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THE VITALI INTEGRAL CONVERGENCE THEOREM 
AND UNIFORM ABSOLUTE CONTINUITY 

ELIZABETH M. BATOR, RUSSELL G. BILYEU AND PAUL W. LEWIS 

ABSTRACT. A geometric version of the Vitali integral convergence theorem is es
tablished. Parameterized versions of results on uniform absolute continuity in spaces of 
measures suggested by the convergence theorem are studied. 

1. Introduction. In two papers in the 1970's, J. K. Brooks [3] and Brooks and Jew-
ett [4] established marked improvements of the Vitali-Hahn-Saks theorem and the Vitali 
integral convergence theorem as a consequence of the following fundamental theorem 
on uniform absolute continuity, a result which has an antecedent in the classical paper 
by Bartle, Dunford, and Schwartz [1]. 

THEOREM 1.1 [3]. Suppose that (Q,, X) is a measurable space and that H is a uni
formly countably additive subset ofca(L). / / / i G ca(L) and v <C [i for all v G H, then 
v <C [i uniformly for i/ £ H. 

In Section 2 of this paper we establish a geometric version of the Vitali convergence 
theorem. Our version of the Vitali theorem raises numerous questions about parameter
ized—or collectionwise—versions of Theorem 1.1. These questions are studied in some 
detail in Section 3. We also point out a parameterized version of the Vitali-Hahn-Saks 
theorem which follows immediately from deliberations in this section. We then conclude 
the paper by establishing a uniform differentiability result for arbitrary continuous con
vex functions on Banach spaces which is motivated by the measure theoretic results of 
Section 3. 

All Banach spaces X in this paper are defined over the real field R. If x9y € X, then 
D(JC, y) will denote the Gateaux derivative of the norm at x in the direction y provided 
that this derivative exists, i.e., D(x,y) — linv_+o "x+ty"f "*". We refer the reader to Diestel 
[5] and Rockafellar [6], [7] for a discussion of Gateaux differentiability of convex func
tions. We denote the one-sided Gateaux derivatives (which always exist) by D+(x, y) and 
D~(x,y). If Z is a a-algebra, then ca(L) is the Banach space (total variation norm) of all 
countably additive real valued measures defined on Z. If S C X, then the norm closure 
of S will be denoted by S and the weak closure will be denoted by Sw. 
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2. Vitali's Convergence Theorem. We begin with parameterized versions of two 
results in Bilyeu and Lewis [2]. We sketch the proofs. 

LEMMA 2.1. IfX is an abstract L-space and each of(fn) and (gn) is a sequence from 
X, then the following are equivalent: 

(i) D(fn, gn) exists uniformly in n, 
(ii) D(\fn\,\gn\) exists uniformly in n, 

(Hi) \kfn\ A | 8n\ —* \8n\ uniformly in n. 
k 

PROOF. We remark that because of the absolute values which appear in (iii) it clearly 
suffices to show that (i) & (iii). Now 

-Wn-gn\\+Wn\\ < D~ (fn, gn) < D+(fn, gn) < \\ kfn + gn\\ - || kfn\\ , * € N . 

Therefore D(fn, gn) exists uniformly in n iff 

\\¥n+gn\\+Wn-gn\\-2\\kfn\\^0 

uniformly in n. Thus by Lemma 2.3 of [2], D(fn, gn) exists uniformly in n iff 

Wn + gn\\+W«-gn\\-2Wn\\ 

= 2||#,| | + 2 | |g„| - (\kfn\ A |g„|)| - 2\\kfn\\ 

= 2\\\gn\ -iWn\ A | g„ | ) | | -»0 uniformly inn. > 
k 

DEFINITION. Let Z be a a -algebra and let each of (jxn) and (yn) be a sequence in 
caÇL). We say that vn <C [in uniformly in n provided that if e > 0 then there is a 6 > 0 
such that |i/w(A)| < e whenever A G Z, n G N, and |/x„|(A) < S. 

LEMMA 2.2. Suppose that Z is a a-algebra and each of(fin) and (i/n) is a sequence 
in ca(L). IfD(fj,n, vn) exists uniformly in n, then vn <C \in uniformly in n. Conversely, if 
(i/n) is bounded and vn <C [in uniformly in n, then D(/x„, i/n) exists uniformly in n. 

