particle systems
with space-time random births and prove the propagation of chaos following the law
of the nonlinear process previously defined. We are inspired by the paper of Sznitman
[23], which concerns the behaviour of interacting and reflected McKean–Vlasov particle
systems living in a bounded domain. Some additional difficulties appear here, due to
the singular interacting kernel K and to the space-time random births. Moreover, the
interaction is mean-field but is a function of the weighted empirical measure, the weights
being related to the initial condition and to g.

2. The model

Let T > 0. We are interested in the following equation:

∂tw(t, x) + ∇ · (wKw)(t, x) = ν∆w(t, x) in ]0, T ] × Θ,

w(0, x) = w0(x) in Θ,

∂nw = ∇w.n = g on ]0, T ] × ∂Θ,

⎫⎪⎬
⎪⎭ (2.1)

where n(x) denotes the outward normal to ∂Θ at the point x and

Kw(t, x) =
∫

Θ

K(x, y)w(t, y) dy.

The kernel K(x, y) is equal to ∇⊥
x G(x, y) = (−∂x2G(x, y), ∂x1G(x, y)), where G(x, y) is

the fundamental solution of the Poisson equation

∆xG(x, y) = δy(x), x ∈ Θ, (2.2)

G(x, y) = 0, x ∈ ∂Θ. (2.3)

Let us remark on the important properties of the kernel K:

∀(x, y) ∈ Θ̄2 with x �= y, ∇x · K(x, y) = 0,

∀(x, y) ∈ ∂Θ × Θ̄ with x �= y, K(x, y) · n(x) = 0.

}
(2.4)

Throughout the rest of the paper we will moreover make the following assumptions.

Hypotheses (H). The domain Θ of R
2 is bounded, simply connected and of class C4.

We assume that w0 and g are non-zero functions, and that

w0 ∈ L2(Θ), g(t, x) ∈ L2
t ([0, T ], L2

x(∂Θ,dσ)). (2.5)

where dσ(x) denotes the surface measure on the boundary.

We recall that the domain Θ of class C4 satisfies the uniform ‘exterior sphere’ condition:

∃Csp � 0, ∀x ∈ ∂Θ, ∀x′ ∈ Θ̄, Csp|x − x′|2 + n(x) · (x − x′) � 0. (2.6)
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We further denote by H a C2
b (Θ̄)-extension of the distance function d(·, ∂Θ) (defined on

a restriction to Θ of a neighbourhood of ∂Θ). The function H satisfies (see [11])

∇H = −n on ∂Θ. (2.7)

Thanks to the assumptions made on Θ, the following properties hold for the Green
function G and the kernel K = (K1, K2).

Lemma 2.1. ∃C0 > 0, ∀x �= y ∈ Θ̄,

|G(x, y)| � C0(1 + |ln |x − y||), |K(x, y)| � C0

|x − y| ,

|∇xKi(x, y)| + |∇yKi(x, y)| � C0

|x − y|2 for i = 1, 2.

Proof. For y = (y1, y2) ∈ R
2, let y⊥ = (−y2, y1) and y∗ = y/|y|2 if y �= (0, 0).

In the case in which Θ is the unit disk B(0, 1) of R
2, one has the following explicit

expression for the Green function (see [11, p. 19]):

G0(x, y) =
1
2π

ln
(

|x − y|
|y| |x − y∗|

)
. (2.8)

We remark that

∀x, y ∈ B̄(0, 1), |x − y∗| � |y| |x − y∗| =
√

|x − y|2 + (|x|2 − 1)(|y|2 − 1) � |x − y|.
(2.9)

As a consequence,

|2πG0(x, y)| � − ln |x − y|1{|x−y|�1} + ln(|y| |x − y∗|)1{|y| |x−y∗|�1}.

As |y| |x − y∗| = |x|y| − y/|y|| � 2, we conclude that |2πG0(x, y)| � |ln |x − y|| + ln(2).
We also deduce from (2.9) the bound on the corresponding kernel:

K(x, y) =
1
2π

(
(x − y)⊥

|x − y|2 − (x − y∗)⊥

|x − y∗|2

)
=

1
2π

(((x − y)∗)⊥ − ((x − y∗)∗)⊥).

To estimate ∇Ki, we combine (2.9) and the fact that each term of the Jacobian matrix
of z → z∗ is bounded by 1/|z|2.

When Θ is a general bounded and simply connected domain of class C3, according
to [21], there is a conformal mapping from B(0, 1) onto Θ which extends to a one-to-one
C2 mapping from B̄(0, 1) to Θ̄ denoted by f and such that Df , (Df)−1 and D2f are
bounded on B̄(0, 1). Since the Green function for Θ is given by

G(x, y) = G0(f−1(x), f−1(y)),

the estimations on G, K and ∇Ki follow from those obtained for the unit disk and the
mentioned properties of f . �
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We are interested in weak solutions of (2.1) defined in the following sense.

Definition 2.2. We say that w : [0, T ] × Θ → R is a weak solution of (2.1) if

(i) w ∈ L∞
t (L2

x) ∩ L2
t (H

1
x), where L∞

t (L2
x) and L2

t (H
1
x) stand, respectively, for

L∞([0, T ], L2(Θ)) and L2([0, T ], H1(Θ)) (and H1(Θ) is the Sobolev space consist-
ing of functions which belong together with their first-order distribution derivatives
to L2(Θ));

(ii) for any v ∈ H1(Θ),

d
dt

∫
Θ

wtv + ν

∫
Θ

∇wt · ∇v =
∫

Θ

wtKwt · ∇v + ν

∫
∂Θ

gtv dσ

holds in D′(]0, T [);

(iii) w(0, ·) = w0.

Remark 2.3. The variational formulation (ii) is well defined. Indeed, by the trace
theory (see [5, pp. 196, 197]),

∀v ∈ H1(Θ),
∣∣∣∣
∫

∂Θ

gtv dσ

∣∣∣∣ � C‖gt‖L2(∂Θ)‖v‖H1 , (2.10)

and by Hypotheses (H), the second term of the right-hand side belongs to L2
t . In addition,

according to Lemma 2.4 below,

∀v ∈ H1(Θ),
∣∣∣∣
∫

Θ

wtKwt · ∇v

∣∣∣∣ � C‖wt‖L2‖wt‖H1‖v‖H1

and, by (i), the first term on the right-hand side also belongs to L2
t . So does the second

term of the left-hand side.
The above inequalities together with |

∫
Θ

∇wt · ∇v| � ‖wt‖H1‖v‖H1 ensure that if w

satisfies (i) and (ii), then the distribution derivative ∂tw belongs to L2
t (H

1′

x ), where H1′

x

denotes the dual space of H1(Θ). Applying Lemma 1.2 on p. 261 of [25] with H = L2(Θ)
and V = H1(Θ), we deduce that w has a representative in C([0, T ], L2(Θ)) that we still
denote by w.

Before stating the existence of a unique weak solution to (2.1), we are going to check
the following lemma which prepares us for the study of the nonlinear term in (2.1).

Lemma 2.4.

∀2 < p � +∞, ∃C > 0, ∀w ∈ Lp(Θ), Kw ∈ C(Θ̄) and ‖Kw‖L∞ � C‖w‖Lp ,

(2.11)

∃C > 0, ∀w ∈ L2(Θ), ‖Kw‖L2 � C‖w‖L2 , (2.12)

∃C > 0, ∀u ∈ L2(Θ), ∀v, w ∈ H1(Θ),
∣∣∣∣
∫

Θ

uKw · ∇v

∣∣∣∣ � C‖u‖L2‖w‖H1‖v‖H1 ,

(2.13)

∀u, v, w ∈ H1(Θ),
∫

Θ

vKw · ∇v = 0 and
∫

Θ

uKw · ∇v = −
∫

Θ

vKw · ∇u. (2.14)
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Proof. For α > 0, let Kα(x, y) = 1{|x−y|>α}K(x, y). By Lebesgue’s theorem and
using the continuity of K away from the diagonal, we obtain the continuity of
x ∈ Θ̄ 
→ Kα(x, ·) ∈ Lq

y, for each q � 1. When in addition q < 2, according to Lemma 2.1,
Kα(x, ·) converges to K(x, ·) in Lq

y uniformly on Θ̄, when α tends to 0. We deduce that
K(x, ·) is continuous in Lq

y and obtain (2.11) by Hölder’s inequality.
Let w ∈ L2(Θ). Using Lemma 2.1 and the Cauchy–Schwarz inequality, we get

‖Kw‖2
L2 �

∫
Θ

(∫
Θ

C0

|x − y| dy

)(∫
Θ

C0w
2(y)

|x − y| dy

)
dx �

(
sup
x∈Θ̄

∫
Θ

C0

|x − y| dy

)2

‖w‖2
L2 .

