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Abstract
We provide a comprehensive study of the function /& = h(g) defined by

© (1 _ ql2j71)(1 _ qIijll)
o (1 _ q12j—5)(1 — q12j—7)

and show that it has many properties that are analogues of corresponding results for Ramanujan’s function
k = k(g) defined by

h=gq

) - qlojfl)(l _ qIOj*Z)(l _ qIOj—X)(l _ qloj,g)
i (1 — g'0-3)(1 — gl0i=4)(1 — g0i=6)(1 — ¢10i-7)"

k=gq
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1. Introduction
The function & = h(q) defined for |g| < 1 by
(1= g2 1)1 = g1y
= (1 — g'2i-5)(1 — ¢'2/7)

h=hq) =q

has been studied only recently. A continued fraction for 4 was derived by Mahadeva
Naika et al. [22], and several modular equations for z have been given in [18, 21, 22,
26]. The signs of the coefficients in the g-series expansions of 4 and its reciprocal,
along with the 2-, 3-, 4-, 6- and 12-dissections, have been studied by Lin [20]. The
objective of this work is to provide a comprehensive and systematic study of the
function s and prove many properties that are new.
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Ramanujan’s function k = k(g) is defined by
=1 (= g"% (1 = )1 = g1 - ¢'%)

o L L= g 3)(1 = g1 = g %9)(1 = g7

We will show that # and k have analogous properties. For example, if r = r(q) is
Ramanujan’s cubic continued fraction defined by

g\

r(g) = : (1.1)
q+q
1+

q* +4*
I+ ——
T +q
1+...

1+

then it will be shown in Corollary 3.4 that
1-hy h?
3 3,2
=h(7—) and Y LR
r@=hre) T a5 T

This is an analogue of the following result of Ramanujan: if R(gq) is the Rogers—
Ramanujan continued fraction defined by

1/5
q
R(g) =
q
1+ 5
q
1+ 3
q
1+
1+---
then
1 - k\2 1+k
L
@) k1+k and () k s

More information about Ramanujan’s result is provided in [7, page 167] and [15,
Theorem 3.3].
As another example, in Theorem 5.4 we will show that the following identity holds:
( h(1 + h?) )
(1 —4h+ h*)(1 —h+ h?)

2n = 2\(27\\(h(1 + B2)(1 = h + K2)(1 — 4h + h?)\"
_ Z{Z()(” ],)(j,)}( T ). a2

n=0 j=0

d
T4

Itis an analogue of the identity [16, Theorem 4.2]

1 ( k(1 — k%) )
A a+k—O)1 -4k -k

i{z()}("“ ey

n=0 j=0
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[3] The level 12 analogue of Ramanujan’s function & 31
In Section 5 we will describe how (1.2) and (1.3) are analogues of the identity

) 3
I )

n=0

where

T U= gh*1 =)'
wqu—ll (1= g2y
This is a reformulation of an identity used by Ramanujan [23, Section 13, (25)] as the
starting point in his study of rapidly converging series for 1/7x.

This work is organized as follows. Notation and background results are set out in
Section 2. The basic properties involving % are proved in Section 3. The logarithmic
derivative z = g(d/dq) log h is introduced in Section 4. The functions % and z are used
to parameterize several functions involving Eisenstein series and the Dedekind eta
function. Differential equations are derived in Section 5. The function z is expressed
as a function of % in terms of the 3 F, hypergeometric function.

2. Definitions and preliminary results

Let 7 be a complex number that satisfies Im(7) > 0 and let ¢ = ¢*™. Let h and z be

defined by
e ) ) © (1- q12j—1)(1 _ q12j—11)
h=hg)=q| |(1-¢)"*" =4 : : 2.1)
H L (=g 9)(1 = ¢"77)
and
d (12 Jjg’
z=272(q) =q—1logh=1- (—) : 2.2)
dq ; Jl-q

where (m/n) denotes the Jacobi symbol. Dedekind’s eta function is defined by
@ =q"* [ Ja-q).
j=1

For any positive integer m, let n,, be defined by

(e8]

M = nmr) = ¢ [ (1 - g™).
=1

We will occasionally use the compact notation for g-infinite products given by

(o]

(31,05 53 @ = [ (1= @)1 = gl) -+ (1 = @),
j=0
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Frequent use will be made of Jacobi’s triple product identity [7, page 10]

Zq/ﬂ 1_[<1+q2/ 1+ - g,

]_—oo

Another form of Jacobi’s trlple product identity is given by [17, page 2305]

(1,174 G o = L+ D (=)' + 17 oo 47" D2, (2.3)

n=1
A special case of Jacobi’s triple product identity is Euler’s identity [7, page 12]

(e8]

[[a-ah= 2 rigore. (2.4)

J=1 j=—eo

The quintuple product identity will be used in the forms [12, (1.9)]

1 -¢/)A =g/ ') - ¢/
Z A= = 1_[( ( i);fz)uq n qtf-')t(—w 2 e

J——OO

and [12, (1.10)]

i GO — 3072y = g P e [ qzj). (2.6)
(1 + g% ' + g%t )

Jj=— j=1
Ramanujan’s Eisenstein series P, Q and R are defined by

SR
1-¢/

ja’
o 0= Q(q)_1+2402

10:1'3(61):1—2421
j=1

and

0 J
R=R(g)=1-504)" lj_qq]
=1

For brevity, we will sometimes write P,, O, and R, for P(¢g™), Q(¢™) and R(g™),
respectively. The derivative of P is given by
dP PP-Q
dq 12 °
see, for example, [7, page 92]. There are similar formulas for the derivatives of Q and
R, but they will not be required.