PROOF. Suppose that D(nn,vn) exists uniformly in n. Therefore || |/c/in| A \i/n\ — 
\vn\ || —> 0 uniformly in n. Let e > 0, and choose ko G N so that || |&o/x„| A \i/n\ — 

k 

\i/n\ || < e for all n. If |fcoMn|(A) < e, then |i/n(A)| < 2e, and the uniform absolute 
continuity follows. 

Conversely, suppose that vn <C [in uniformly in n, and let ko G N so that ||i/n|| < ko 
for all n. Let e > 0, and choose è > 0 so that if n G N and |/i„|(A) < 6, then 
|i/n|(A) < e. Now choose k e N such that ko > ko. It follows that || \kfin\ A \i/n\ — 
\vn\ II < 2e for all n. Therefore 

II \k\in\ A \vn\ - \vn\\ —>0 
11 " k 

uniformly in n, and we obtain the desired conclusion by appealing to Lemma 2.1. • 
The following theorem and corollary constitute our geometric interpretation of the 

Vitali convergence theorem. 
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THEOREM 2.3. Suppose that (Q, X, \i ) is a finite measure space and (fn) is a sequence 

in Ll(fi). The sequence (fn) converges to an element f G Ll([i) if and only if 

(i) (fn) is Cauchy in measure, and 

(ii) there is a uniformly integrable sequence (gn) in Lx(n) so that D(gn,fn) exists 

uniformly in n. 

PROOF. Suppose that (i) and (ii) hold, and let e > 0. We have that 

/*({*: | /n(0-/m(0| > e } ) - + 0 

asn,m -^ oo. Since D(gn,fn) exists uniformly in n, i/fn <C vgn uniformly in n, where 
Vfn(A) = iAfn dji and vgn(A) = SA Snap, A G l . Since (gn) is uniformly integrable, i/gn <C 
[i uniformly in n. Choose 8 > 0 so that if /x(A) < 8, then |^/J(A) = SA \fn\ dp, < e 
for all n. Let N G N so that if n,m > N and Çlnm = {t : \fn(t) —/m(0l > e} , then 
/x(QWjm) < 6. Therefore 

/ Q If» " /ml ^M - / Q ^ | / , " /ml ^ + / ^ |/n ~ / m | ^ 

- A i u ! / * -fml d»+Lw dfA+Ll/ml J/i 

< e/i(Q\Qm ,„) + 2e. 

Thus (/*„) is Cauchy in Lx(p,) and must converge in Ll(p). 

Conversely, suppose that (fn) —• / in Ll(fi). Clearly then (/n) must be Cauchy in 
measure and uniformly integrable. Further, D(fn,fn) exists uniformly in n. m 

In the following corollary, Lp(p,,X) = LP (£1,1,, p,,X) denotes the Bochner space of 
X-valued /?-th power integrable functions. 

COROLLARY 2.4. Suppose that (£1, Z, /x) /s a finite measure space, X is a Banach 

space, and (fn) is a sequence in LP(p,X). The sequence (fn) converges to an elementf in 

LP(p,X) if and only if 
(i) (fn) is Cauchy in measure, and 

(ii) there is a uniformly integrable sequence (gn) in LP(ji,X) so that D(\\gn(-)\\
p, 

\\fn(')\\p) exists uniformly in n. 

We remark that if (fn) is an arbitrary sequence inLp(p,X), then obviously Z>(||/n(-) IK, 
||/n(')IK) exists uniformly in n. Therefore if (fn) and/ belong to LP(p,X), (fn) —>fa.e. 
[/x], and (fn) is uniformly integrable (i.e., (S(.)fn dp) is equicontinuous), then ||/w —/|| —+ 
0. Thus Theorem 3 of [3] follows from 2.3. We also note that the generalization of the 
Lebesgue convergence theorem which appears in Chapter 4 of Royden [8] follows im
mediately from 2.3. 
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3. Uniform Absolute Continuity. In this section we study generalizations and in

terpretations of Theorem 1.1 motivated by the considerations of the preceding section. In 

general, we are interested in questions of the following type. If / / , K C ca(L), P C Hx K, 

and v <C fj, for (V, /i) G P, then what conditions on H and/or K will ensure that i/ «C /i 

uniformly for (y, /i) G P? The following very elementary example shows that the most 

obvious bi-sequential interpretation of Theorem 1.1 (suggested by Lemma 2.2 and The

orem 2.3) is false. 

