COTORSION THEORIES AND COLOCALIZATION

R. J. MCMASTER

Introduction. Let R be an associative ring with unit element. Mod-R and R-Mod will denote the categories of unitary right and left R-modules, respectively, and all modules are assumed to be in Mod-R unless otherwise specified. For all $M, N \in Mod-R$, $Hom_R(M, N)$ will usually be abbreviated as [M, N]. For the definitions of basic terms, and an exposition on torsion theories in Mod-R, the reader is referred to Lambek [6]. Jans [5] has called a class of modules which is closed under submodules, direct products, homomorphic images, group extensions, and isomorphic images a TTF (torsion-torsionfree) class. Since such a class \mathcal{T} is not closed under injective hulls, while a torsionfree class is closed under injective hulls, we find this terminology misleading and shall instead (following a suggestion by J. Golan) call \mathcal{T} a Jansian class from now on. (A torsion class \mathcal{T} which is closed under injective hulls is called *stable*, and hence a stable Jansian class is a true torsion-torsionfree class.)

If $(\mathcal{T}, \mathcal{F})$ is a torsion theory then modules in \mathcal{T} are called *torsion*, and modules in \mathcal{F} are called *torsionfree*. Each $M \in \text{Mod-}R$ has a unique maximal torsion submodule, denoted by $\mathcal{T}(M)$. (It is the unique submodule $X \subseteq M$ such that X is torsion and M/X is torsionfree.) A submodule D of M is called *dense* if M/D is torsion. Let $\mathcal{D}_{\mathcal{F}}$ denote the set of all dense right ideals of R. $\mathcal{D}_{\mathcal{F}}$ forms an *idempotent* (or *Gabriel*) *filter*, i.e. it satisfies the following conditions:

(0) $R \in \mathscr{D}_{\mathscr{T}}$,

(1) $D \in \mathscr{D}_{\mathscr{T}}$ and $D \subseteq K \Rightarrow K \in \mathscr{D}_{\mathscr{T}}$,

(2) $D \in \mathscr{D}_{\mathscr{T}}$ and $r \in R \Rightarrow (r : D) \in \mathscr{D}_{\mathscr{T}}$, where $(r : D) = \{x \in R | rx \in D\}$, (3) $D \in \mathscr{D}_{\mathscr{T}}$ and $(d : K) \in \mathscr{D}_{\mathscr{T}}$ for all $d \in D \Rightarrow D \cap K \in \mathscr{D}_{\mathscr{T}}$.

Gabriel [4] has shown that there is a one-to-one correspondence between torsion classes in Mod-*R* and idempotent filters of right ideals of *R*: to a torsion class \mathscr{T} associate the idempotent filter $\mathscr{D}_{\mathscr{T}}$, and to an idempotent filter \mathscr{D} associate the torsion class $\mathscr{T}_{\mathscr{D}} = \{M \in \text{Mod-}R | (m:0) \in \mathscr{D} \text{ for all } m \in M\}$.

Jans [5] showed that a torsion class \mathscr{T} is a Jansian class if and only if $\mathscr{D}_{\mathscr{F}}$ contains a unique minimal right ideal T, in which case T is an idempotent two-sided ideal, and $T = \mathscr{C}(R)$ where $(\mathscr{C}, \mathscr{T})$ is the pre-torsion theory with \mathscr{T} as the pre-torsionfree class. Thus there is a one-to-one correspondence between Jansian classes and idempotent ideals of R, with the inverse correspondence given by $T \to \{M \in \text{Mod-}R | MT = 0\}$.

Given an injective module I_R , one can form the largest torsion theory for which I is torsionfree (where $(\mathcal{T}, \mathcal{F}) \subseteq (\mathcal{T}', \mathcal{F}')$ if $\mathcal{T} \subseteq \mathcal{T}'$), and in fact

Received December 4, 1973.

every torsion theory is of this form for some injective I. For a given torsion theory $(\mathcal{T}, \mathcal{F})$, a module M is called *divisible* (or \mathcal{T} -injective) if $I(M)/M \in \mathcal{F}$, where I(M) denotes the injective hull of M. Every module M has a *divisible* hull D(M) defined by $D(M)/M = \mathcal{T}(I(M)/M)$. One also defines the quotient module Q(M) of M by $Q(M) = D(M/\mathcal{T}(M))$. Q(M) is also called the *localization* of M at I, where I is an injective module such that $(\mathcal{T}, \mathcal{F})$ is the largest torsion theory for which I is torsionfree.

1. Cotorsion theories. Let P_R be a projective module, let E = [P, P], and let $P^* = [P, R]$. As mentioned above, every torsion theory can be thought of as the largest torsion theory for which some injective module I_R is torsionfree, where a module M is torsion if and only if [M, I] = 0. We dualize this in the following definitions:

Definition 1.1. (a) A module M is cotorsion if [P, M] = 0.