Combining, for 2 < p < +∞, (2.11) and the Sobolev inequality ‖w‖Lp � C‖w‖H1 [5,
p. 165], we get

‖Kw‖L∞ � C‖w‖H1 (2.15)

and conclude that (2.13) holds by the Cauchy–Schwarz inequality.
We deduce that v, w ∈ H1(Θ) →

∫
Θ

vKw · ∇v is continuous. Since, according to [5,
p. 162], the restrictions to Θ of C∞ functions with compact support on R

2 are dense
in H1(Θ), it is enough to check the first equality in (2.14) for smooth v, w. For α > 0,
let

Gαw(x) =
∫

Θ

1{|x−y|>α}G(x, y)w(y) dy.

By Lemma 2.1, Kαw(x) = ∇⊥(Gαw)(x) and Gαw and Kαw converge uniformly on Θ̄,
respectively, to Gw and Kw. Since Kw is continuous, we deduce that Kw = ∇⊥(Gw) and
∇ · Kw = 0. The boundary condition ∀x ∈ ∂Θ, Gw(x) = 0 implies that the tangential
derivative of Gw vanishes on ∂Θ, i.e. ∀x ∈ ∂Θ, Kw(x) · n(x) = 0. Using Green’s formula
we deduce∫

Θ

vKw · ∇v = 1
2

∫
Θ

Kw · ∇v2 = 1
2

∫
∂Θ

v2Kw · n dσ − 1
2

∫
Θ

v2∇ · Kw = 0.

The second equality in (2.14) is deduced by polarization. �

Remark 2.5.

(1) According to [5, p. 195], one also gets

∀w ∈ H1(Θ), ‖w‖L4 � C‖w‖1/2
L2 ‖w‖1/2

H1 , (2.16)

and one deduces that any weak solution of (2.1) belongs to L4
t (L

4
x).

(2) For w ∈ H1(Θ), since Gw solves ∆Gw = w with homogeneous Dirichlet boundary
conditions, by [5, Theorem IX.25, p. 181], Gw ∈ H3(Θ) and ‖Gw‖H3 � C‖w‖H1 .
Since we have just seen above that Kw = ∇⊥(Gw), we deduce that Kw ∈ (H2(Θ))2

with ‖Kw‖(H2)2 � C‖w‖H1 . Then, using Theorem 2 in Zuazua [27] and (2.15), we
deduce that

∀x, y ∈ Θ̄, |Kw(x) − Kw(y)| � C‖w‖H1φ

(
|x − y|
d(Θ)

)
, (2.17)
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where d(Θ) denotes the diameter of Θ and, for r � 0, φ(r) = (r ∧1)(1− log(r ∧1)).
The function φ is non-decreasing and concave on R+.

We are now ready to prove the following theorem.

Theorem 2.6. Under Hypotheses (H), Equation (2.1) has a unique solution w in the
sense of Definition 2.2. In addition, w ∈ C([0, T ], L2

x) ∩ L4
t (L

4
x).

Proof. The last assertion is a consequence of Remark 2.5.

Uniqueness. The proof is similar to the one made for the two-dimensional Navier–
Stokes equation (see, for instance, [25, p. 294]).

Let v and w denote two solutions and w̃ = v − w. As w̃ ∈ L2
t (H

1
x) and by Remark 2.3,

∂tw̃ ∈ L2
t (H

1′

x ), according to [25, p. 261], (d/dt)‖w̃(t)‖2
L2 = 2〈∂tw̃t, w̃t〉 holds in the

distribution sense on [0, T ]. The right-hand side is integrable. Using Definition 2.2 (ii)
and (iii), we deduce that for t ∈ [0, T ],

1
2‖w̃(t)‖2

L2 + ν

∫ t

0
‖∇w̃s‖2

L2 ds =
∫ t

0

∫
Θ

(vsKvs − wsKws) · ∇w̃s ds. (2.18)

Using (2.14) and then (2.13) and Young’s inequality, we have∣∣∣∣
∫

Θ

(vsKvs − wsKws) · ∇w̃s

∣∣∣∣ =
∣∣∣∣
∫

Θ

w̃sKvs · ∇w̃s + ws · Kw̃s · ∇w̃s

∣∣∣∣
=

∣∣∣∣0 −
∫

Θ

w̃sKw̃s · ∇ws

∣∣∣∣
� C‖w̃s‖H1‖ws‖H1‖w̃s‖L2

� ν(‖∇w̃(s)‖2
L2 + ‖w̃(s)‖2

L2) +
C2

4ν
‖ws‖2

H1‖w̃s‖2
L2 .

Inserting this bound in (2.18), we obtain

∀t ∈ [0, T ], ‖w̃(t)‖2
L2 � 2

∫ t

0

(
ν +

C2

4ν
‖ws‖2

H1

)
‖w̃s‖2

L2 ds.

Since s → ‖ws‖2
H1 is integrable, by Gronwall’s lemma, ∀t ∈ [0, T ], ‖vt − wt‖L2 = 0.

Existence. Let us apply the Galerkin method. We first derive an a priori estimate
which will also hold at the discrete level. Let w be a weak solution of (2.1). As above,

1
2

d
dt

‖wt‖2
L2 + ν‖∇wt‖2

L2 =
∫

Θ

wtKwt · ∇wt + ν

∫
∂Θ

gtwt dσ.

According to (2.14), the first term on the right-hand side is zero. Using, moreover, (2.10)
and Young’s inequality, we deduce

1
2

d
dt

‖wt‖2
L2 + ν‖∇wt‖2

L2 � 1
2ν(‖∇wt‖2

L2 + ‖wt‖2
L2) + C‖gt‖2

L2(∂Θ). (2.19)
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Removing the terms involving ‖∇wt‖2
L2 , we upper bound ‖w‖2

L∞
t (L2

x) by Gronwall’s
lemma. Inserting this bound in (2.19), we conclude that

‖w‖2
L∞

t (L2
x) + ‖∇w‖2

L2
t (L2

x) � CT (‖w0‖2
L2 + ‖g‖2

L2
t (L2

x(∂Θ))). (2.20)

We now employ the so-called Galerkin method. Adapting [5, pp. 192, 193] to diagonalize
the Neumann Laplacian, we obtain a Hilbertian basis (uk)k∈N∗ of L2(Θ). These functions
are such that

∀k, ∃µk � 0, ∀v ∈ H1(Θ),
∫

Θ

∇v · ∇uk = µk

∫
Θ

vuk,

i.e. (v, uk)H1 = (1 + µk)(v, uk)L2 . (2.21)

As a consequence, the functions vk = uk/
√

1 + µk, k � 1, form a Hilbertian basis
of H1(Θ).

We want to find t ∈ [0, T ] → Λ(t) = (λ1(t), . . . , λn(t)) such that wn
t =

∑n
k=1 λk(t)vk

satisfies the following approximate problem: wn
0 is the orthogonal projection in the sense

of the L2 scalar product of w0 onto span(v1, . . . , vn) and

∀1 � k � n,
d
dt

∫
Θ

wn
t vk + ν

∫
Θ

∇wn
t · ∇vk =

∫
Θ

wn
t Kwn

t · ∇vk + ν

∫
∂Θ

gtvk dσ.

(2.22)

Denoting

Ajk =
∫

Θ

vjvk, Bj,k =
∫

Θ

∇vj · ∇vk,

Ci,j,k =
∫

Θ

viKvj · ∇vk, Γ (t) = (γ1(t), . . . , γn(t)) with γk(t) =
∫

∂Θ

gtvk dσ,

we obtain that this approximate problem can be written as

d
dt

Λ(t) = A−1(−νB · Λ(t) + Λ(t)∗CΛ(t) + νΓ (t)).

By a standard fixed-point approach, we obtain existence of a local-in-time solution Λ(t)
to this ordinary differential equation. Thanks to the a priori estimate (2.20) which holds
for the corresponding wn

t , and prevents explosion for Λ(t), we can iterate this fixed-point
approach to extend Λ(t) on [0, T ].