Let X be the a -algebra of Lebesgue measurable subsets of [0,1], and let À be Lebesgue 

measure on X. Let \in — ( 1 / n)X, and let i/n — A for all n. Obviously H = { vn : n G N } 

and K = {fj,n : n eN} are uniformly countably additive subsets of ca(L), and vn <C pm 

for all n and ra. However, it is plain that the absolute continuity is not uniform in n, i.e., 

if P = {(i/„, | i „ ) : « G N } , then it is not true that v <C /i uniformly for (V, /i) G P. We 

remark that it is not inconsequential that the set K in this example fails to be compact. 

The following notation will be useful. If / / , K C ca(L), then we write H <^ K if A G £ 

and inf{ |/x|(A) : /x G if} = 0 ensures that i/(A) = 0 for all i/ G / / . If / / < K, then 

certainly z/ <C /i for all (i/, /x) G i / x ^ . The remainder of this section will be concerned 

largely with studying the relative strengths of the following four conditions on H and K 

in the presence of various topological conditions: 

(a) v <C \i uniformly for (i/, \i) G H x K, 

(b) H<&K, 

(c) v < / i for(i/ , / i) eHx K, 

(d) i/ < /x for (i/, p)eHxK. 

It follows that (0) => (Z?) =» (c) =̂> (J). Examples at the end of the section will 

investigate the reverse implications. 

By modifying the sketch of the argument for Theorem 1 in [3], we are able to obtain 

the following bi-sequential version of Theorem 1.1. A simple corollary of this result 

shows that (d) => (a) if H is uniformly countably additive and K is compact. 

THEOREM 3.1. If(yn) is a uniformly countably additive sequence in ca(L) and (/iw) 

is a sequence in ca(L) so that 

(i) vn <C [in for each n, and 

(ii) (i/n(Ak)) —> 0 as (/i^(A^)) —• Ofor each ny then vn <C \in uniformly in n. 

Before we begin the proof of Theorem 3.1, we establish a technical lemma for uni

formly countably additive sequences of measures. 

LEMMA 3.2. Suppose that (i/f) is a uniformly countably additive sequence from caÇL) 

and (Ai) is an arbitrary sequence of sets from X. If 6 > 0 and j G N, then there is 

a finite sequence (//)£= i of positive integers so that j < j \ < ji < • • • < j n and if 

Cn =Aj\ \Jl=xAj.,then 

h(cnnA;)| <s 

fori> j n . 
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PROOF. Deny the conclusion. Choosey'] > j and / > j \ so that \vt(C\ H A/)| > è, 
where C\ — Aj\ A;-,. Let72 be the smallest positive integer / which satisfies the require
ments of the preceding sentence. Continuing, let 73 be the smallest positive integer so that 
73 > 72 and | i/J3 (C2 Pi A/3 )| > 8, where C2 = A/\ (Ajx U Aj2 ). Continue this process recur
sively. Note that (Cf) is a decreasing sequence; therefore (C/\ C/+i ) is clearly a pairwise 
disjoint sequence in I . Further, note that d\ C,-+i = Cf\ Aji+]. Since | i/ji+l (C,nAy+1 )| > 8, 
we contradict the uniform countable additivity of (1//). • 

PROOF OF THEOREM 3.1. Deny the conclusion. Let c > 0 so that if 8 > 0, then there 
is a positive integer n and an element An G £ so that |//„|(A„) < <5 and |i/w(Aw)| > c. 
Therefore we may (and do) suppose that 

(*) \Hn\(A„) < l/n2 and \vn(An)\ > e , « G N . 