(b) A module M is cotorsionfree if [M, X] = 0 for all X cotorsion.

(c) If \mathscr{T}^* denotes the class of cotorsion modules, and \mathscr{F}^* the class of cotorsionfree modules, then $(\mathscr{F}^*, \mathscr{T}^*)$ is a *cotorsion theory*.

(d) $\epsilon(M)$ is the evaluation mapping $[P, M] \otimes_E P \to M$, i.e., $\epsilon(M) (\sum g_i \otimes p_i) = \sum g_i(p_i)$.

(e) $T = \epsilon(R)(P^* \otimes_E P)$, the trace ideal of P.

The following lemma appears in [12, Proposition 1.2], and is easily proved.

LEMMA 1.2. $M \in Mod-R$ is cotorsion if and only if MT = 0.

The equivalence of (2) and (5) in the next proposition also has been noted by Sandomierski [12, Proposition 1.2].

PROPOSITION 1.3. For all $M \in Mod-R$, the following conditions are equivalent:

(1) M is cotorsionfree.

(2) MT = M.

(3) $M \otimes_{\mathbb{R}} R/T = 0.$

(4) $\epsilon(M)$ is an epimorphism.

(5) M is an epimorphic image of a direct sum of copies of P.

Proof. (1) \Leftrightarrow (2) M/MT is cotorsion since (M/MT)T = 0, hence the projection mapping $M \to M/MT = 0$. Conversely, for all X cotorsion, and all $\varphi \in [M, X], \varphi(M) = \varphi(MT) = \varphi(M)T \subseteq XT = 0$.

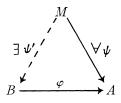
(2) \Leftrightarrow (3) $M/MT \cong M \otimes_{R} R/T$.

(2) \Leftrightarrow (4) Im $\epsilon(M) = MT$.

 $(4) \Leftrightarrow (5)$ This is clear.

Since $T^2 = T$ and PT = P, $MT^2 = MT$ and $([P, M] \otimes_E P)T = [P, M] \otimes_E P$ for any M in Mod-R, and thus MT and $[P, M] \otimes_E P$ are cotorsionfree. The class \mathscr{T}^* of cotorsion modules is closed under submodules, direct products, homomorphic images, group extensions, and isomorphic images, i.e. it is a Jansian class. The class \mathscr{F}^* of cotorsionfree modules is closed under homomorphic images, direct sums, group extensions, isomorphic images, and by [11, Proposition 1] minimal epimorphisms (and hence projective covers if they exist).

Definition 1.4. A module M is codivisible if for any epimorphism $\varphi: B \to A$ such that Ker φ is cotorsion, any homomorphism $M \to A$ can be extended to a homomorphism $M \to B$, i.e.,



PROPOSITION 1.5. For all $M \in Mod-R$, $[P, M] \otimes_E P$ is codivisible.

Proof. We prove that for any $H \in \text{Mod}-E$, $H \otimes_E P$ is codivisible. Let $\varphi: B \to A$ be any epimorphism such that Ker φ is cotorsion. Let ψ be any homomorphism: $H \otimes_E P \to A$. Define $\psi_h: P \to A$ by $\psi_h(p) = \psi(h \otimes p)$ for all $h \in H, p \in P$. Then since P is projective there exists $\psi'_h: P \to B$ such that $\varphi \psi_h' = \psi_h$. Define $\alpha: H \times_E P \to B$ by $\alpha((h, p)) = \psi_h'(p)$. Since P is projective and $[P, \text{Ker } \varphi] = 0, [P, B] \cong [P, A]$, and it is now easily shown that α is bilinear. Therefore there exists $\psi': H \otimes_E P \to B$ such that

$$\varphi \psi'(\sum h_i \otimes p_i) = \varphi(\sum \psi_{h_i}'(p_i)) = \sum \psi_{h_i}(p_i) = \sum \psi(h_i \otimes p_i) = \psi(\sum h_i \otimes p_i)$$

for all $\sum h_i \otimes p_i \in H \otimes_E P$. Thus $\varphi \psi' = \psi$, and hence $H \otimes_E P$ is codivisible.

PROPOSITION 1.6. For all $M \in Mod-R$, Ker $\epsilon(M)$ is cotorsion.

Proof. Let $\sum f_i \otimes p_i \in [P, M] \otimes_E P$ such that $\epsilon(M)(\sum f_i \otimes p_i) = \sum f_i(p_i)$ = 0. Then for all $f \in P^*$ and $p \in P$, $(\sum f_i \otimes p_i)f(p) = \sum f_i \otimes p_if(p) = \sum f_i p_i f \otimes p = 0$, since for all $x \in P$, $(\sum f_i p_i f)(x) = \sum f_i(p_i f(x)) = \sum (f_i(p_i)) - f(x) = (\sum f_i(p_i))f(x) = 0$. Therefore $(\sum f_i \otimes p_i)T = 0$, and Ker $\epsilon(M)$ is cotorsion.