We next want to take the limit n → +∞. According to the a priori estimate (2.20),
the sequence (wn)n∈N∗ is bounded in L∞

t (L2
x) and L2

t (H
1
x). Hence we may extract a

subsequence that converges to a limit w weakly∗ in L∞
t (H1

x) and weakly in L2
t (H

1
x). The

weak and weak∗ convergences of these subsequences are enough to take the limit in the
linear terms of (2.22) (see [25, pp. 257–260]).

In order to take the limit in the nonlinear term, we need a stronger convergence. Since
the functions uk =

√
1 + µkvk form a Hilbertian basis of L2(Θ), one obtains, using (2.21),

∀v ∈ H1(Θ),
∫

Θ

wn
t v =

∫
Θ

wn
t

n∑
k=1

(v, uk)L2uk =
∫

Θ

wn
t

n∑
k=1

(v, vk)H1vk.
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Therefore, by (2.22),

d
dt

∫
Θ

wn
t v + ν

∫
Θ

∇wn
t ·

n∑
k=1

(v, vk)H1∇vk

=
∫

Θ

wn
t Kwn

t · ∇
n∑

k=1

(v, vk)H1vk + ν

n∑
k=1

(v, vk)H1

∫
∂Θ

gtvk dσ.

Since ‖
∑n

k=1(v, vk)H1vk‖H1 � ‖v‖H1 , reasoning as in Remark 2.3, we check that
(∂tw

n)n∈N∗ is bounded in L2
t (H

1′

x ). Let 2 < p < +∞. Since H1(Θ) ↪→ Lp(Θ) ↪→ (H1(Θ))′

and the first of these injections is compact (see [5, Theorem IX.16, p. 169]), according
to [15, Theorem 5.1, p. 58], we deduce that we may extract a further subsequence that
converges to w strongly in L2

t (L
p
x). This subsequence is still denoted by (wn) for nota-

tional simplicity. By (2.11) and the strong convergence in L2
t (L

p
x), wn

t Kwn
t converges to

wtKwt strongly in L1
t (L

p
x). Therefore,

∀ψ ∈ D(]0, T [),
∫ T

0
ψ′(t)

∫
Θ

wn
t Kwn

t · ∇v dt →
∫ T

0
ψ′(t)

∫
Θ

wtKwt · ∇v dt.

Hence w satisfies (ii) in Definition 2.2. Since, by standard arguments [25, pp. 257–260],
(iii) also holds, we conclude that w is a weak solution of (2.1). �

In order to give a probabilistic interpretation of the obtained weak solution of (2.1),
we introduce the semi-group P ν

t (x, y) associated with
√

2ν times the Brownian motion
normally reflected on the boundary and prove the following mild representation.

Proposition 2.7. Let w denote the weak solution of (2.1) given by Theorem 2.6.
Then ∀t ∈ [0, T ], dx a.e. in Θ,

wt(x) = P ν
t w0(x) +

∫ t

0
∇P ν

t−s · (wsKws)(x) ds + ν

∫ t

0

∫
∂Θ

P ν
t−s(y, x)g(s, y) dσ(y) ds,

(2.23)

where
∇P ν

t−s · (wsKws)(x) =
∫

Θ

∇yP ν
t−s(y, x) · ws(y)Kws(y) dy.

Proof. Let t ∈]0, T ] and let ϕ be a smooth function on Θ̄ with a vanishing normal
derivative at the boundary: ∂nϕ(x) = 0 for x ∈ ∂Θ. According to [14, Theorem 5.3,
p. 320], the boundary-value problem

∂sψ + ν∆ψ = 0 on [0, t] × Θ,

∂nψ = 0 on [0, t] × ∂Θ,

ψ(t, ·) = ϕ(·) on Θ

admits a classical solution ψ(s, x) which is C1,2 on [0, t] × Θ̄. By the Feynman–Kac
approach, this solution has the following representation: ψ(s, x) = P ν

t−sϕ(x). Clearly,
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ψ ∈ L∞([0, t], H1(Θ)) and ∂sψ ∈ L2([0, t], (H1)′
x(Θ)). By [25, Lemma 1.2, p. 261] we

deduce that in D′(]0, t[),

d
ds

∫
Θ

wsψ(s, ·) =
∫

Θ

ws∂sψ(s, ·) − ν

∫
Θ

∇ws · ∇ψ(s, ·) +
∫

Θ

wsKws · ∇ψ(s, ·)

+ ν

∫
∂Θ

gsψ(s, ·) dσ.

By the equation satisfied by ψ, the sum of the two first terms on the right-hand side is
zero. Hence

∫
Θ

wt(x)ϕ(x) dx =
∫

Θ

w0(x)ψ(0, x) dx +
∫ t

0

∫
Θ

wsKws(x) · ∇ψ(s, x) dxds

+ ν

∫ t

0

∫
∂Θ

ψ(s, x)g(s, x) dσ(x) ds.

By Hypotheses (H),

∫ t

0

∫
∂Θ

∫
Θ

P ν
t−s(x, y)|ϕ(y)| dy |g(s, x)| dσ(x) ds � ‖ϕ‖L∞‖g‖L1

t (L1
x(∂Θ)) < +∞.

Hence, by Fubini’s theorem the last term on the right-hand side is equal to

ν

∫
Θ

ϕ(x)
∫ t

0

∫
∂Θ

P ν
t−s(y, x)g(s, y) dσ(y) ds dx.

We conclude the proof by applying, similarly, Fubini’s theorem to the other terms on the
right-hand side and remarking that the derived equality holds for any smooth function
ϕ with vanishing normal derivative.

To justify the use of Fubini’s theorem in the second term, we need the following esti-
mations given by [22, (a.13), (a.14), p. 600]:

∀x ∈ Θ̄, ∀y ∈ Θ̄, |∇xP ν
t (x, y)| � C1/t3/2 and ‖∇xP ν

t (x, y)‖L1
y(Θ) � C1/

√
t.

(2.24)

Indeed the first one ensures that ∇ψ(s, x) =
∫

Θ
∇xP ν

t−s(x, y)ϕ(y) dy. By the second
one and (2.12),

∫ t

0

∫
Θ

|wsKws|(x)
∫

Θ

|∇xP ν
t−s(x, y)| |ϕ(y)| dy dxds

� C‖ϕ‖L∞‖w‖2
L∞

t (L2
x)

∫ t

0
(t − s)−1/2 ds.

�
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3. The probabilistic interpretation of the vortex equation on a
bounded domain with a Neumann boundary condition

We are in a McKean–Vlasov context, and the interpretation of the vortex equation as a
Fokker–Planck equation allows us to associate naturally with this equation a nonlinear
stochastic differential equation (see, for example, [18]).

Here the difficulty is the treatment of the term due to the Neumann condition involving
the function g. We essentially follow Fernandez and Méléard [9] and prove that this term
is related to space-time random births located at the boundary in the probabilistic inter-
pretation. Our situation is harder than the one of [9] since we are in a bounded domain
instead of the whole space and the diffusion processes are reflected on the boundary.
There are also births inside the domain at time 0 and the functions w0 and g are not
probability densities.

We follow Jourdain [13] to treat the last difficulty.
Let

‖w0‖1 =
∫

Θ

|w0| and ‖g‖1 =
∫

[0,T ]×∂Θ

|g| dσ dt.

To govern the times and positions of births, we introduce on [0, T ] × Θ̄ the probability
measure

P0(dt, dx) = 1{x∈Θ}δ{0}(dt)
|w0(x)|

‖w0‖1 + ν‖g‖1
dx + 1{x∈∂Θ}

ν|g(t, x)|
‖w0‖1 + ν‖g‖1

dt dσ(x),

(3.1)

which does not weight ]0, T ] × Θ. To take into account the effect of the sign and mass
of w0 and g, we also consider for t ∈ [0, T ] and x ∈ Θ̄ the measurable function

h(t, x) = (‖w0‖1 + ν‖g‖1)
(
1{t=0,x∈Θ}

w0(x)
|w0(x)| + 1{x∈∂Θ}

g(t, x)
|g(t, x)|

)
(3.2)

with values in {−(‖w0‖1 + ν‖g‖1), 0, ‖w0‖1 + ν‖g‖1}. Let us remark that if ϕ is a
bounded measurable function on [0, T ] × Θ̄, then

∫
[0,T ]×Θ̄

ϕ(t, x)h(t, x)P0(dt, dx)

=
∫

Θ

ϕ(0, x)w0(x) dx + ν

∫
[0,T ]×∂Θ

ϕ(t, x)g(t, x) dt dσ(x). (3.3)

We are now going to give the probabilistic interpretation of the vortex equation. This
interpretation is inspired from Sznitman [23] and Bossy and Jourdain [4] for the reflected
contribution and from Fernandez and Méléard [9] for the space-time random-birth con-
tribution.