(Note that (| v\\ (An)) —> 0 for each k. ) Pass to a subsequence and obtain (z/;), (^;), and 
(A/) so that the following two inequalities hold: 

(1) \vi{Ai)\ > e 
oo 

(2) £ | ^ | (A / )<6 /2^ + 1 

/=*+i 

Now let 8 = c/4, and suppose that An, An ] , . . . , Ank satisfy the conclusions of 
Lemma 3.2 with respect to the sequence (i/n). Since n > 1 and 

k k 

J2 \vn(An H Ani)\ < Y, \"n\(Ani) < e/21+1, 

it follows that 
k k 

\vn(An\ \jAnt)\ = K(A„\ \jAnnAni)\ 
i=i /=i 

> k(A„)| -X>„ | (A„n An,)> 3c/4. 
i=i 

Put Hi = A„\ U*=1 A„., and recall that \i/p(Hi H Ap)\ < c /4 if p > n*. 
Next we start the process over as follows. Let/?i = n*, Ai,/ = APl+i\H\9 and z/j/ = 

i/pi+/, I ' G N . Apply Lemma 3.2 again and find positive integers n < n\ < • • • < nm 

so that if H2 = Ahn\ \JP=l AM/, then |i/i^(//2 H Ai^)| < e/8 for/7 > nm. Note that 
ki,i(Ai,,-)| = |i/p1+i(A^1+I-\HinAPl+/)| > 3c/4. Consequently, 

m 

ki,*(#2)| > ki,*(Ai,„)| -Eki , " l (Ai ,nnAi , n ; ) 
/=i 
m 

> ki,/i(Ai,„)| -^Cku-KAi^-) 
1=1 

> ki,n(Ai,J| - e / 2 ^ + " + 1 > c - c / 4 - c / 8 . 

Additionally, note that HiH H2 = 0. 
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If we continue the construction by putting p2 = nm, A2j = AP2+i \ H2, and i/2j = 
v\j,2+i, then we obtain #3, which misses Hi U H2, and a member v2^n of the sequence 
(i/n) so that 

K„(#3) | > e - e / 4 - e / 8 - e / 1 6 . 

Continuing inductively, we contradict the uniform countable additivity of (i/n). m 

COROLLARY 3.3. Suppose that Z is a a-algebra, H, K C ca(L), and H is uniformly 
countably additive. 

(i) Ifi/<^[i uniformly for fi G K whenever v G H, then v <C [i uniformly for 
(i/,H)EHxK. 

(ii) If K is compact and v <C p, for (i/,/i) G H x K, then v <C /1 uniformly for 
(y,p,)£HxK. 

PROOF, (i) Suppose that the uniform absolute continuity fails in H x K. Let e > 0, 
let (i/n) be a sequence in //, let (/i„) be a sequence in K, and let (A„) be a sequence in Z so 
that |i/n(Aw)| > e for all « and (|/xn|(A„)) —• 0. Certainly condition (ii) of Theorem 3.1 
must fail for the sequence (i/„, |//„|,A„) of triples. Therefore there exists p G N and a 
subsequence (n*) of positive integers and S > 0 so that 

|ï/p(An,)| > 5 

for each k. However, this contradicts the hypothesis since i/p <C /1 uniformly for /x G AT. 
(ii) In view of (i), it clearly suffices to say that if v G H, then 1/ <C /i uniformly for 

H e K. Suppose to the contrary that this uniformity does not hold. Let 1/ G //, let (/x„) be 
a sequence from AT, let e > 0, and let (An) be a sequence from Z so that (| /xn| (An)) —> 0 
and |ï/(An)| > e for each rc. Certainly (pn) must cluster at some point /1 in xY. Suppose 
|| /xn/ —/x || —-> 0. Therefore (p(Ani)) —* 0, and thus (I/(AWJ.)) —> 0, a clear contradiction. • 

Our next result shows that (b) and (c) are equivalent for arbitrary subsets H and rela
tively compact subsets K of ca(L). 

THEOREM 3.4. Suppose that H,K C ca(Z) am/ that K is relatively compact. The 
following are equivalent: 

(i) H<^K 
(ii) v <^pfor(v,fi)eHx K. 

In addition, if H is uniformly countably additive, then each of(i) and (ii) is equivalent to 
(Hi) v <C [i uniformly for (y, p) G H x K. 

PROOF. Suppose that (i) holds and let /x G K. Let A G Z so that | /x | (A) = 0, and 
let (pn) be a sequence from K so that \\pn — p\\ —» 0. Certainly |/xn|(A) —> 0- Thus 
inf{ |£ |(A): £ G # } = 0, and i/(A) = 0 for all v G //. 