COROLLARY 1.7. P is a generator $\Leftrightarrow \epsilon(M)$ is an isomorphism for all $M \in Mod-R$.

Proof. P is a generator $\Leftrightarrow T = R$, i.e. $\epsilon(R)$ is an epimorphism, $\Leftrightarrow \text{Ker } \epsilon(M) = 0$ and MT = M for all $M \in \text{Mod-}R \Leftrightarrow \epsilon(M)$ is an isomorphism for all $M \in \text{Mod-}R$.

The next theorem is due mainly to Miller [10, Theorem 2.1], in particular the equivalence of statements (2) to (7). (2) \Leftrightarrow (5) was also proved by Azumaya [1, Theorem 6], along with several more equivalent statements. First

we need a lemma, which also appeared in [10], but without proof. Since the proof is not completely trivial, we include it here.

LEMMA 1.8. Let $\mathscr{H} = \{X \in \text{Mod-}R | X'T = X' \text{ for all } X' \subseteq X\}$. Then $X \in \mathscr{H}$ if and only if $x \in xT$ for all $x \in X$. Also, \mathscr{H} is a torsion class (i.e. it is closed under submodules, direct sums, homomorphic images, group extensions, and isomorphic images).

Proof. Let $X \in \mathscr{H}$, then for all $x \in X$, xR = xRT = xT, and therefore $x \in xT$. Conversely, let $X' \subseteq X$. Then for all $x \in X'$, $x \in xT$ and hence X' = X'T. Thus $X \in \mathscr{H}$. The non-trivial step in proving that \mathscr{H} is a torsion class is to show that it is closed under direct sums, and this is done by an argument given by Chase [2, Proposition 2.2]. Let $X = \bigoplus_{i \in I} X_i$, where $X_i \in \mathscr{H}$, $i \in I$. Let $X' \subseteq X$, and let $x_{i_1} + \ldots + x_{i_n} \in X'$. We will show by induction on n that there exists $t \in T$ such that $x_{i_j} = x_{i_j t}$ for all $j = 1, \ldots, n$. It is true for n = 1 since each $X_i \in \mathscr{H}$. Assume it is true for n = k - 1, and let $t_k \in T$ such that $x_{i_k} = x_{i_k k_k}$. Then there exists $t' \in T$ such that $x_{i_j} = x_{i_j t_k} t' + x_{i_k t_k} t' + x$

THEOREM 1.9. The following statements are equivalent:

(1) \mathcal{T}^* , the class of cotorsion modules, is closed under injective hulls.

(2) \mathscr{F}^* , the class of cotorsionfree modules, is closed under submodules. i.e., $\mathscr{F}^* = \mathscr{H}$.

(3) $P \in \mathscr{H}$.

(4) $T \in \mathscr{H}$.

(5) R/T is flat as a left R-module.

(6) (p:0) + T = R for all $p \in P$.

(7) (t:0) + T = R for all $t \in T$.

(8) Every cotorsionfree module is codivisible.

(9) $F: M \to M/MT$ for all $M \in Mod-R$ is an exact functor.

Proof. (1) \Leftrightarrow (2) This is well known.

 $(2) \Rightarrow (7)$ Since $\mathscr{F}^* = \mathscr{H}, \mathscr{F}^*$ is a torsion class by Lemma 1.8, and thus has a corresponding idempotent filter $\mathscr{D}_{\mathscr{F}^*}$. Since $T \in \mathscr{F}^*$, $(t:0) \in \mathscr{D}_{\mathscr{F}^*}$ for $t \in T$, i.e., $R/(t:0) \in \mathscr{F}^*$ and hence (t:0) + T = R.

(7) \Rightarrow (5) R = (t:0) + T for $t \in T$, and therefore 1 = x + t' for some $x \in (t:0)$ and $t' \in T$, for any $t \in T$. Hence $t = tx + tt' = tt' \in tT$, for $t \in T$, and $_{R}(R/T)$ is flat by [2, Proposition 2.2].