Let us first define the probability space in which the law of the solution of the stochastic
differential equation will live.
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Definition 3.1. Let (τ, (Xt)t�T , (kt)t�T ) denote the canonical process on [0, T ] ×
C([0, T ], Θ̄)×C([0, T ], R2). We denote by PT the space of probability measures P on this
space such that for each t ∈ [0, T ], the signed measure P̃t defined by

∀B ∈ B(Θ̄), P̃t(B) = EP (h(τ, X0)1{τ�t}1B(Xt)), (3.4)

has a density p̃t with respect to the Lebesgue measure and t ∈ [0, T ] → p̃t ∈ L∞
t (L2

x) ∩
L2

t (H
1
x).

Definition 3.2. We denote by (E) the following nonlinear stochastic differential equa-
tion with reflection: given an R

2-valued Brownian motion B and random variables (τ, X0)
with values in [0, T ] × Θ̄ and distributed according to P0, a process (τ, (Xt)t�T , (kt)t�T )
is a solution of (E) if

the law P of (τ, X, k) belongs to PT ,

Xt = X0 +
√

2ν

∫ t

0
1{τ�s} dBs +

∫ t

0
1{τ�s}Kp̃s(Xs) ds − kt,

|k|t =
∫ t

0
1{Xs∈∂Θ}1{τ�s} d|k|s, kt =

∫ t

0
n(Xs) d|k|s, (3.5)

where t ∈ [0, T ] → |k|t denotes the variation function associated with t ∈ [0, T ] → kt.
Note that as P ∈ PT , P a.s., ∀t ∈ [0, T ], Xt ∈ Θ̄. Moreover, the drift coefficient Kp̃s

is nonlinear since it depends on the density p̃s of the signed measure P̃s.

The following lemma states the link between the nonlinear stochastic differential equa-
tion (E) and the vortex equation (2.1).

Lemma 3.3. If (τ, X, k) is a strong solution of (E), then p̃ is a weak solution of (2.1).

Proof. By (3.4) and (3.3), one immediately gets that p̃0 = w0. Let ψ ∈ C1,2([0, T ] × Θ̄)
be such that ∀(s, x) ∈ [0, T ] × ∂Θ, ∂nψ(s, x) = 0. By Itô’s formula,

ψ(T, Xt) = ψ(τ, X0) +
√

2ν

∫ T

0
1{τ�s}∇ψ(s, Xs) · dBs

+
∫ T

0
1{τ�s}(∂sψ(s, Xs) + Kp̃s(Xs) · ∇ψ(s, Xs) + ν∆ψ(s, Xs)) ds.

Multiplying by h(τ, X0), taking expectations and using the definition of p̃ and (3.3), we
deduce that

∫
Θ̄

ψ(T, x)p̃(T, x) dx =
∫

Θ̄

ψ(0, x)w0(x) dx + ν

∫ T

0

∫
∂Θ

ψ(s, x)g(s, x) dσ(x) ds

+
∫ T

0

∫
Θ̄

(∂sψ(s, x) + Kp̃s(x) · ∇ψ(s, x) + ν∆ψ(s, x))p̃s(x) dxds.
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For the choice ψ(s, x) = ϕ(s)v(x), where v is a C2 function on Θ̄ such that ∂nv = 0 on
∂Θ and ϕ ∈ D(]0, T [), we obtain∫ T

0

(
ϕ′(s)

∫
Θ

p̃sv + ϕ(s)
(∫

Θ

p̃sKp̃s · ∇v + ν

∫
Θ

p̃s∆v + ν

∫
∂Θ

gsv dσ

))
ds = 0.

As P ∈ PT , p̃ ∈ L2
t (H

1
x). By Green’s formula for functions in H1(Θ) [5, p. 197] and since

∂nv vanishes on the boundary, ds a.e. in [0, T ],
∫

Θ
p̃s∆v = −

∫
Θ

∇p̃s · ∇v.
Since Θ is C4, the Hilbertian basis of H1(Θ) introduced in the proof of Theorem 2.6

consists of C2(Θ̄) functions with a vanishing normal derivative. Therefore, such functions
are dense in H1(Θ) and we conclude that p̃ satisfies Definition 2.2 (ii). �

Theorem 3.4. Under Hypotheses (H), given B and (τ, X0), there exists a unique
strong solution (τ, X, k) to the equation (E). In addition, the corresponding p̃ is a weak
solution of (2.1) and satisfies the mild equation (2.23).

Proof. We are going to check pathwise uniqueness and weak existence. The Yamada–
Watanabe theorem then implies existence of a strong solution.

Pathwise uniqueness. Let us consider, given B and (τ, X0), two strong solutions (τ, Z, k)
and (τ, Z̄, k̄) of (E), and let us denote by P 1 the law of (τ, Z, k) and by P 2 the law of
(τ, Z̄, k̄). Then by Lemma 3.3, p̃1 and p̃2 are weak solutions of (2.1). According to The-
orem 2.6, p̃1 = p̃2 = w. Hence (τ, Z, k) and (τ, Z̄, k̄) are both solutions of the stochastic
differential reflected equation (Ew) defined like (E), but with the known drift coefficient
Kws replacing Kp̃s in (3.5).

In order to prove that these two solutions are equal, let us define ht = H(Zt),
h̄t = H(Z̄t), h′

t = ∇H(Zt), h̄′
t = ∇H(Z̄t), h′′

t = ∆H(Zt), h̄′′
t = ∆H(Z̄t) (where H denotes

the extension of the distance to the boundary introduced after the statement of Hypothe-
ses (H)), bt = Kwt(Zt) and b̄t = Kwt(Z̄t). Computing d exp(−2Csp(ht + h̄t))|Zt − Z̄t|2
by Itô’s formula, we get

1{τ�t} exp(−2Csp(ht + h̄t))

× [2(Zt − Z̄t) · (dk̄t − dkt) − 2Csp|Zt − Z̄t|2(d|k|t + d|k̄|t)
− 2Csp|Zt − Z̄t|2(

√
2ν(h′

t + h̄′
t) dBt

+ {h′
tbt + h̄′

tb̄t + ν(−2Csp|h′
t + h̄′

t|2 + h′′
t + h̄′′

t )} dt)

+ 2(Zt − Z̄t) · (bt − b̄t) dt]. (3.6)

Because of the ‘exterior-sphere’ condition (2.6), the local-time terms of the first line have
a non-positive contribution after integration over time. We deduce that for a constant CH ,
depending only on the upper bounds of the function H and its derivatives,

E(|Zt − Z̄t|2) � CH

(∫ t

0
(‖Kws‖L∞ + 1)E(|Zs − Z̄s|2) ds

+
∫ t

0
E(|Zs − Z̄s| |Kws(Zs) − Kws(Z̄s)|) ds

)
. (3.7)
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By (2.17) and since, for 0 � r � d(Θ),

rφ

(
r

d(Θ)

)
=

r2

d(Θ)

(
1 − log

(
r

d(Θ)

))
� r2

d(Θ)

(
1 − 2 log

(
r

d(Θ)

))
= d(Θ)φ

(
r2

d(Θ)2

)
,

E(|Zs − Z̄s| |Kws(Zs) − Kws(Z̄s)|) � C‖ws‖H1E

(
φ

(
|Zs − Z̄s|2

d(Θ)2

))
.

Since the function φ is concave by Jensen’s inequality,

E(|Zs − Z̄s| |Kws(Zs) − Kws(Z̄s)|) � C‖ws‖H1φ

(
E

(
|Zs − Z̄s|2

d(Θ)2

))
. (3.8)

Inserting this bound and (2.15) into (3.7), we deduce that y(s) def= E(|Zs − Z̄s|2)/d(Θ)2

satisfies

y(t) � C

∫ t

0
(1 + ‖ws‖H1)(y(s) + φ(y(s))) ds. (3.9)

Let us introduce the ordinary differential equation

z′(t) = C(1 + ‖wt‖H1)(z(t) + φ(z(t))), z(0) = ζ > 0. (3.10)

Since the function φ is continuous and bounded, and t → ‖wt‖H1 is integrable on [0, T ],
by standard arguments, this equation has a non-decreasing solution on [0, T ] denoted by
(z(t, ζ))t∈[0,T ]. In addition,∫ z(T,ζ)

ζ

du

u + φ(u)
� C

∫ T

0
(1 + ‖wr‖H1) dr < +∞.