Conversely, suppose (ii) holds, A G Z, and inf{|/x|(A) : /x G AT} = 0 . Let (/x„) 
be a sequence from K so that (/xn) converges in norm to an element \x G caÇL) and 
(| pn\ (A)) —* 0. Therefore | p | (A) = 0, and the absolute continuity in (ii) forces z/(A) = 0 
for all v £H. 
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Now suppose that the set H is uniformly countably additive. If (ii) holds, then we 
immediately obtain (iii) by an application of Corollary 3.3(ii). 

Conversely, suppose (iii) holds, \i G K, v G //, A G X, and | /i | (A) — 0. Let e > 0, 
and let 6 > 0 so that if B G 1, £ G À:, and | £ \ (B)< 6, then 11/(#)| < e. Let (/x„) be a 
sequence from^T so that \\pn — /x|| —• 0. Thus (|/iw|(A)) —* 0; hence |i/(A)| < e. Since 
e was arbitrary, i/(A) = 0. • 

If the set K is relatively weakly compact, then condition (b) is implied by 

(</) v < \i for all (i/, /z) G # x Kw. 

For suppose that A G X and inf { | /i | (A) : /i G ^ } = 0 . Let (//„) be a sequence in A' so 
that |/i„|(A) < \/n,n G N, and let \x be a weak cluster point of (/!„). I f5 G I D A , 
then fi(B) = 0. Therefore | /z | (A) = 0, and i/(A) = 0 for all i/ e H, i.e., (c') => (6). As a 
consequence of these observations and the preceding theorems, we immediately obtain 

PROPOSITION 3.5. Suppose that H, K c ca(L). 
(A) If K is relatively weakly compact and convex, then H<^Kiffv <C \i for all 

(B) IfK is weakly compact, then H <C K iffv <C /i for all {y, /i) G H x K. 

Before turning to the examples mentioned at the beginning of this section, we briefly 
discuss parameterized versions of the Vitali-Hahn-Saks theorem. We begin by noting that 
if rn denotes the n-th Rademacher function, vn(A) = JA rn dX for each measurable subset 
A of [0,1], and /x„ = (1 / n)X for each n, then i/n <C \im for each n and m, (i/w(A)) —• 0 for 
each A, and i/n is not absolutely continuous with respect to \in uniformly in n. However, 
we do have the following corollary of 3.3 and 3.4. 

PROPOSITION 3.6. (i) If H = {vn : n G N } C caÇL), K C ca(l), i/n < /i for each 
(n,n) G N x ^ , and (yn(A)} converges for each A G X, then vn <C \i uniformly for 
(n,/x) GN X Ï 

(7/) //*// an J A' are as above and K is compact, then vn <C /i uniformly for (n, /i) G 
N x AT. 

To apply 3.3 and 3.4, note that the convergence of (i/n(A)) for each A implies that 
0„) is uniformly countably additive, e.g., see the proof of Theorem 3.5 in [2]. 

The elementary example at the beginning of this section shows that (d) ^> (c). More 
substantial examples are required to show that none of the other reverse implications 
hold. 

EXAMPLE 3.7. Let (rn) be the sequence of Rademacher functions, let /xn(A) = 
iA \{rn + l)d\, and let A„ = /x„ + (l/n)A, n G N. Let H = {A}, and let K = 
{ Xn : n G N }. Certainly both H and K are uniformly countably additive ((rn) is uni
formly bounded). Now let Bn = {t : r„(f) = — 1}, n G M. Therefore fin(Bn) = 0 and 
Xn(Bn) — l/2n for each n. Clearly we do not have uniform absolute continuity for HxK, 
i.e., (a) does not hold. 
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Now suppose that A is a measurable set and that inf{ | An|(A)} = 0. Since 0 < 
(l//i)A(A) < Xn(A) for all n and (An(A)) -» (1/2)A (A), it follows that A (A) = 0, 
Thus (b) holds, i.e., (b) ^ (a). 

We remark that Example 3.7 also allows us to distinguish between condition (ii) of 
Theorem3.1 and condition (b). Specifically, if//, K C ca(L), then we say that the ordered 
pair (//, K) satisfies (e) if 

(i/(Ak)) —* 0 whenever (/x )̂ is any sequence from K and (A*) 

is any sequence from X so that (| nk\ (A*)) —• 0. 