2.7)

3. The modular function &

In this section we establish some of the basic properties of the function 4. We begin
by proving that eight linear combinations of VA and 1/ VA have simple expressions as
infinite products. The corresponding results for Ramanujan’s function k were given in
[17, Theorem 2.1].
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THeEOREM 3.1. Let w = exp(2mi/3), & = exp(ni/6), a =2 — V3 and b=2+ V3. The
following identities hold:

1 7 12
— %:(%) , (3.1)
\/ﬁ mmnaneny,
1 mugmg \'2
LY ( Rl ) 3.2)
Vh UPUEUST)
1/2 1 = _ .
— +ivVh= ( ) X (1 — i )1 + ig™?), (3.3)
\/ﬁ MneNT, q''"? l:]
— V= (2 )sz ! 1—[(1 i - i, (34
\/ﬁ M6, q""? %
1 mnyng e 4j-1 2 4j-3
—+w%=( ) x —— [ 101 = wg" (1 = "), (3.5)
Vh s, q'/* g
1 2 '71’73'72 172 1 g 743
— tw w/E:( ) x —— [0 = 1 —wg"™?), (3.6
Vh mmsn, q'/2 [1[
1 LR ANCIVRTTS o SR
L= (B YT g T - £ - 1) 3.7)
Vh 7727]37]12 =1
and
1 M \\/2 = , -
—= = V=S ) g2 [ (- gt - £, (3.8)
Vh UBEURD) =1

It will be convenient to break the proof into three parts.

Proor oF (3.1)-(3.4). Replace g with —¢ in Euler’s identity (2.4), and then separate
the terms in the series according to whether the summation index j is even or odd, to
get

1—[(1 - (- q)/)_ Z( g 61 Ny Z( 1)"q 612 +5n+1

n=—oo n=—oo

Applying Jacobi’s triple product identity to each series on the right gives

[ Ja-coh=]]a-g")1-¢"7a-q")
j=1 j=1

+q] Ja-g"Ha-g¥"ha-¢%. 39

J=1
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It is straightforward to verify the infinite product identities
(o)

0 ) (1 _qu)3 » ng
ooy =1 =aD) e 3.10
Lo-cor=] a5 =" (310

and

ﬁ(l _ q12j—1)(1 _ q12j—5)(1 _ q12j—7)(1 _ q12j—11)
j=1

T (=gHd =g | mme
- / ~ = LI (3.11)
H<—wm—w>q a7

Identity (3.1) may be obtained by dividing both sides of (3.9) by
q1/2 l—[(l _ q12j—1)1/2(1 _ q12j—5)1/2(1 _ q12j—7)1/2(1 _ q12j—11)1/2(1 _ q12j)

and using (3.10) and (3.11).
The identities (3.2)—(3.4) may be proved by a similar procedure, starting with the
identities

i (_q)”(3"—1)/2 — i (_l)nq6n2—n _ i (_l)nq6n2+5n+l’

n=—o00 n=—oo n=—o00

(o] (o]

Z - n(3n 1)/2 Z ( l)n 6n%—n +i Z (_l)nq6112+5n+1
n=-—oo n=—oo n=—oo

and

Z ( l)nqn(3n 1)/2 Z ( l)n 6n%-n _l Z (_l)nq6n2+5n+1,

n=—oo n=—oo n=—oo

respectively, and using Jacobi’s triple product identity to convert each series to a
product. We omit the details as they are similar to those given above. O

Proor oF (3.5) anp (3.6). Apply the series rearrangement

Z Cmpn = Z Cm+2n,m—n + Z Cm+2n+1,m—n + Z Cm+2n—1,m-n

m,n

with

_ n 2m>—m+4n>+2n, m+2n
Cmn = (_1) q w
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to get

( i q2m2—mwm)( i q4n2+2n(_w2)n)

m=—oo n=—oo

_ ( i (_l)mq6m2+m)( i (_1)nq12n274n)

m=—oo n=—oo

+ wq( 2 (_1)mq6n12+5m)( 2 (_1)nq12n2+4n)
+ w2q3( i (_l)mq6m2—3m)( i (_l)nq12n2—12n)‘

Now use Jacobi’s triple product identity to convert each series to a product. The result
is

(~qw, —¢**, ¢*: ¢ (@® W, P, % ¢¥)o
= (0,954 "M@ ¢®)eo + 0q(q, 4", 4% 4@ ¢¥)eo + 0, (3.12)

the last term on the right being identically zero. The left-hand side of (3.12) simplifies
to

=1 (L= g)(1 = ¢*)*(1 = ¢)*(1 - ¢*)
1:1[ (1=¢*)*(1 = g*H(1 - ¢')