Since ∫
0+

du

u + φ(u)
= +∞,

we deduce that

z(T, ζ) = sup
t�T

z(t, ζ) →ζ→0 0. (3.11)

Now, since r → r + φ(r) is increasing and Lipschitz continuous with constant C(ζ) on
[ζ,+∞), where ζ > 0, and ∀t � T , z(t, ζ) � ζ,

(y(t) − z(t, ζ))+ � C

(∫ t

0
(1 + ‖ws‖H1)(y(s) + φ(y(s)

)
− (z(s, ζ) + φ(z(s, ζ)))) ds)+

� C

∫ t

0
(1 + ‖ws‖H1)(y(s) + φ(y(s)) − (z(s, ζ) + φ(z(s, ζ))))+ ds

� C(ζ)
∫ t

0
(1 + ‖ws‖H1)(y(s) − z(s, ζ))+ ds.

By Gronwall’s lemma, we deduce that ∀t � T , y(t) � z(t, ζ). Letting ζ → 0 and
using (3.11), we conclude that ∀t � T , y(t) = 0. Hence ∀t � T , E(|Zt − Z̄t|2) = 0 and
Zt = Z̄t almost surely. Since the processes are continuous, they are indistinguishable.
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Existence of a weak solution. Let w be the solution of the vortex equation given by
Theorem 2.6. Combining (2.11) and Remark 2.5 (1), we check that s 
→ ‖Kws‖L∞ belongs
to L4([0, T ]). We will first construct a solution of the stochastic differential equation (Ew)
with known drift coefficient Kws(·). Then we will check that its law is in fact a weak
solution of (E).

Let (τ, X0) be a random variable with law P0 independent of a two-dimensional Brow-
nian motion (Wt)t∈[0,T ]. According to [16], existence and trajectorial uniqueness hold for
the stochastic differential equation with normal reflection

Xt ∈ Θ̄, ∀t ∈ [0, T ],

Xt = X0 +
√

2ν

∫ t

0
1{τ�s} dWs − kt,

|k|t =
∫ t

0
1{Xs∈∂Θ}1{τ�s} d|k|s, kt =

∫ t

0
n(Xs) d|k|s.

Moreover, ∀t ∈ [0, T ], Xt admits

x → 1
‖w0‖1 + ν‖g‖L1([0,t]×∂Θ)

(
|w0|P ν

t (x) + ν

∫ t

0

∫
∂Θ

|g|(s, y)P ν
t−s(y, x)σ(dy) ds

)

as a density with respect to the Lebesgue measure on Θ̄. Since ‖Kws‖L∞ is square
integrable we deduce by Girsanov’s theorem that the stochastic differential equation (Ew)
admits a weak solution P such that ∀t ∈ [0, T ], the measure P̃t has a density. Let p̃ denote
a measurable version of the densities.

We set t ∈ [0, T ]. Reasoning as in the proof of Lemma 3.3, we obtain that for
ψ ∈ C1,2([0, t] × Θ̄) such that ∀(s, x) ∈ [0, t] × ∂Θ, ∂nψ(s, x) = 0,

∫
Θ̄

ψ(t, x)p̃(t, x) dx =
∫

Θ̄

ψ(0, x)w0(x) dx + ν

∫ t

0

∫
∂Θ

ψ(s, x)g(s, x) dσ(x) ds

+
∫ t

0

∫
Θ̄

(∂sψ(s, x) + Kws(x) · ∇ψ(s, x) + ν∆ψ(s, x))p̃(s, x) dxds.

Choosing ψ(s, x) = P ν
t−sϕ(x) as in the proof of Proposition 2.7 and remarking that

because of (2.24) and the uniform-in-time bound ‖p̃t‖L1 � ‖w0‖1 + ν‖g‖1 (a consequence
of (3.4)),∫ t

0

∫
Θ2

|∇xP ν
t−s(x, y)| |ϕ(y)| |p̃s(x)| |Kws(x)| dxdy ds � C

∫ t

0

‖Kws‖L∞ ds√
t − s

� C‖Kw‖L4
t (L∞

x ) < +∞,

we deduce by Fubini’s theorem that

dx a.e., p̃t(x) = P ν
t w0(x) +

∫ t

0
∇P ν

t−s · (p̃sKws)(x) ds

+ ν

∫
(0,t]×∂Θ

P ν
t−s(y, x)g(s, y) dσ(y) ds.
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Now, using the mild Equation (2.23) satisfied by w and (2.24), we obtain

∃C > 0, ∀t ∈ [0, T ], ‖p̃t − wt‖L1 � C

∫ t

0
‖p̃s − ws‖L1

‖Kws‖L∞√
t − s

ds. (3.12)

By iterating this bound, then using Hölder’s inequality, we obtain

‖p̃t −wt‖L1 � C

∫ t

0
‖p̃s −ws‖L1‖Kws‖L∞

∫ t

s

‖Kwu‖L∞ du√
t−u

√
u−s

ds

� C

∫ t

0
‖p̃s −ws‖L1‖Kws‖L∞‖Kw‖L4

t (L∞
x )

(∫ t

s

((t−u)(u−s))−2/3 du

)3/4

ds.

Hence (3.12) holds with (t − s)−1/2 replaced by (t − s)−1/4 in the right-hand side. After
the next iteration we obtain that (3.12) holds with (t − s)−1/2 replaced by 1 and conclude
by Gronwall’s lemma that ∀t ∈ [0, T ], p̃t = wt. �

4. Stochastic approximations of the solution of the vortex equation

4.1. The case of a cut-off kernel

As in Méléard [20], we introduce a cut-off kernel Kε preserving the properties (2.4). More
precisely we consider a non-decreasing C2-function η from R+ to R+, such that η(x) = x

for x � 1
2 and η(x) = 1 for x � 1. For 0 < ε � 1, we set

Gε(x, y) = η

(
|x − y|3

ε3

)
G(x, y) (4.1)

and

Kε(x, y) = ∇⊥
x Gε(x, y)

= η

(
|x − y|3

ε3

)
K(x, y) + η′

(
|x − y|3

ε3

)
3(x − y)⊥|x − y|

ε3 G(x, y). (4.2)

The following lemma states useful properties of this cut-off kernel.

Lemma 4.1.

(1)
∇x · Kε(x, y) = 0, Kε(x, y) · n(x) = 0 for x ∈ ∂Θ,

Kε(x, y) = K(x, y) if |x − y| � ε,

∀x, y ∈ Θ̄, |Kε(x, y)| � C(1 + |ln |x − y||)
|x − y| ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

where C does not depend on ε.

(2) supx∈Θ̄ ‖K(x, ·) − Kε(x, ·)‖Lp
y

tends to 0 as ε tends to 0 as soon as p < 2.

(3) For ε sufficiently small, the kernel Kε is bounded by Mε � C|ln ε|/ε and Lipschitz
continuous in both variables with constant Lε � C|ln ε|/ε2, where C does not
depend on ε.

https://doi.org/10.1017/S0013091503000142 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000142


Vortex equations with Neumann’s boundary condition 613

Proof. The two first properties in (1) are obvious and (2) is an easy consequence
of (4.3).

By the estimate of K given in Lemma 2.1 and the above definition of η, the norm of
the first term on the right-hand side of (4.2) is smaller than

C0

(
1

|x − y| ∧ sup
r∈[0,ε2−1/3]

r2

ε3

)
� C0

(
1

|x − y| ∧ 1
ε

)
.

By the estimate of G in Lemma 2.1 and since η′(x) = 0 for x > 1, the second term on
the right-hand side of (4.2) is smaller than 3C0‖η′‖∞ times(

1 + |ln |x − y||
|x − y| ∧ sup

r∈[0,ε]

r2(1 + |ln(r)|)
ε3

)
�

(
1 + |ln |x − y||

|x − y| ∧ 1 + |ln(ε)|
ε

)

as ε � 1. We deduce both (4.3) and the upper bound in C|ln(ε)|/ε. To prove that Kε is
Lipschitz continuous, we use in a similar way Lemma 2.1 combined with the definition
of η to check that the gradient of each coordinate of Kε with respect to either x or y is
bounded by C|ln(ε)|/ε2 (the contribution of the first term on the right-hand side of (4.2)
is C/ε2, whereas the contribution of the second term is C|ln(ε)|/ε2). �

With a slight adaptation of [23] to take into account the random births on the bound-
ary, we obtain the existence and pathwise uniqueness of the following interacting particle
systems.