(5) \Rightarrow (2) Let $X \in \mathscr{F}^*$, then for all $X' \subseteq X$,

 $0 \to X' \otimes_{\mathbf{R}} R/T \to X \otimes_{\mathbf{R}} R/T$

is exact since $_{\mathbb{R}}(\mathbb{R}/T)$ is flat. But then $X' \otimes_{\mathbb{R}} \mathbb{R}/T = 0$ since $X \otimes_{\mathbb{R}} \mathbb{R}/T = 0$ by Proposition 1.3, and $X' \in \mathcal{F}^*$. Therefore $\mathcal{F}^* = \mathcal{H}$. (3) \Leftrightarrow (6) By Lemma 1.8, for all $p \in P$ there exists $t \in T$ such that p = pt. Therefore p(1-t) = 0, i.e., $(1-t) \in (p:0)$, and R = (p:0) + T for all $p \in P$. Conversely, if (p:0) + T = R for $p \in P$, then 1 = x + t for some $x \in (p:0)$ and $t \in T$, for all $p \in P$. Hence $p = px + pt = pt \in pT$ for $p \in P$, and $P \in \mathscr{H}$ by Lemma 1.8.

(4) \Leftrightarrow (7) This is proved in the same way as (3) \Leftrightarrow (6).

 $(2) \Rightarrow (3)$ This is clear.

 $(3) \Rightarrow (2)$ Let $X \in \mathscr{F}^*$. Then by Proposition 1.3, X is an epimorphic image of a direct sum of copies of P. But $P \in \mathscr{H}$ and \mathscr{H} is a torsion class, hence $X \in \mathscr{H}$ and $\mathscr{F}^* = \mathscr{H}$.

$$(2) \Rightarrow (9)$$
 Let

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

be an exact sequence in Mod-R. Then

$$A/AT \xrightarrow{f'} B/BT \xrightarrow{g'} C/CT \to 0$$

is always exact. Suppose f'(a + AT) = 0, i.e., $f(a) \in BT$, for some $a \in A$. Then since \mathscr{F}^* is closed under submodules, f(a)R = f(a)RT = f(a)T, and therefore there exists $t \in T$ such that f(a) = f(a)t = f(at). But f is a monomorphism, and hence a = at, i.e., a + AT = 0, and f' is a monomorphism. (9) \Rightarrow (8)

$$0 \longrightarrow \operatorname{Ker} \epsilon(M) \longrightarrow [P, M] \otimes_{E} P \xrightarrow{\epsilon(M)} MT \longrightarrow 0$$

is an exact sequence for all $M \in Mod-R$, and therefore, in particular,

$$0 \to \operatorname{Ker} \epsilon(M)/(\operatorname{Ker} \epsilon(M))T \to [P, M] \otimes_E P/([P, M] \otimes_E P)T$$

is exact. But $[P, M] \otimes_E P$ is cotorsionfree, and hence so is Ker $\epsilon(M)$. By Proposition 1.6, Ker $\epsilon(M)$ is also cotorsion, and thus it is zero. Therefore $MT \cong [P, M] \otimes_E P$, and hence is codivisible by Proposition 1.5.

 $(8) \Rightarrow (1)$ Let M be a cotorsion module, i.e., MT = 0. Let I(M) denote the injective hull of M. We show that I(M)T = 0 also. Let π be the projection map: $I(M)T \rightarrow I(M)T/I(M)T \cap M$. $I(M)T/I(M)T \cap M$ is cotorsionfree and hence codivisible, and $I(M)T \cap M = \text{Ker } \pi$ is cotorsion since M is cotorsion. Therefore there exists $f: I(M)T/I(M)T \cap M \rightarrow I(M)T$ such that $\pi f = 1_{I(M)T/I(M)T \cap M}$, and hence $I(M)T \cap M$ is a direct summand of I(M)T. But M essential in I(M) then implies $I(M)T = I(M)T \cap M$. Thus $I(M)T = I(M)T^2 \subseteq MT = 0$.

2. Colocalization. The next result is the dual of a well-known characterization of the localization of M at I. (See, e.g., [8, Proposition 1.1].)

PROPOSITION 2.1. For all $M \in Mod-R$, let $\varphi: X \to M$ and $\psi: Y \to M$ be homomorphisms with cotorsion kernels and cokernels, where X and Y are cotorsionfree and codivisible modules. Then $X \cong Y$.

Proof. Since X is cotorsionfree, X = XT and therefore $\varphi(X) \subseteq MT$. But Cok $\varphi = M/\varphi(X)$ is cotorsion, and therefore $MT \subseteq \varphi(X)$. Hence $\varphi(X) = MT$, and similarly $\psi(Y) = MT$. We may regard φ as an epimorphism from X to MT, and ψ as an epimorphism from Y to MT. Since Ker φ is cotorsion and Y is codivisible, there exists $f: Y \to X$ such that $\varphi f = \psi$. Similarly there exists $g: X \to Y$ such that $\psi g = \varphi$. Then $\varphi(1_X - fg) = \varphi - \varphi fg = \varphi - \psi g = \varphi - \varphi = 0$, and therefore $(1_X - fg): X \to \text{Ker } \varphi$. Hence $1_X = fg$ since X is cotorsionfree and Ker φ is cotorsion. Similarly $1_Y = gf$, and $X \cong Y$.

We are now able to make the following definition.