Identity (3.5) may be obtained by dividing both sides of (3.12) by

x (1 - wg” ™M - ?¢¥3).  (3.13)

q1/2 1—[(1 _ q12j—l)l/2(1 _ q12j—5)l/2(1 _ q12j—7)l/2(1 _ q12j—11)1/2(1 —¢'¥)1 = g%
j=1

and using (3.13). Identity (3.6) may be deduced from (3.5) by replacing w by its

complex conjugate w?. O

ProOF OF (3.7) aND (3.8). Ift = & = €™/ ort = &5 = ¢>™/%, then elementary calculations
show that

1 ifn=0,5 mod 12,

-1 ifn=6,11 mod 12,

1++vV3 ifn=1,4mod 12,

-1F V3 ifn=7,10mod 12,

2+ V3  ifn=2,3mod 12,

27 V3 ifn=8,9mod 12,

where the upper part of the + or ¥ symbol is used if a = £ and the lower part is used if
a = &. Substituting these values into Jacobi’s triple product identity (2.3) and breaking
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the series into terms according to the power of ¢ modulo 12, we get

(égq’é_-llq’q;q)m Z (_l)jq18j2+3j_(1 4 \/3) Z (_l)jq18j2+9j+l

jm=o j==eo
+2+V3) i (—1)/g'87+15743 (3.14)
st
and
€4.69.4:9) = i (=1Yq"s 7 = (1= V3) i (~1)/g" !
=0 j==eo
+2- V3) i (=1)/q!87 1543, (3.15)
famd

Now, replacing ¢ with ¢'? and letting x = —¢~! in (2.5) gives

N ispear . aspeoiete T (L= @' (1 = g1 - ¢'%)
Z D™ g™ ) = 1_[ (1= g'2-1)(1 = ¢'2-11) , (3.16)
j=1

j:—oo

and replacing ¢ with ¢° and letting x = —¢~! in (2.6) gives

) . L ) ) © (1 - q12j—2)(1 _ q12j—10)(1 _ q12j)
1)i(g BP0 _ 187415743y ( _ : (317
Z (=1)(q q ) ql:[ (1- q12]—5)(1 _ q12]—7) ( )

j:—oo

Using (3.16) and (3.17) in (3.14) gives

(qz,qlo’qlz;ql2)oo (qz’qlo,qlz;qIZ)oo
€q,6" 0.4 = -2+ V3)q
(4.9": 9" (4,47 4"

Multiplying both sides by

1/2
0.4, q" 5 ¢

q"%(¢* 4", ¢'*; ¢"*)es

(: (5 9> (4* 4ol 4L )
q'2(q% LG L (g% g1 D)

gives (3.8). In a similar way, using (3.16) and (3.17) in (3.15), we get (3.7). O

The next result shows that certain rational functions of 2 may be expressed as eta
quotients. The analogous results involving Ramanujan’s function k were given in [15,
Theorem 3.5].
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THEOREM 3.2.

1 mg

: (3.18)
h mnn,

(3.19)

(3.20)

g
B,
1 mmm,

h nanini,
77;773
M6
Proor. Identity (3.18) follows by multiplying the first two identities in Theorem 3.1.
Similarly, identities (3.19)—(3.21) may be obtained by multiplying the other conjugate
pairs of identities in Theorem 3.1. Identities (3.22) and (3.23) are follow by squaring
identities (3.1) and (3.2), respectively. O

(3.21)

(3.22)

|
[\
+
=
Il

%+2+h= (3.23)

CoroLLARY 3.3. As q increases from 0 to 1, the function h(q) defined by (2.1) strictly
increases from 0 to 2 — /3.

Proor. For 0 < g < 1, let f(gq) be the function defined by
17 (A =¢)0 =g = g%
gl (=g -g*)(d - q'*)>

fl@) =

By simple algebra,

® 1
flg = ZI 1:1[ 1+ qj)Z(l + qj + q2j)(1 + q4j + qu)(l + q6j)2.

It follows that f is strictly decreasing on the interval 0 < g < 1 and
lim f(g) = +o0, lim f(q) =0.
q—0* q=1"

By (3.21),

1
—— —4+h(g) = )
) +h(g) = f(q)

On solving the quadratic equation and using the fact that 4(0) = O to determine the

sign, we find that
h(g) = (4 + f(q) - (4 + f(@) - 4).
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It is easy to check that as y increases from 0 to +oco, the function

Ha+y- J@+y2-4)

strictly decreases from 2 — V3 to 0. The result follows. O

The results of Theorem 3.2 can be used to derive the quadratic transformation
formula for Ramanujan’s cubic continued fraction stated in the introduction:

CoroLLARY 3.4. Let r(q) be Ramanujan’s cubic continued fraction defined by (1.1).

Then , 5
1-nh h
3 3, 2
A O
r@=hre) ad T = aE T
and hence
2y _
r@r(q”) = wER
Proor. It is well known (see, for example, [6, page 346, (1.1)]) that
3
mn,
ng) = —3.
mi;

Hence, by the results in Theorem 3.2, we have

1

—=2+4+h 3.9
hl_hz_h _7717]6_3()
+n2) T v g M
(—+h) LE
h
and
h? B 1 _’7%’7?2_ 3,2
AP0+ 1) (1 Ty @) .
(2 en)

Several modular equations for A appear in the literature, and they may be
summarized by the following table:

Degree Mathematicians References
3,5 Mahadeva Naika, Dharmendra and Shivashankara [22]
2,7,9,11,13 Vasuki, Kahtan, Sharath and Sathish Kumar [26]
3/2,5/2,7/2 Mahadeva Naika, Chandankumar and Bairy [21]
6, 10, 14, 18 Dharmendra, Rajesh Kanna and Jagadeesh [18]

The results in Theorem 3.2 can be used to deduce an algebraic relation between
h(g) and h(—q), and to provide simple proofs of modular equations of degrees 2, 3, 4

and 6.
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THEOREM 3.5. Let h = h(q) be defined by (2.1).