Definition 4.2. Consider a sequence (Bi)i∈N of independent Brownian motions on R
2

and a sequence of independent variables (τ i, Zi
0)i∈N with values in [0, T ] × Θ̄ distributed

according to P0, and independent of the Brownian motions. For a fixed ε > 0, for each
n ∈ N

∗, let us consider the interacting processes defined for 1 � i � n by

Zin,ε
t ∈ Θ̄, ∀t ∈ [0, T ],

Zin,ε
t = Zi

0 +
√

2ν

∫ t

0
1{τ i�s} dBi

s +
∫ t

0
1{τ i�s}Kεµ̃

n,ε
s (Zin,ε

s ) ds − kin,ε
t ,

|kin,ε|t =
∫ t

0
1{Zin,ε

s ∈∂Θ}1{τ i�s} d|kin,ε|s, kin,ε
t =

∫ t

0
n(Zin,ε

s ) d|kin,ε|s,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.4)

where

µ̃n,ε
s =

1
n

n∑
j=1

h(τ j , Zj
0)1{τj�s}δZjn,ε

s

is the weighted empirical measure of the system at time s and

Kεµ̃
n,ε
s (z) =

1
n

n∑
j=1

h(τ j , Zj
0)1{τj�s}Kε(z, Zjn,ε

s ).

Let us remark that the particles either are born at time 0 inside the domain and evolve
as diffusive particles with normal reflecting boundary conditions, or are born at a random
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time on the boundary of the domain and then evolve in the same way as particles born
inside the domain. Moreover, all particles, as soon as they are born, interact together
following a mean field depending on the parameter ε.

Again according to [23], we also get the existence and pathwise uniqueness of the
limiting processes (when n tends to infinity and ε is fixed), coupled with the interacting
processes, as follows.

Definition 4.3. For i � 1, we define Z̄i,ε by

Z̄i,ε
t ∈ Θ̄, ∀t ∈ [0, T ],

Z̄i,ε
t = Zi

0 +
√

2ν

∫ t

0
1{τ i�s} dBi

s +
∫ t

0
1{τ i�s}KεQ̃

ε
s(Z̄

i,ε
s ) ds − k̄i,ε

t ,

|k̄i,ε|t =
∫ t

0
1{Z̄i,ε

s ∈∂Θ}1{τ i�s} d|k̄i,ε|s, k̄i,ε
t =

∫ t

0
n(Z̄i,ε

s ) d|k̄i,ε|s,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.5)

where for (s, z) ∈ [0, T ] × Θ̄,

KεQ̃
ε
s(z) =

∫
Θ̄

Kε(z, x)Q̃ε
s(dx)

with the signed measure Q̃ε
s on Θ̄ defined from the common law Qε of (τ i, Z̄i,ε, k̄i,ε)

by (3.4).

Sznitman also proves a propagation-of-chaos result, but without precise estimates on
the rate of convergence. We need such estimates to prove our main result.

Proposition 4.4. For t � T , and for each i ∈ {1, . . . , n},

E
(

sup
s�t

|Zin,ε
s − Z̄i,ε

s |2
)

� 2d(Θ)

√
Aε

n
exp(CH(1 + (‖w0‖1 + ν‖g‖1)(Mε/2 + Lε)t))

E
(

sup
s�t

|kin,ε
s − k̄i,ε

s |
)

� E
(

sup
s�t

|Zin,ε
s − Z̄i,ε

s |
)

+ 2(‖w0‖1 + ν‖g‖1)t
(

LεE
(

sup
s�t

|Zin,ε
s − Z̄i,ε

s |
)

+
Mε√

n

)
,

where CH is a constant which depends only on upper bounds of the function H and its
derivatives and

Aε =
4(‖w0‖1 + ν‖g‖1)2M2

ε

2 + (‖w0‖1 + ν‖g‖1)(Mε + 2Lε)
.

Remark 4.5. The convergence rate in the number n of particles given above is not
optimal: indeed one can check that E(sups�t |Zin,ε

s − Z̄i,ε
s |4) is smaller than

16(‖w0‖1 + ‖νg‖1)4M4
ε t

n2(1 + (2 + (‖w0‖1 + ν‖g‖1)2(M2
ε + 4L2

ε))t)

× exp(CH(t + (2 + (‖w0‖1 + ν‖g‖1)2(M2
ε + 4L2

ε))t
2)).

But in the next section we are going to let ε = εn depend on n and converge to 0 in such
a way that E(sups�t |Zin,εn

s − Z̄i,εn
s |2) → 0. The estimate given in the proposition allows

a quicker (but still very slow) convergence of εn to 0 than the previous one.
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Proof. Let us compare the two processes Zin,ε and Z̄i,ε. Integrating (3.6) over time
with Z = Zin,ε, k = kin,ε, Z̄ = Z̄i,ε and k̄ = k̄i,ε, bt = Kεµ̃

n,ε
t (Zt) and b̄t = KεQ̃

ε
t (Z̄t),

and taking expectations, we obtain

E(|Zin,ε
t − Z̄i,ε

t |2) � CH

(
(1 + Mε(‖w0‖1 + ν‖g‖1))

∫ t

0
E(|Zin,ε

s − Z̄i,ε
s |2) ds

+
∫ t

0
E(|Zin,ε

s − Z̄i,ε
s | |Kεµ̃

n,ε
s (Zin,ε

s ) − KεQ̃
ε
s(Z̄

i,ε
s )|) ds

)
.

(4.6)

Using the Lipschitz continuity of Kε, the boundedness of h and the exchangeability of
the processes (Zin,ε, Z̄i,ε), 1 � i � n, we obtain

E(|Zin,ε
s − Z̄i,ε

s | |Kεµ̃
n,ε
s (Zin,ε

s ) − KεQ̃
ε
s(Z̄

i,ε
s )|)

� (‖w0‖1 + ν‖g‖1)LεE

(
|Zin,ε

s − Z̄i,ε
s |

(
|Zin,ε

s − Z̄i,ε
s | +

1
n

n∑
j=1

|Zjn,ε
s − Z̄j,ε

s |
))

+ E

(
|Zin,ε

s − Z̄i,ε
s |

∣∣∣∣ 1
n

n∑
j=1

h(τj , Z
j
0)1{τj�s}Kε(Z̄i,ε

s , Z̄j,ε
s ) − KεQ̃

ε
s(Z̄

i,ε
s )

∣∣∣∣
)

� (1 + 2(‖w0‖1 + ν‖g‖1)Lε)E(|Zin,ε
s − Z̄i,ε

s |2)

+ E

(∣∣∣∣ 1
n

n∑
j=1

h(τj , Z
j
0)1{τj�s}Kε(Z̄i,ε

s , Z̄j,ε
s ) − KεQ̃

ε
s(Z̄

i,ε
s )

∣∣∣∣
2 )

.

After expansion of

E

(∣∣∣∣ 1
n

n∑
j=1

h(τj , Z
j
0)1{τj�s}Kε(Z̄i,ε

s , Z̄j,ε
s ) − KεQ̃

ε
s(Z̄

i,ε
s )

∣∣∣∣
2 )

,

the expectation of the non-diagonal terms disappears because of the independence of
the variables which are centred conditionally to Z̄i,ε. There only remain the n bounded
diagonal terms. We deduce that

E(|Zin,ε
t − Z̄i,ε

t |2) � CH

(
(2 + (‖w0‖1 + ν‖g‖1)(Mε + 2Lε))

∫ t

0
E(|Zin,ε

s − Z̄i,ε
s |2) ds

+
4(‖w0‖1 + ν‖g‖1)2M2

ε t

n

)
.

(4.7)

Using Gronwall’s lemma, we obtain that both sides of (4.6) and (4.7) are smaller than

f(t) =
4(‖w0‖1 + ‖νg‖1)2M2

ε

n(2 + (‖w0‖1 + ν‖g‖1)(Mε + 2Lε))
exp(CH(2 + (‖w0‖1 + ν‖g‖1)(Mε + 2Lε))t).

Integrating (3.6) with respect to time, dealing with the stochastic integral thanks to
Doob’s inequality and using the fact that the right-hand side of (4.6) is smaller than f(t),
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we get

E
(

sup
s�t

|Zin,ε
s − Z̄i,ε

s |2
)

�
(

CH

∫ t

0
E(|Zin,ε

s − Z̄i,ε
s |4) ds

)1/2

+ f(t)

� d(Θ)
(

CH

∫ t

0
E(|Zin,ε

s − Z̄i,ε
s |2) ds

)1/2

+ f(t)

� d(Θ)
√

f(t) + f(t)

since the right-hand side of (4.7) is smaller than f(t).