Definition 2.2. For all $M \in \text{Mod-}R$, $\varphi: X \to M$ is (up to isomorphism) the *colocalization* of M at P if X is cotorsionfree and codivisible, and Ker φ and Cok φ are cotorsion.

Given a projective module P, Lambek and Rattray [9] have constructed a cotriple (S', ϵ', δ') on Mod-R, and formed a colocalization of a module M at P by taking the coequalizer of the pair of mappings

$$S'(S'(M)) \xrightarrow{\epsilon'S'(M)} S'(M).$$

For P a finitely generated projective module, they showed that this colocalization of M at P is $[P, M] \otimes_E P$. The next theorem states that this is our colocalization of M at P for any projective P. We will later verify that the two colocalizations are the same for any projective P.

THEOREM 2.3. For all $M \in Mod-R$, $[P, M] \otimes_E P$ is the colocalization of M at P.

Proof. Since clearly $[P, M] \otimes_{\mathbb{E}} P$ is cotorsionfree and Cok $\epsilon(M) = M/MT$ is cotorsion, the result follows from Propositions 1.5 and 1.6.

If we let $F = _\otimes_E P$: Mod- $E \to Mod$ -R and $U = [P, _]$: Mod- $R \to Mod$ -E, then F is the left adjoint of U, i.e. there exist natural transformations η : $1_{Mod-E} \to UF$, given by $\eta(B)(b)(p) = b \otimes p$ for all $B \in Mod$ -E, $b \in B$, $p \in P$, and ϵ : $FU \to 1_{Mod-R}$, given by $\epsilon(A)(\sum g_i \otimes p_i) = \sum g_i(p_i)$ for all $A \in Mod$ -R, $\sum g_i \otimes p_i \in [P, A] \otimes_E P$, such that $U\epsilon \circ \eta U = 1_U$ and $\epsilon F \circ F\eta = 1_F$.

We can then form the cotriple $(S^* = FU, \epsilon, \delta)$ on Mod-*R*. $S^*(M)$ is by Theorem 2.3 the colocalization of M at P for all $M \in \text{Mod-}R$. The coequalizer of the mappings $\epsilon S^*(M)$, $S^*\epsilon(M)$: $S^{*2}(M) \to S^*(M)$ is just the identity on $S^*(M)$, since $\epsilon S^*(M)$ is an isomorphism and therefore $\epsilon S^*(M) = S^*\epsilon(M)$ (since $\epsilon S^*(M)\delta = 1_{S^*(M)} = S^*\epsilon(M)\delta$).

The dual situation (see [8, Section 3]) is more complicated. If I is an injective module and H = [I, I], then [-, I]: Mod- $R \rightarrow (H-Mod)^{op}$ has a right adjoint

Hom_{*H*}(-, _{*H*}*I*). If we form the triple ($S = \text{Hom}_H([-, I], _HI)$, η , μ) arising from this pair of adjoint functors, then Q(M), the localization of M at I, for all $M \in \text{Mod-}R$, is given by the equalizer of the pair of mappings $\eta S(M)$, $S\eta(M)$: $S(M) \to S^2(M)$. S(M) is torsionfree and divisible, and Ker $\eta(M)$ is torsion, but in general $S(M) \neq Q(M)$. (They are equal if [M, I] is a finitely generated left *H*-module.) In general, then, Cok $\eta(M)$ is not torsion.

For example, let $R = \mathbb{Z}$. We take the largest torsion theory in Mod-Z for which $\mathbb{Z}/p\mathbb{Z}$ is torsionfree, where p is a prime number. A Z-module M is torsion if and only if for all $m \in M$, $(m:0) \not\subseteq p\mathbb{Z}$, and $Q(\mathbb{Z})$ is the usual localization of the commutative ring Z at the prime ideal $p\mathbb{Z}$, i.e., $Q(\mathbb{Z})$ consists of all rational numbers whose denominators are prime to p. Every torsionfree factor module of $Q(\mathbb{Z})$ is divisible (in fact, if D is any dense ideal $DQ(\mathbb{Z}) = Q(\mathbb{Z})$ and hence the localization functor Q preserves all colimits), and therefore $S(\mathbb{Z})$ is the $I(\mathbb{Z}/p\mathbb{Z})$ -adic completion of $Q(\mathbb{Z})$ [8, Theorem 4.2]. But the $I(\mathbb{Z}/p\mathbb{Z})$ -adic topology on $Q(\mathbb{Z})$ coincides with the p-adic topology [7, Proposition 4], and thus $S(\mathbb{Z})$ is the ring of p-adic integers. But $S(\mathbb{Z})/\mathbb{Z} = \operatorname{Cok}(\eta(\mathbb{Z}):\mathbb{Z} \to S(\mathbb{Z}))$ is not torsion, since for all $z + z_1p + z_2p^2 + \ldots \in S(\mathbb{Z})$, if there exists n, $m \in \mathbb{Z}$ such that $n \notin p\mathbb{Z}$ and $n(z + z_1p + z_2p^2 + \ldots) = m$, then $z + z_1p + z_2p^2 + \ldots = m/n \in Q(\mathbb{Z})$.