(1) IfH = h(—q) then (H — 1)’h + (1 + B*)H = 0.

(2) IfH = h(g*) then (h + H)> = H(1 + h?).

(3) IfH = h(q®) then (H — h)> = H(H — 1)(1 + h)(1 — 4h + h?).

4) IfH = h(g*) then (H — h)* = H1 — H + H>)(1 + h*)(1 — 4h + h?).

(5) IfH = h(q®), then (H — h)® = H(1 — 4h + h*)b(h, H), where

b(h,H) = h*H* + h*H — i*H? + 6W*°H® - 21n*H* - 2h*H — 4’ H?

—3W*H - 3h*H* + 12h*H* + 6hH — 2hH> — 2h — 4hH*
-H*+H + 1.

Proor. We will give a detailed proof of (2) and then outline how to prove the other

results. By the identities in Theorem 3.2,

( — )2 - ﬁ and I _ B
1+ hZ 77;772 (1 - h)2(1 + h2) 172172 ’
It follows that
H( 1-H )2 _ h?
1+ H? (1 -h)2(1+h%’

Clearing factions and factorizing the resulting polynomial, we get
(WH? — H + 1+ 2hH — W*H)(H* — H + 2hH + i* - *H) = 0.

Noting that # = H = 0 when g = 0, it follows that the first factor does not vanish
when ¢ = 0. It follows that H> — H + 2hH + h> — h®H is zero in a neighborhood of
g = 0 and hence is identically zero in the domain |g| < 1 by analytic continuation. On
rearranging, we obtain (2).

The identities in (1), (3), (4) and (5) can be proved by the same method, by
observing that

2 3.9
a- h)il(l ) :]723:771?,2 an even function of ¢;
h(l = h+ ) ng K1 = h+ h?) s
A+ (1—4h+ 1P n_glg and A+ 123 —dh+ 1) TI_§
h(1 = h*(1 + h?)* 2
(1+h)2(1 = h+h2)(1 —4h + h2)* = 77_12 and
HA(1= b+ 1) _ s,
A+ —h+ (- dh+ D) P
and
h(1 = h>(+ (L =h+ 1) 7 »
(1 + h2)2(1 — 4h + h2)° '
h6(1 —h+ h2)2 B T]_%;‘

(1= O+ (L + W3 (1 —dh+h2) 2+
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4. Weight-two modular forms

In this section we study the weight-two modular form z. We begin by establishing
its representation as an infinite product. It is an analogue of [15, Theorem 3.1].

TueoreM 4.1. The function z defined by (2.2) has a representation as an infinite product
given by
2.2
mmnsnytle
i=—""
M2
Proor. By the definition (2.2), the identity we are required to prove is

(o)

I_Z(E) jg  mmmm @n
=1 / l_q] 77%2

This is a special case of the identity

_0'(u —v)o(u+v)

o2(u)o?(v) 4.2)

pu) —p(v) =

where ¢ is the Weierstrass elliptic function and o is the associated sigma function. An
explicit form of identity (4.2) is given by, for example, [14, Lemma 3.7],

(1_0)2(1_17)2 S jqj j -j j —j
(0 —abya—b) Z 1_qj(a +a’/-b -b7)

_ ﬁ (1 —abq’)(1 —ab'¢/)(1 = a”'bg/)(1 —a"'b"'¢/)(1 - ¢')*
=1

(1 —agi2(1 — bgi 2(1 — a~'qi2(1 — b-'gi)? , (4.3)

which holds for |g| < |al, |b| < |g|~". Identity (4.1) may be obtained by taking a =
exp(ir/6) and b = exp(57i/6) in (4.3) and simplifying. The full details are given in
[2, 14]. O

The next result provides parameterizations of various eta functions in terms of z and
h. It is an analogue of [15, Theorem 3.6].

Tueorem 4.2. The following identities hold:
h(1 — 4h + h*)5

24 _ .6
T = T A T R —h
h*(1 + h)®
24 _ .06
TR0 = ST e
3 2\6
N W1+ h?)

(1= h+ 1251+ hy*(1 — 4h + h2)’
K (1 — b+ h2)°
(1+h2)35(1 = hy*(1 — 4h + h2)>°

i) =2°

https://doi.org/10.1017/51446788715000531 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788715000531

[13] The level 12 analogue of Ramanujan’s function & 41

he(1 — h)®
(1+h2(1 = h+ k)1 - dh+ )Y
h12
(1 +R)*(1 +h2)3(1 — h+ h2)2(1 — 4h + h2)5°

7724(67-) = Z6

7 (121) = 2°

Proor. These are immediate from the results of Theorems 3.2 and 4.1. |

The results in the next theorem provide parameterizations of various series in terms
of z and A, along with their representations as eta quotients. The first result is in fact
equivalent to Theorem 4.1.