The left-hand side being smaller than d(Θ)2, it is smaller than 2d(Θ)
√

f(t) when f(t) �
d(Θ)2 and the right-hand side is smaller than 2d(Θ)

√
f(t) otherwise. We deduce the

desired estimate for E(sups�t |Zin,ε
s − Z̄i,ε

s |2).
Now remarking that

sup
s�t

|kin,ε
s − k̄i,ε

s | �
∫ t

0
|Kεµ̃

n,ε
s (Zin,ε

s ) − KεQ̃
ε
s(Z̄

i,ε
s )| ds + sup

s�t
|Zin,ε

s − Z̄i,ε
s |

and using arguments developed above we obtain the second estimate. �

Remark 4.6. Let us remark that if Θ̄ is a convex region, then the rate of convergence
is easier to obtain. Indeed the constant Csp defined in (2.6) can be chosen equal to 0:

∀x ∈ ∂Θ, ∀x′ ∈ Θ̄, n(x) · (x − x′) � 0. (4.8)

In the expression |Zin,ε
t − Z̄i,ε

t |2 given by Itô’s formula, the local-times terms are non-
positive and therefore

E
(

sup
s�t

|Zin,ε
s − Z̄i,ε

s |2
)

� (1 + 2(‖w0‖1 + ν‖g‖1)Lε))
∫ t

0
E

(
sup
u�s

|Zin,ε
u − Z̄i,ε

u |2
)

ds

+
4(‖w0‖1 + ν‖g‖1)2M2

ε t

n
,

and we conclude by Gronwall’s lemma.

4.2. Convergence of the nonlinear processes

For i � 1, let us denote by (Xi, ki) the solution of the nonlinear stochastic differential
equation (E) with initial variable (τ i, Zi

0) and Brownian motion Bi. We now want to
prove the pathwise convergence of (Z̄i,ε, k̄i,ε) to (Xi, ki) when ε tends to 0.

By Girsanov’s theorem, it turns out that ∀t ∈ [0, T ], the signed measure Q̃ε
t has a

density qε
t with respect to the Lebesgue measure on Θ. Reasoning as in the proof of

Theorem 3.4 and using the boundedness of the kernel Kε, we show that qε is the unique
solution in L1

T = {pt, ‖|p‖|T = supt�T ‖pt‖L1 < +∞} of the evolution equation

qε
t (x) = P ν

t w0(x) +
∫ t

0
∇xP ν

t−s · (qε
sKεq

ε
s)(x) ds + ν

∫ t

0

∫
∂Θ

P ν
t−sg(s, y) dσ(y) ds. (4.9)
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On the other hand, thanks to (4.3), we can apply all that we have done for Equa-
tion (2.1) to the equation

∂tw(t, x) + ∇ · (wKεw)(t, x) = ν∆w(t, x) in Θ,

w(x, 0) = w0 in Θ,

∂nw = ∇w · n = g on ∂Θ,

⎫⎪⎬
⎪⎭ (4.10)

We can then prove the existence of a unique weak solution wε belonging to L∞
t (L2

x) ∩
L2

t (H
1
x). Now, as in Proposition 2.7, we obtain that wε is also a solution of (4.9). Since

it belongs to L1
T (Θ is bounded), wε = qε. Thanks to (4.3), one can check that the a

priori estimate (2.20) holds for wε = qε with a constant CT independent of ε. Following
Remark 2.5, we deduce that

sup
ε∈(0,1]

(‖qε‖L∞
t (L2

x) + ‖qε‖L2
t (H1

x) + ‖∂tq
ε‖L2

t (H1′
x ) + ‖qε‖L4

t (L4
x)) < +∞. (4.11)

We can now prove the convergence of qε to w.

Proposition 4.7. For each 1 < p < +∞,

lim
ε→0

‖qε − w‖L2
t (Lp

x) = 0, lim
ε→0

‖Kεq
ε − Kw‖L2

t (L∞
x ) = 0. (4.12)

Proof. Let (εn)n be a sequence of positive numbers converging to 0 as n tends to +∞.
Thanks to (4.11) and using the same compacity result as in the proof of Theorem 2.6,
one can extract (by a diagonal procedure) from the sequence (qεn)n a subsequence (still
denoted (qεn)n for simplicity), which converges strongly in L2

t (L
p
x), for each p ∈ (1, +∞),

weakly in L2
t (H

1
x) and weakly∗ in L∞

t (L2
x) to w̃.

The strong convergence in L2
t (L

p
x) with p > 2 combined with Lemma 4.1 (2) and

Hölder’s inequality ensures that Kεnqεn converges to Kw̃ in L2
t (L

∞
x ). By adapting the

proof of Theorem 2.6, we get that w̃ is a weak solution of (2.1) and deduce that w̃ = w

by uniqueness for this equation. We conclude since the sequence (εn)n is arbitrary. �

We now study the convergence of the processes (Z̄i,εn , k̄i,εn) as n tends to ∞.

Theorem 4.8. For any i � 1, the processes (Z̄i,ε, k̄i,ε) pathwisely converge to the
solution (Xi, ki) of (E) with initial variable (τ i, Zi

0) and Brownian motion Bi, as ε tends
to 0:

lim
ε→0

E
(

sup
t�T

(|Z̄i,ε
t − Xi

t |2 + |k̄i,ε
t − ki

t|)
)

= 0.

Proof. For notational simplicity and since the law of (Z̄i,ε, k̄i,ε, Xi, ki) does not
depend on i we remove the superscript i in the proof. Integrating (3.6) over time with
Z̄ = Z̄ε, Zt = X, b̄t = Kεq

ε
t (Z̄

ε
t ) and bt = Kwt(Xt), taking expectations and using (2.15),
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which also holds with Kε replacing K (see Lemma 4.1 (2)), we obtain

E(|Z̄ε
t − Xt|2)

� C

∫ t

0
(1 + ‖Kεq

ε
s‖L∞ + ‖Kws‖L∞)E(|Z̄ε

s − Xs|2) ds

+ C

∫ t

0
E(|Z̄ε

s − Xs| |Kεq
ε
s(Z̄

ε
s ) − Kws(Xs)|) ds

� C

∫ t

0
(1 + ‖qε

s‖H1 + ‖ws‖H1)E(|Z̄ε
s − Xs|2) ds

+ C

∫ t

0
E(|Z̄ε

s − Xs|(|Kεq
ε
s(Z̄

ε
s ) − Kws(Z̄ε

s )| + |Kws(Z̄ε
s ) − Kws(Xs)|)) ds.

Reasoning exactly as in the derivation of (3.8), we get

E(|Z̄ε
s − Xs| |Kws(Z̄ε

s ) − Kws(Xs)|) � C‖ws‖H1φ

(
E

(
|Z̄ε

s − Xs|2
d(Θ)2

))
.

Moreover,

E(|Z̄ε
s − Xs| |Kεq

ε
s(Z̄

ε
s ) − Kws(Z̄ε

s )|) � d(Θ)‖Kεq
ε
s − Kws‖L∞ .

Defining yε(s) = E(|Z̄ε
s − Xs|2)/d(Θ)2, we deduce that ∀t � T ,

yε(t) � ζε + C

∫ t

0
(1 + ‖qε

s‖H1 + ‖ws‖H1)(yε(s) + φ(yε(s))) ds, (4.13)

where

ζε = C

∫ T

0
‖Kεq

ε
s − Kw̃s‖L∞ ds →ε→0 0, (4.14)

according to Proposition 4.7. Arguing as in the proof of Theorem 3.4, one obtains that
∀t ∈ [0, T ], yε(t) � zε(t), where zε is a non-decreasing solution of the ordinary differential
equation

z′
ε(t) = C

∫ t

0
(1 + ‖qε

s‖H1 + ‖ws‖H1)(zε(s) + φ(zε(s))) ds, zε(0) = ζε.

According to (4.11),∫ zε(T )

ζε

du

u + φ(u)
� C sup

ε

∫ T

0
(1 + ‖qε

s‖H1 + ‖ws‖H1) ds < +∞.