Definition 2.4. $\varphi: X \to M$ is a codivisible cover of $M \in Mod-R$ if

- (1) φ is a minimal epimorphism;
- (2) Ker φ is cotorsion;
- (3) X is codivisible.

PROPOSITION 2.5. If a module M has a codivisible cover, then it is unique up to isomorphism.

Proof. Let $\varphi: X \to M$ and $\psi: Y \to M$ be codivisible covers of M. Then there exists $f: X \to Y$ such that $\psi f = \varphi$ since X is codivisible and Ker ψ is cotorsion. φ an epimorphism and Ker ψ small in Y implies that f is an epimorphism, and Ker f is cotorsion and small in X since Ker $f \subseteq$ Ker φ . Therefore there exists $g: Y \to X$ such that $fg = 1_Y$, hence $X = g(Y) \oplus$ Ker f. But then Ker f = 0 since Ker f is small in X, and hence f is an isomorphism.

We will show that if $M \in Mod-R$ has a projective cover, then it has a codivisible cover.

LEMMA 2.6. If $M \in Mod-R$ is codivisible and $M' \subseteq M$ is a cotorsionfree submodule of M, then M/M' is codivisible.

Proof. Let $\pi: M \to M/M'$ be the projection map, and let $\varphi: B \to A$ be any epimorphism with Ker φ cotorsion, and $\psi: M/M' \to A$. Since M is codivisible there exists $\psi': M \to B$ such that $\varphi \psi' = \psi \pi$. $\varphi \psi'(M') = \psi \pi(M') = 0$, and therefore $0 = \psi'_{+M'}: M' \to \text{Ker } \varphi$ since M' is cotorsionfree and Ker φ is cotorsion. Therefore ψ' induces a homomorphism $\psi'': M/M' \to B$ such that $\varphi \psi'' = \psi$, and hence M/M' is codivisible.

PROPOSITION 2.7. If $\varphi: P(M) \to M$ is the projective cover of $M \in \text{Mod-}R$, then $\bar{\varphi}: P(M)/(\text{Ker }\varphi)T \to M$ is the codivisible cover of M, where $\bar{\varphi}$ is the homomorphism induced by φ .

Proof. Clearly $\bar{\varphi}$: $P(M)/(\text{Ker }\varphi)T$ is a minimal epimorphism, and Ker $\bar{\varphi} = \text{Ker }\varphi/(\text{Ker }\varphi)T$ is cotorsion. It remains to show that $P(M)/(\text{Ker }\varphi)T$ is codivisible, but this follows from the preceding lemma.

COROLLARY 2.8. If $\varphi: P(M) \to M$ is the projective cover of $M \in Mod-R$, then the codivisible cover of M in the cotorsion theory determined by P(M) is the maximal co-rational extension over M.

Proof. Courter [3, Theorem 2.12] showed that P(M)/X is the maximal corational extension over M, where

$$X = \sum_{f \in [P(M), \operatorname{Ker} \varphi]} f(P(M)).$$

But if $T_{P(M)}$ denotes the trace ideal of P(M), then it is clear from the proof of Proposition 1.3 that $X = (\text{Ker } \varphi)T_{P(M)}$.

COROLLARY 2.9. If $\varphi: P(M) \to M$ is the projective cover of $M \in Mod-R$, then M is codivisible if and only if Ker φ is cotorsionfree.

Proof. Ker φ cotorsionfree implies that Ker $\bar{\varphi} = 0$, and hence $M \cong P(M)/(\text{Ker }\varphi)T$ which is codivisible. Conversely, if M is codivisible then by Proposition 2.5 $P(M)/(\text{Ker }\varphi)T \cong M$, and therefore Ker $\varphi = (\text{Ker }\varphi)T$.

THEOREM 2.10. $[P, M] \otimes_E P = [P, MT] \otimes_E P$ is the codivisible cover of MT.

Proof. We have already shown that $\epsilon(M)$: $[P, M] \otimes_E P \to MT$ is an epimorphism (Proposition 1.3) with cotorsion kernel (Proposition 1.6), and that $[P, M] \otimes_E P$ is codivisible (Proposition 1.5). Ker $\epsilon(M)$ is small in $[P, M] \otimes_E P$, since if Ker $\epsilon(M) + U = [P, M] \otimes_E P$ for some submodule $U \subseteq [P, M] \otimes_E P$, then $U \supseteq UT = (\text{Ker } \epsilon(M))T + UT = ([P, M] \otimes_E P)T = [P, M] \otimes_E P$. Hence $[P, M] \otimes_E P$ is the codivisible cover of MT.