TueoREM 4.3. The following identities hold:

O (12Y . Mg
S
=1 k=1 UP)
i i(l_)jqjk _mnangne - zh
i\ k 7 1—dh+h?
o (=3\(—4\. x T2 zh
DI L
e Jj Nk 77% 1+h?
5 S 2
=R n L=h+hn®

Proor. The first equality in each identity is given in [14, Theorem 4.1]. The second
equality in each identity follows from the results in Theorem 4.2. O

We now show that P(g%), where ¢ | 12, can be parameterized in terms of z, 4 and the
derivative dz/dh. We begin with the following theorem.

TueEOREM 4.4. The following identities hold:

dz 1
b = 52(P@ + 3P(@") + 8P(") + 12P(¢°) ~ 24P(g"),
ﬂ = i(P( ) — 9P(q%) — 4P(¢*) + 36P(q'2))
1+ " 240 q q 7).
1——]/12Z = i(4p(q2) _ 16P(q4) _ 12P(q6) " 48P(q12))
1-h+h? 24 ,
1 - h? 1
T a2 = 22 (73P@ +4P() + 3P(") — 4P(g") — 12P(q") + 36P(¢"*)),
1 - h? 1
1-2h+m2° " ﬁ(_P(CD +6P(¢%) +9P(¢*) — 8P(q") — 54P(¢°) + T2P(q'%)),
1 - h? 1
TRt = 5 OP@ — 14P(g7) = 3P(q)) + 8P(g") + 6P(¢°) + 24P(g"?)).
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Proor. By the chain rule, we have

dz dz/ d

& L ogh.
dn = Yaq | 9aq %

On applying (2.2) and Theorem 4.1, this becomes

dz ([ dz\ (1 d d (Mg
g = (12g) % (2) = g toee = agg e ),
an ~\Tag) " \2) = 9aq °8 = a8 p]

On computing the logarithmic derivative on the right-hand side, we obtain the first
result in the theorem.

To prove the remaining results, take the logarithmic derivative (with respect to g) of
each of (3.19)—(3.23), respectively, and apply (2.2) and Theorem 4.1. O

The next result gives parameterizations of P(q%), for €| 12, in terms of z, h and
dz/dh. It is an analogue of [15, Theorem 5.3].

Tueorem 4.5. The following identity, expressed as a matrix product, holds:

dz
6 2 3 -6 2 0 h=
L3 1-nm2
3 2 0 0 - —= -
P(q) 2 2 1+ hZZ
2
P(q”) ) 5 2 0 2 1 - h?
Pg)) | _ 303 3 T=n+m2°
P(ghH | 35 3 3 1 0 1=K
2 4 2 4 2 —z
P(¢®) s o Lo |14+ h?
— — I _ 2
OV T T T | B Sl =2
[ 1 =2h +2h
2 4 6 12 6 /| 1= |
14+ 2h+h2
Proor. This is immediate from Theorem 4.4. 0O

The Eisenstein series Q(¢") and R(¢’) can be parameterized in terms of z and /. The
results may be stated as:

THEOREM 4.6. For each € € {1,2,3,4,6,12}, there are polynomials s¢(h) and t;(h) of
degrees 16 and 24, respectively, such that

Z2

(h = 12(h + 12(h2 + 1X(h2 = b+ 1)X(h2 — 4h + 1)?

0(¢" = x s(h)

and

Z3

(h=1P3h+ 13(h2 + 13(h2 — h+ 1)3(i2 — dh + 1)3

R(¢) = x t;(h).
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Proor. It is known, for example, [13, (3.19) and Lemma 4.5], that
16

0(q) - 0(g») = 2402

m
and
0(q) +40(q°) = 52P(q*) — P(q))*.
Hence,
nlo
Q(q) = QP(q*) - P(q))* + 192]7—28
1
and

16
0") = CP() - P@)) - 482

1
The claimed results for Q(g%) follow by replacing ¢ with an appropriate power of g in
either of the last two identities, and making use of Theorems 4.2 and 4.5. We omit the
computational details.
On using the results for Q(¢’) and the formulas for 7, in Theorem 4.2, we find by
direct calculation, that for each £ € {1, 2,3, 4,6, 12},

0*(¢q") - 17287

- X (h=1)°(h+ 1)O(h* + 1°(h* = h+ 1)°(h* — 4h + 1)°

Z
is the square of a 24th degree polynomial in 4. On taking square roots and using the
well-known identity, for example, [7, page 92],

Q’(¢") - R¥(¢") = 1728n;",
we obtain parameterizations for R(g") in terms of z and A. The fact that ¢, turns out to
be a polynomial follows by direct calculation for each value of ¢. O

We end this section by relating the functions # and z to two functions « and p
studied by Alaca et al. [1]. In that work it was shown how many identities involving
theta functions, Eisenstein series and the eta function can be verified by parameterizing
in terms of x and p. The corresponding parameterizations in terms of 4 and z often
involve simpler algebraic expressions.