With (4.14) and since ∫
0+

du

u + φ(u)
= +∞,

we deduce that zε(T ) = supt∈[0,T ] zε(t) → 0 as ε tends to zero and conclude that
supt∈[0,T ] yε(t) → 0.
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As φ is non-decreasing, the right-hand side of (4.13) is smaller than

ζε + C

∫ t

0
(1 + ‖qε

s‖H1 + ‖ws‖H1)(zε(s) + φ(zε(s))) ds = zε(t).

Using this bound, we conclude the proof by arguments similar to the ones given at the
end of the proof of Proposition 4.4. �

4.3. The convergence theorem

We now consider a sequence (εn) tending to 0 as n tends to infinity, in such a way that

lim
n→+∞

L2
εn

√
Aεn

n
exp(CH(1 + (‖w0‖1 + ν‖g‖1)(Mεn/2 + Lεn)T )) +

M2
εn

n
= 0. (4.15)

This is possible, even if the convergence of εn to 0 is then very slow. Let us now consider
for each n the system of processes (τ i, Zin, kin), where Zin = Zin,εn and kin = kin,εn

are defined in (4.4). The solutions (Xi, ki)1�i of (E) with initial variable (τ i, Zi
0) and

Brownian motion Bi are defined on the same probability space. We can then state our
main theorem.

Theorem 4.9.

(1) For each i � 1, one has

lim
n→+∞

E
(

sup
t∈[0,T ]

|Zin
t − Xi

t |2 + sup
t∈[0,T ]

|kin
t − ki

t|
)

= 0. (4.16)

In particular, the laws of the n-particle system (τ i, Zin, kin)1�i�n, are P -chaotic,
where P denotes the law of the solution of the nonlinear equation (E).

(2) The approximate velocity field converges to Kw:

lim
n→+∞

E(‖Kεn µ̃n,εn

t (x) − Kwt(x)‖2
L2

t (L∞
x )) = 0. (4.17)

Proof. (1) This assertion is immediate, if we combine Proposition 4.4 and Theo-
rem 4.8.

(2) On the other hand,

E(|Kεn
µ̃n,εn

t (x) − Kwt(x)|2)

� 3E

(∣∣∣∣Kεn µ̃n,εn

t (x) − 1
n

n∑
i=1

1{τ i�t}h(τ i, Zi
0)Kεn(x, Z̄i,εn

t )
∣∣∣∣
2

+
∣∣∣∣ 1
n

n∑
i=1

1{τ i�t}h(τ i, Zi
0)Kεn

(x, Z̄i,εn

t ) − KεnQ̃εn
t (x)

∣∣∣∣
2

+ |KεnQ̃εn
t (x) − Kwt(x)|2

)

� 3
(

(‖w0‖1 + ν‖g‖1)2
(

L2
εn

E
(

sup
s�t

|Zin
s − Z̄i,εn

s |2
)

+
4M2

εn

n

)
+ |Kεnqεn

t (x) − Kwt(x)|2
)

.

We conclude using (4.15), Proposition 4.4 and Proposition 4.7. �
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Remark 4.10. The propagation-of-chaos result is equivalent to the convergence in
probability of the empirical measures to P , considered as probability measures on the
path space (cf. [24]). As a consequence, if the space of finite measures on Θ̄ is endowed
with the weak convergence topology, then for t ∈ [0, T ], the random finite measures

µ̃n,εn

t =
1
n

n∑
i=1

1{τ i�t}h(τ i, Zi
0)δZin

t

converge in probability to wt(x) dx, w being the unique solution of the vortex equation.

5. A numerical example

Let us first exhibit an explicit solution of (2.1) on the unit disk Θ = B(0, 1). For this, we
use the Bessel function

J0(r) =
∑
j�0

(−1)j

(j!)2
( 1
2r)2j which solves

1
r

d
dr

r
d
dr

J0(r) = −J0(r). (5.1)

We work with polar coordinates and set

w(t, r, θ) = e−νtJ0(r), w0(r, θ) = J0(r) and g(t, θ) = e−νtJ ′
0(1).

By (5.1),

∆w(t, r, θ) =
(

1
r

∂

∂r
r

∂

∂r
+

1
r2

∂2

∂θ2

)
w(t, r, θ) = −w(t, r, θ).

Hence the function w(t, r, θ) solves

∂tw = ν∆w in ]0, T ] × B(0, 1), w(0, ·) = w0(·) in B(0, 1)

and
∂nw = g on ]0, T ] × S(0, 1).

In addition, by (5.1), Gw(t, r, θ) = e−νt(J0(1) − J0(r)). Therefore,

Kw(t, r, θ) = ∇⊥Gw(t, r, θ) = −e−νtJ ′
0(r)(− cos(θ), sin(θ)) (5.2)

is orthoradial and Kw · ∇w = 0 in ]0, T ] × B(0, 1), which implies that w solves (2.1).
We choose T = 1 and ν = ln(2) so that the final vorticity and velocity fields are half the

initial ones and discretize the dynamics of the particle system with time step ∆t = T/L

with L = 100. Since J0 is positive on [0, 1] and J ′
0(1) is negative, using (2.1) one obtains

‖w0‖1 = 2π

∫ 1

0
rJ0(r) dr = −2π

∫ 1

0

d
dr

r
d
dr

J0(r) dr = −2πJ ′
0(1),

‖g‖1 = −2πJ ′
0(1)

∫ T

0
e−νs ds = −π

ν
J ′

0(1) and ‖w0‖1 + ν‖g‖1 = 3π|J ′
0(1)|.

We choose n = 30 000 particles.
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Figure 1. (a) Initial and (b) final repartition of norms of positions
(exact, solid line; approximate, histogram).

• At time 0, the positions (Zi
0)0�i�N0 of N0 = n ∗ (‖w0‖1/(‖w0‖1 + ν‖g‖1)) =

20 000 particles with positive weight 3π|J ′
0(1)| are generated independently accord-

ing to the density 1B(0,1)(z)J0(|z|)/(2π|J ′
0(1)|).

• Inductively, for 0 � l � L − 1, the positions (Zi
l∆t)1�i�Nl

of the Nl particles alive
at time l∆t are updated according to the version of the Euler scheme with weak
order of convergence ∆t proposed by Gobet [12]. More precisely, for 1 � i � Nl,

– the velocity

V i
l =

3π|J ′
0(1)|
n

Nl∑
j=1
j �=i

(1{j�N0} − 1{j>N0})K(Zi
l∆t, Z

j
l∆t)

is computed without cutting off K but by removing the contribution of parti-
cle i itself;

– if |Zi
l∆t| � 0.7, we set Zi

(l+1)∆t = zi
l+1 ∗ min(1, 1/|zi

l+1|), where

zi
l+1 = Zi

l∆t +
√

2ν∆tGi
l+1 + V i

l ∆t,

the variables (Gi
l)i�n,l�L being i.i.d. according to the normal law on R

2—the
choice of the parameter 0.7 ensures that the event |zi

l+1| � 1 is very rare;

– if |Zi
l∆t| > 0.7, then a term corresponding to the exact normal reflection of the

diffusion with constant diffusion coefficient
√

2ν and drift coefficient V i
l on the

line tangent to the unit circle at Zi
l∆t/|Zi

l∆t| is added in the above expression
of zi

l+1 (see [12] for details).
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Figure 2. (a) Initial and (b) final velocities (exact and approximate).
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Figure 3. Evolution of error with respect to time step.

Then, at time (l + 1)∆t, the positions (Zi
(l+1)∆t)Nl+1�Nl+1 of Nl+1 − Nl =

[N0(e−νl∆t − e−ν(l+1)∆t)] particles with negative weight 3πJ ′
0(1) are independently

generated uniformly on the unit circle.

Normalized histograms (the total area is equal to 1) in Figure 1 show the initial and
final repartitions of norms of positions of particles. More precisely, since at the final
time, positive and negative particles coexist, we count the numbers of positive and neg-
ative particles with norm in each interval and subtract the latter from the former. The
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histogram is drawn according to the result. The normalized exact density is given by
r → rJ0(r)/|J ′

0(1)|.
In Figure 2, the approximate velocity field computed from the particles is compared

with the exact one given by (5.2) at both the initial and the final times. Lastly, Figure 3
gives the evolution with respect to time of the L1 norm of exact velocity, of the L1 norm
of the velocity error, and of the relative error multiplied by 10. Of course, the L1 norm
of velocity decreases as e−νt. The L1 norm of the error fluctuates around its initial value.
And the relative error increases mainly because the L1 norm of the velocity decreases.
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