The torsion submodule $\mathscr{T}(M)$ of a module M with respect to a torsion theory $(\mathscr{T},\mathscr{F})$ is the unique submodule $X \subseteq M$ such that X is torsion and M/X is torsionfree. Dually, M/MT is the unique factor module M/X of M such that M/X is cotorsion and X is cotorsionfree. We call M/MT the cotorsion factor module of M. And, we can colocalize in two steps, namely

 $[P, M] \otimes_E P \to MT \to M$ codivisible cover of MT

dualizing $M \to M/\mathscr{T}(M) \to Q(M)$. divisible hull of $M/\mathscr{T}(M)$

R. J. MCMASTER

3. Colocalization as coequalizer. We now return to the colocalization at P obtained by Lambek and Rattray [9], and we will show that it is the same as our colocalization at P. They started with a cotriple (S', ϵ', δ') on Mod-R, where S': Mod- $R \rightarrow$ Mod-R is defined by

$$S'(M) = \sum_{f:P \to M} P$$
 for all $M \in Mod-R$,

and an element of S'(M) is written as $\sum_{f}(f, p_{f})$. S'(M) is a right *R*-module in view of the definitions $\sum_{f}(f, p_{f}) + \sum_{f}(f, q_{f}) = \sum_{f}(f, p_{f} + q_{f})$, and $(\sum_{f}(f, p_{f}))r$ $= \sum_{f}(f, p_{f}r)$ for all $r \in R$. $\epsilon'(M)$: $S'(M) \to M$ is given by $\epsilon'(M)(\sum_{f}(f, p_{f})) =$ $\sum_{f}f(p_{f})$. If $k_{f}: P \to \sum_{f}P$ is the canonical injection then $\epsilon'(M)k_{f} = f$. For any $g: M \to N$ in Mod- $R, S'(g): S'(M) \to S'(N)$ is given by $S'(g)(\sum_{f}(f, p_{f})) =$ $\sum_{f}(gf, p_{f})$, i.e. for the canonical injection $k_{f}, S'(g)k_{f} = k_{gf}$. Their colocalization Q'(M) of M at P is given by the coequalizer $\kappa(M): S'(M) \to Q'(M)$ of the pair of mappings $\epsilon'S'(M), S'\epsilon'(M): S'(S'(M)) \to S'(M)$. The following lemma is the dual of [**9**, Lemma 1].

LEMMA 3.1. For all $M \in Mod-R$, $\kappa(M)$ is the joint coequalizer of all pairs of mappings $u, v: P \to S'(M)$ which equalize $\epsilon'(M): S'(M) \to M$.

Proof. Let $u: P \to S'(M)$, then $\epsilon'S'(M)k_u = u$ and $S'\epsilon'(M)k_u = k_{\epsilon'(M)u}$. Therefore $\kappa(M)$ coequalizes all mappings $(u, k_{\epsilon'(M)u})$. Now let $v: P \to S'(M)$ be such that $\epsilon'(M)u = \epsilon'(M)v$. Then $\kappa(M)$ coequalizes (u, v) since

$$\kappa(M)u = \kappa(M)k_{\epsilon'(M)u} = \kappa(M)k_{\epsilon'(M)v} = \kappa(M)v.$$

Conversely, any mapping which coequalizes all (u, v) such that $\epsilon'(M)u = \epsilon'(M)v$ coequalizes $(u, k_{\epsilon'(M)u})$ in particular, since $\epsilon'(M)k_{\epsilon'(M)u} = \epsilon'(M)u$ by definition of $\epsilon'(M)$, and hence coequalizes $(\epsilon'S'(M), S'\epsilon'(M))$. It follows that $\kappa(M)$ is the joint coequalizer.

LEMMA 3.2. Let $f: B \to A$ be an epimorphism where B is a cotorsionfree module and A is a codivisible module. Then Ker f is cotorsionfree.

Proof. Let \tilde{f} : $B/(\operatorname{Ker} f)T \to A$ be the homomorphism induced by f. Then since A is codivisible and \tilde{f} is an epimorphism with cotorsion kernel, there exists $g: A \to B/(\operatorname{Ker} f)T$ such that $\tilde{f}g = 1_A$. Therefore $(B/(\operatorname{Ker} f)T)T =$ $B/(\operatorname{Ker} f)T = \operatorname{Im} g \oplus \operatorname{Ker} \tilde{f} = (\operatorname{Im} g)T \oplus (\operatorname{Ker} \tilde{f})T = (\operatorname{Im} g)T$ and hence $\operatorname{Ker} \tilde{f} = 0$, i.e., $\operatorname{Ker} f = (\operatorname{Ker} f)T$.