THEOREM 4.7. Let Ramanujan’s theta function ¢ = ¢(q) be defined by

¢lq) = i q"

o
and let k = k(q) and p = p(q) be defined by
30,3 2 20,3
c=xtq)= £ and = pl = LS ED @4)
Then
(1-h) 12 2h
- (ZX A+ (L + k)1 —h+ k)1 —4h+ h2)) and p =G a
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Proor. By Jacobi’s triple product identity and some infinite product manipulations, we
have, for example, [27, page 26],

S

n
elq) = 2—22
U
Hence, on applying Theorem 4.2 we get
') = o (1= h)(1 +hy’
P IEE A+ - h+ A1 - 4h + 12)
and
20 5
n 1-h’1+h
¢'(q") = 868 =zX 2 2 N
i, A+r)HA =h+h?)( —-4h+ h?)
On using these in (4.4) we obtain the required results after simplification. O

5. Differential equations

In this section we define modular functions x4, Xp, Xc, ya, ¥g, Yc and weight-two
modular forms z4, z and z¢, and find a third-order differential equation that is satisfied
by z4 with respect to y4,. We also provide some expressions for z and z4 in terms
of hypergeometric functions involving & and y,4, respectively. All of the properties
presented below are analogues of [16, Section 3].

Let x4, xg and x¢ be defined by

213112 4 mni2 4 412 2
Xp=\——), Xp= , Xc= . 5.1
n1M476 n3n4 mns

By Theorem 4.2, the following representations in terms of / hold:

h(l + h?)
X4 = s
AT A —4h+ 121 - h+ h?)
h(l — 4h + h?)
XB = 5
(1 —h+h)(1 +h?)
h(1 — h + h?)
Xc

T A+ - dh+ R
It follows that x4, xg and x¢ are algebraically related, and in fact

XB Xc XA Xc

(1+xp)?  (1+4x0)? (1-3x4)2 (1 —4xc)?

and
XA XB

A +3x.2  (=xp?
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The above relations prompt us to define y,, yp and yc by

XB Xc
= = , 5.2
YA a2~ (1 +4x0)p (5:2)
XA Xc
= = , 5.3
B =32 (1—4xo) (5-3)
XA XB
= = ) 5.4
YOS U732~ (1= xp) S
In terms of A, we have
h(1+ W1 —h+ (1 - 4h+ W2
o = OB PN 3 (5.5)
(1-h?)
h(1+ B3 = h+ )1 - 4h + Kh?)
VB = e L (5.6)
(1 — 8h + 6h% — 8h3 + h*)
h(1 + WY1 = h+ (A - 4h+ KW?)
Ye= 2 3L A2 (.7)
(1 =2h + 6h? — 2R3 + h*)
From (5.2)—-(5.4),
1 1 1 1 1 1
———=16, —-—=12 and —-—=4. (5.8)
YA YB Yc VB ya Yc
Let z4, zp and z¢ be defined by
d d d
za=q—logxs, zp=q—logxp, zc=q—logxc. 5.9)
dq dq dq
By direct calculation using (5.1),
24 = £(=Py + 2Py + 3P3 — 4P4 — 6P + 12Pyy),
2 = ¢(P1 —3P3 —4P4 + 12P1p),
ic = é(_Pl - 3P3 + 4P4 + 12P12).
On applying Theorem 4.5, it follows that
(1-nry
= , 5.10
AT A —h+ D1 —4h+ h2) (5.10)
1 -h»)(1 —8h+6h*—8Kh +h*
g = 2N ) (5.11)

_Z(l + 821 = h+h)(1 —4h+ h2)°
(1 = 1> = 2h + 6h> = 2K + h*)

c=1z2 . (5.12)
(A +hm)(1 —h+h)(A -4k + h?)

On combining (5.5)—(5.7) with (5.10)—(5.12) we immediately deduce that

2 _ 12 1
ZAyA —ZByB —ZCyC

_ R2(1 = h?)
YA+ )P = b+ )AL = dh+ W)

The next result provides differentiation formulas for y,4, yz and yc.
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TueorEM 5.1. The following formulas hold:

d
q@ logya = za 4/1 — 20ya + 642,

d 2
q% logygs = zp \/1 +28yp + 192y5,

d
T4q log yc = zc /1 = 8yc — 48y%.

Proor. From (5.5)—(5.7) and (5.8), we may deduce that

ya (1 —2h + 6 — 213 + h*)?

1 -4y, =22 = 5.13

e (1= ) o1
and

ya (1 —8h+6h>—8h* + h*)?

1-16y, == = . 5.14

S (- my o1

On the other hand, by (2.2) and (5.5) and a calculation using the chain rule, we find
that

ilo —(ilo h)xhilo (h(1+h2)(1—h+h2)(1—4h+h2))
qdq gYA = qdq g dh g (1 _h2)4
1 —2h + 6h* =213 + h*)(1 — 8h + 6K — 8h® + h*
_ L * it * ) (5.15)

(1 + B2 (1 = k) (1 = h+ h2)(1 — 4h + h2)

On using (5.10), (5.13) and (5.14) in (5.15) we obtain the first result. The other two
results may be proved in a similar way. O

The next result shows that y4 and z4 have beautiful representations in terms of eta
products. The other functions yg, y¢, zg and z¢ do not have simple expressions as eta
products.