We note that (e) => (b). For if inf { | p | (A) : p £ K} = 0, then let A k = A for each k, and 
choose (fik) from K so that (|/i*|(AjO) —•» 0. Therefore i/(A) = I/(AJ0 —> 0. However, if 
(fr) implied (e), then we could apply Theorem 3.1 to the constant sequence (A) and the 
sequence (A„) of 3.6 and conclude that À < A „ uniformly in n. 

In addition, we note that Example 3.7 allows us to see that the equivalences of The
orem 3.4 do not hold if we merely assume that K is weakly compact. Specifically, let 
K0 = { An : n £ N } U { (1 / 2)A }, and let H = { A }. It follows that K0 is weakly com
pact, H is uniformly countably additive, and H <C Ko. However, since (An(#n)) —> 0 
and A (Bn) = 1/ 2 for all n, A is not absolutely continuous with respect to Xn uniformly 
inn. 

Our next example shows that (c) ^ (b). 

EXAMPLE 3.8. As in the preceding example, let (rn) denote the sequence of Rade-
macher functions, let an{A) = SAH[0,\/2](^/ 2)(rn + 1) dX, let \in — crn + (1 / n)X, let H = 
{A}, and let K = {/xn : n e N}. Certainly A <C \in for all n. Clearly 
inf r t{|/in |([l/2,l])} = infn{l/2rc} = 0, and A([l/2,1]) = 1 / 2 . Therefore it is not 
the case that H <C K. Since \an — <7m|| = 1/4 for all n, n ^ m, it follows that K is 
closed, i.e., v <C /i for (i/, [i) G H x Â'. 

4. Uniform Differentiability. In this section we establish a Gateaux differentiabil
ity result for continuous convex functions which is motivated by [2] and Sections 2 and 3 
of this paper. In fact, this theorem can be interpreted as generalizing 3.3 to the setting of 
an arbitrary continuous convex function. If/: X —* R is a continuous convex function, 
then Df(x,y) is defined to be \imt-^(f(x + ty) —f(x))/1, provided that this limit exists. 
Let df(a) denote the subgradient off at a, i.e. 

df(a) = {x* £ X* : x*(x) <f(a + x) -f{a), x £ X}. 

We note that df: X —• X* is a multivalued mapping which is both monotone and maximal 
[6], [7]. In the following theorem, we denote w*-convergence by —>w\ 

THEOREM 4.1. Iff: X —• R is a continuous convex function, M and N are non-empty 
subsets ofX, M is compact, and N is relatively compact, and Df(x,y) exists for x G M 
and y G N, then Df(x, y) exists uniformly for x £ M and y £ N. 

PROOF. Suppose that/, M, and N satisfy the hypotheses. Then N is compact. Note 
that Df(x, y) exists for JC £ M and y £ N. Suppose that the conclusion of the theorem is 
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false. Let (an) be a sequence from M, (bn) be a sequence from N, e be a positive number, 
and (tn) be a null sequence of positive numbers so that 

f(an + tnbn) -f(an - tnbn) - 2f(an) > tne 

for n G N. Let x* G 3/(a„ + *„£>„) and v* G d/(a„ - tnbn). Then 

x*n(-tnbn) <f(an + tnbn - tnbn) -f(an + tnbn) 

and 
yn(tnbn) <f(an - tnbn + /„£„) - / ( 0 n - tnbn) 

for each n. Combining these inequalities, we see that 

-tn(x*n - y*n,
 bn) < 2f(an) ~ f(an + tnbn) -f(an ~ tnbn) < -tnt\ 

thus (JC* — y*,bn) > e for all n. Now since df is locally bounded and M and V̂ are 
compact, we may (and do) suppose without loss of generality that (an) —> a G M, 
(bn) —> b G N, and (JC* ) and (j* ) are subnets (respectively) of (JC*) and (y*) which 
are w*-convergent. Let x*, y* G X* so that x*a -^w* x* and y*na -+

w* y*. The maximal 
monotonicity of df ensures that x*,y* G df(a). But then x*(b) — y*(b) since Df(a,b) 
exists. However, (JC* — y*,b) = lima(x*a — y* a ,^ a) > e. This contraditionguarantees 
that the desired uniformity does hold. • 
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