LEMMA 3.3. For all $M \in Mod-R$, MT is the smallest submodule $M' \subseteq M$ such that for all $f: P \to M$,

$$0 = (P \xrightarrow{f} M \to M/M').$$

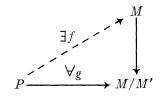
Proof. For all $f: P \to M$,

$$(P \xrightarrow{f} M \to M/MT) = 0$$

since $f(P) \subseteq MT$. Suppose $M' \subseteq M$ is such that for all $f: P \to M$,

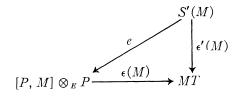
 $(P \xrightarrow{f} M \to M/M') = 0,$

then for all $g \in [P, M/M']$ since P is projective there exists $f: P \to M$ such that the diagram below commutes, and hence g = 0. M/M' is therefore cotorsion, and $MT \subseteq M'$.



THEOREM 3.4. For all $M \in Mod-R$, $[P, M] \otimes_E P$ is the coequalizer of the pair of mappings $\epsilon'S'(M)$, $S'\epsilon'(M)$: $S'(S'(M)) \to S'(M)$.

Proof.



 $\epsilon(M)$ and $\epsilon'(M)$ both have the same image, namely MT, and we consider them as mappings from $[P, M] \otimes_E P$ to MT and from S'(M) to MT, respectively. Then since S'(M) is projective (since it is a coproduct of copies of P) and Ker $\epsilon(M)$ is small in $[P, M] \otimes_E P$, there exists an epimorphism $e: S'(M) \rightarrow$ $[P, M] \otimes_E P$, such that $\epsilon(M)e = \epsilon'(M)$. By Lemma 3.2, Ker e is cotorsionfree since S'(M) is cotorsionfree and $[P, M] \otimes_E P$ is codivisible. But since Ker e is cotorsionfree and Ker $\epsilon(M)$ is cotorsion, Ker $\epsilon(M) = \text{Ker } \epsilon'(M)/\text{Ker } e$ is the cotorsion factor module of Ker $\epsilon'(M)$, i.e. Ker $e = (\text{Ker } \epsilon'(M))T$. Hence by Lemma 3.3 Ker e is the smallest submodule X of Ker $\epsilon'(M)$ such that for all

 $f: P \to \text{Ker } \epsilon'(M), 0 = (P \xrightarrow{f} \text{Ker } \epsilon'(M) \to \text{Ker } \epsilon'(M)/X).$ Therefore Ker e is the smallest submodule X of S'(M) such that for all $f: P \to S'(M)$ such that $\epsilon'(M)f = 0$,

$$0 = (P \xrightarrow{f} S'(M) \to S'(M)/X).$$

Hence Ker *e* is the smallest submodule X of S'(M) such that for all $f, f': P \to S'(M)$ such that $\epsilon'(M)f = \epsilon'(M)f'$,

$$(P \xrightarrow{f} S'(M) \to S'(M)/X) = (P \xrightarrow{f'} S'(M) \to S'(M)/X),$$

i.e.,

$S'(M) \xrightarrow{e} S'(M) / \text{Ker } e \cong [P, M] \otimes_E P$

is the joint coequalizer of all pairs of mappings $f, f': P \to S'(M)$ which equalize $\epsilon'(M)$. Thus by Lemma 3.1 $Q'(M) \cong [P, M] \otimes_{\mathbb{F}} P$.

References

- 1. G. Azumaya, Some properties of TTF-classes, Proc. Conf. on Orders, Group Rings, and Related Topics, Lecture Notes in Math. 353 (Springer-Verlag, Berlin, 1973).
- 2. S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.
- **3.** R. C. Courter, The maximal co-rational extension by a module, Can. J. Math. 18 (1966), 953-962.
- 4. P. Gabriel, Des categories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- 5. J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259.
- J. Lambek, Torsion theories, additive semantics, and rings of quotients, Lecture Notes in Math. 177 (Springer-Verlag, Berlin, 1971).
- 7. —— Bicommutators of nice injectives, J. Algebra 21 (1972), 60-73.
- *Localization and completion*, J. Pure Appl. Algebra 2 (1972), 343–370.
- J. Lambek and B. Rattray, Localization at injectives in complete categories, Proc. Amer. Math. Soc. 41 (1973), 1-9.
- 10. R. W. Miller, TTF classes and quasi-generators, Pacific J. Math. 51 (1974), 499-507.
- 11. E. A. Rutter, Jr., Torsion theories over semi-perfect rings, Proc. Amer. Math. Soc. 34 (1972), 389-395.
- 12. F. L. Sandomierski, Modules over the endomorphism ring of a finitely generated projective module, Proc. Amer. Math. Soc. 31 (1972), 27-31.

McGill University, Montreal, Quebec