THEOREM 5.2. Let y4 and z4 be defined by (5.2) and (5.9); or equivalently, be given by
(5.5) and (5.10). The following identities hold:

6,,6,.6.,6 10,,10

ninsnn n, 1
ya = A37ariz 132 41212 and A = 3 444 24 46 e (516)
M1 M3,

Proor. Start with the parameterizations for y4 and z, in terms of /& and z given by (5.5)
and (5.10), then apply Theorems 3.2 and 4.1 to obtain the representations in terms of
eta functions. m]

From now on we shall focus attention on the functions y4 and z4. Similar results
can be obtained for the other functions yg, y¢, zp and z¢ but the results are more
complicated, so we will not record them.
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The next goal will be to show that z4 satisfies a third-order linear differential
equation with respect to y4. Let D be the differential operator defined by
1 d

D=—qg—.
ZAqdq

5.17)

By Theorem 5.1 we also have

[ d
DZyA 1—20yA+64yia

THEOREM 5.3. Let ya and z4 be defined by (5.2) and (5.9). Then z, satisfies the second-
order nonlinear differential equation with respect to y, given by

1
D?2s = 5—(Dz4)* = 4zaya(1 = 8ya). (5.18)
224
Moreover, the following third-order linear differential equation holds:
D’z4 — 8ya(1 — 8y4)Dza = 4z4(1 — 16y4)Dya. (5.19)
Proor. By a direct calculation using the eta product for z4 in (5.16),
d 1
qd— ]OgZA = 8(_P1 + 5P2 - 3P3 - 4P4 + ]5P6 - 12P12). (520)
q

Applying the operator g(d/dq) and using the differentiation formula (2.7) gives

d( d 1
q@(q% long) = ﬁ(—P{ +10P; — 9P; — 16P; + 90P; — 144P3,)

1
+ ﬁ(Q] — 10Q2 + 9Q3 + 16Q4 — 90Q6 + 144Q12) (521)
It is known, for example, [13, Lemma 4.5], that
9030 + Q¢ = 3(3P3; — Py)*.
Using this to eliminate Qy, ..., O, from (5.21), and then simplifying, we obtain
i( LN |- L Py = PYOPy — Py = 2 (Ps - P2)OPs - Py)
qdqqdq gZA—483 1 3 1 2q e 2 6 2
1
+ §(P12 = P4)(OP 12 — Py). (5.22)
Hence, by (5.17), (5.20) and (5.22),
1
2 x (D2 = 5 (D))
224
—1(P P)OP; — Py) 5(P P>)(OP P)+1(P P4)(OP Py)
RPTIGE 1 3 1= 57 2 6 2)+ 30 4 12 4

1
~ =3 (~P1 + 5Py = 3P3 ~ 4Py + 15P; - 12Pp)°.
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By Theorem 4.5, the right-hand side can be expressed in terms of z, & and hdz/dh.
On simplification, all of the terms that involve hdz/dh cancel. On comparing the
remaining terms in the simplified result with the parameterizations in (5.5) and (5.10),
we complete the proof of (5.18).

Now we will prove (5.19). Applying the differential operator D to both sides of
(5.18) and using the basic rules of calculus, we get

%{<DZA>2

D3ZA +
224

- - D2ZA} — 4ya(1 = 8yx)Dzs + 424(1 — 16y,)Dya.
A

The differential equation (5.18) may be used to simplify the term in braces, and identity
(5.19) follows on further simplification. O

TueEOREM 5.4. The following series expansion holds:
2n—2j\(2]
=S C
n=0 j=0 J
Proor. The differential equation (5.19) may be written in the form
d*z d*z
YAl =4y )(1 = 16y == + 3ya(l = 30ya + 128y) —=
dyA dyA

d
+(1— 68y, +448y2) A _ 4(1 — 16y4)z4 = 0
dya

On writing

(e8]

Za = Z Hn)yy,

n=0

we deduce that the coefficients #(n) satisfy the recurrence relation
(n+ D3+ 1) =2Qn + D)(5n® + 5n + 2)t(n) — 64n’t(n — 1)

and initial conditions

0)=1, t(1)=4

The method of creative telescoping may be used to show that sequence whose nth term

_n() ) ( j)( ])
j (.j n j j

satisfies the same recurrence relation and initial conditions. It follows that

=360

This completes the proof. O
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The result of Theorem 5.4 was first given, with —¢ in place of ¢, in [9, (4.10),
(4.13)]. The numbers #(n) are called the Domb numbers. They have numerous
applications and have been extensively studied; see, for example, [3, 5, 8, 10, 11,
19, 24].

By Theorem 5.2, together with the elementary identity

= LT =gy
- =[] —7—. (5.23)
l:[ ! H (=1 —g%)
we have o s
m,n mn
—ya(-q) = =2 and  za(-q) = 5.
nn MM

The functions —ys(—¢g) and z4(—g) were denoted by X and Z, respectively, in [9,
Section 4].

Identity (1.2) in the introduction is the restatement of Theorem 5.4 in which (5.2)
and (5.9) are used to express y4 and z,4 in terms of /4 and z.

It is also instructive to compare the result of Theorem 5.4 with the identity

2K \? 111
(55) =3Pa(3:53 351 11480 - ) (5.24)

where k and K denote the modulus' and complete elliptic integral of the first
kind, respectively. The standard results from elliptic functions, for example, [7,
pages 119, 120] or [27, (3.69), (3.79)], can be used to rewrite (5.24) in the form given
by

d w < (2n) "
qd—q’log(1 - 16w): Z(n) w(l = 16w)) (5.25)

n=0

where w = k%/16, which is an analogue of (1.2) and (1.3). Identity (5.24) may also be
expressed in the form

a2\ iy 1
so(q)—Z(n)( . X<p4(q)) . (5.26)

n=0 m
In a similar way, the result of Theorem 5.4 may be presented in the form

20 1\ (2n = 27\ (2)\\ 1 "
P @) = Z{Z (J) ( n=j )(J)}( e ¢2(q)¢2(q3)) ’

22
n=0 = j=0 s

which is clearly an analogue of (5.26).

The next result gives two expressions for z in terms of A in terms of the
hypergeometric function 3F5. It also gives a cubic hypergeometric transformation
formula.

'The modulus & in (5.24) is different from Ramanujan’s function k = k(g) defined in the introduction.
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THEOREM 5.5. Let u and v be defined by

h(1+h2) - v_(l—h+h2)(1—4h+h2)
(1 -hy* B (1 + h)*

Then

_d+ W) = h+ W2)(1 = 4h + h?)

(1 = h)(1 + h)S 3F2(§’
L+ - h+ k(1 - 4h+ k) F 1
N (1= h)3(1 +h) 2(5

Proor. By the formulas in [7, Ch. 5] or [13],

11 160801
S4PG - P@) =@ = [R5 51 %)) -
2

Applying Clausen’s formula [4, page 116, Example 13 and page 125 (3.13)]
2F12a,2bsa+ b + %;h) =3F>(2a,2b,a + b;2a +2b,a + b+ L;4h(1 - h)), (5.27)

we get!
111 6418nLe 16nm,°
—4P4—P —F( L1 ‘4(1— 14)). 5.8
@ = P@) =P 551 5 (5.28)

The results of Theorems 4.2 and 4.5 can now be used to express the left-hand side
and the eta functions on the right-hand side in terms of z and 4. The first result in
the theorem follows by a straightforward, but tedious, calculation. The second result
in the theorem can be obtained in a similar way be first replacing g with ¢> in (5.28)
and then using Theorems 4.2 and 4.5 to obtain the required expressions in terms of z
and A. O

REmARK 5.6. Identity (5.28) is equivalent to each of the identities (5.24), (5.25) and
(5.26).

The next result gives two expressions for z4 in terms of y4 in terms of the
hypergeometric function 3, along with a quadratic transformation formula.

THEOREM 5.7. Let ya and z4 be defined by (5.2) and (5.9), or equivalently by the eta
products in Theorem 5.2. Then

1 112 108y,
ST 2(3’5’5;1’1;(1 _ 16yA)3)
1 112 108
T 14y, 2(3’5’5’1’ ’(1—4yA)3)'

By a result of Jacobi, it is known that 1 — (lGr]fI]i(’)/n = (1]”’774)/7724 but this will not be required.
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Proor. By the identities in [13],

1 12 2712 \\2
Lar) - gy = (o (5. 20 225 ))
2( (q7) — P(q@)) = (2F 33 e

Clausen’s formula (5.27) may be applied to the right-hand side to give

1 1 1 2 108 12..12
5(3P(q3)—P(q)):3F2( 1,1 LI ) (5.29)

372737 (g2 272y

Replace g with —¢g in (5.29) and make use of identity (5.23) and its logarithmic
derivative
P(~q) = =P(q) + 6P(¢*) — 4P(¢")

to get
1
E(Pl —6P2—3P3 +4P4+ 18P6— 12P]2)
—1087']12 36,,12..12..36.,12

_F(112'11‘ 1772773’74’76’712)
=302\ 5> ~”>7> 1,1, .
3’2’3 (ngénézn%%—27n%2n}tzngﬁ)2

(5.30)

By Theorem 4.5, together with (5.10) and (5.14),

1
E(Pl - 6P, — 3P3 + 4P, + 18P6 - 12P12)

y (1 — 8h + 6% — 813 + h*)?
(1= k(A + )1 = h+ 21 - 4h + h?)
=24 x (1 = 16y,). (5.31)

=Z

On the other hand, by Theorem 4.2 together with (5.10) and (5.14) we have

1080t

03 m; = 2700, )’
—108h(1 + K*)(1 — h + h*)(1 — 4h + K*)(1 — h?)3
(1 — 8h + 6h% — 8h3 + h*)0
_ —108y4
T (1—16y,)%
On substituting (5.31) and (5.32) into (5.30), we obtain the first result.

The second result can be obtained in a similar way, by replacing ¢ with ¢* in (5.29)
to get

(5.32)

1 112 108n,%n¢*
= 3P 6 _P 2 = F (_’ _’_; 3 ;#)’
5 BP@") = P(g) =3F2 3. 5. 3 G + 2727

and then using Theorems 4.2 and 4.5, together with (5.10) and (5.13), to express each
side in terms of y4 and z4. We omit the details of the calculation. |
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CoROLLARY 5.8 [25]. In a neighborhood of y = 0, the following identities hold:

Z_:{Z( ) (2n 2])(2]])}y T 1-16y 116 3F2(; ; i L 1;%)

1 112 108y?
= 3F2(_’ _,_’1’17 y_)
1 -4y 3°2°3 (1 —4y)3
Proor. The is immediate from Theorems 5.4 and 5.7. |
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