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Introduction. Let R be a commutative, semi-local ring. Let Onn be the group of

linear automorphisms of R2" which preserve the bilinear form " . The main
result of this paper is the following theorem. "

THEOREM A. The natural inclusion of Onn into O n + l n + 1 induces an isomorphism on
the ith homology group if only n is large enough with respect to i.

This note is a direct continuation of my [2] and the methods are the same. I will use
the notation, technical methods and some definitions from [2] without writing them down
again (especially in Section 2). It was possible to extend my result from local to semi-local
rings because of Charney [4]. She proved there that, if the poset of isotropic unimodular
vectors in R2" (see Section 1 for the definition) is highly connected, then the conclusion of
my Theorem A holds for every ring R for which the dimension of max(/?) (the maximal
spectrum of R) is finite. So in the following paper I will prove only that the poset of
isotropic unimodular vectors is highly connected for semi-local rings.

It is expected that the homologicai stability theorem for On „ is true for all rings with
finite dimension for the maximal spectrum. Unfortunately it is obvious that the methods
used in the present note cannot be applied for rings R which have dim(max(i?)) larger
than 0. Moreover my methods do not give any well expressed relation between n and i.
Charney in [4] proved the homologicai stability theorem for On „ over Dedekind domains
under the hypothesis 2J + 5 ^ n. Panin in [5] and [6] obtained similar results to Charney's
theorem under the assumption 2i + l^n using a slightly different method from that used
in [4]. Roughly speaking Charney compared the situation over Dedekind domain with
that over its field of fractions and then used well known facts for fields (of course she also
used her theorem which is mentioned above). Panin adjusted Suslin's approach to
homologicai stability problems (see [8]) to the situation with a bilinear or quadratic form
(he also used [4]). There is some hope that Charney's or Panin's method might be
extended to rings with higher dimension for the maximal spectrum. Panin in [5] and [6]
also claimed homologicai stability theorem as above for rings which had no finite residue
fields but the proof was written only in the case of an infinite field.

Section 1. Let R be a ring and qn be the bilinear form on R2" which has the matrix

[ " in the canonical basis ex,... , en,flt . . . , / „ for R2". A sequence (uj , . . . ,vk)
ln U J

of vectors from R2" is called unimodular if it generates a free direct summand of R2" of
rank k. A submodule M of R2" is called isotropic if qn\M = 0.

Let XiR2") be the set of all unimodular sequences (vlt... ,vk) in R2" which
generate isotropic submodules of R2". This set has a natural partial ordering by inclusion
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so it forms a poset (see [7] for the definition and the properties of posets). We can
consider the topological space ^(R2")] which is the geometric realization of the poset
X(R2n). In [4] Charney proved that if R is a ring with dim(max(#)) = d < °° and the space
lA'XT?2")! is highly connected for large n, then the natural inclusion On,„(/?)—» On+ln+1(R)
induces an isomorphism on the ith homology group provided / « n (see [4, Theorems 3.2
and 4.4]). Hence our goal is to prove that X(R2n) is highly connected for semi-local rings.
We will say that a poset is highly connected if its geometric realization is highly
connected.

1.1. DEFINITION. Let Y(R2n) be a simplicial complex obtained by the following rule:
(a) the set of vertices consists of all unimodular, isotropic vectors of R2";
(b) the set {vlt . . . , vk} forms a (A: — l)-simplex iff {v1, . . . , vk} generates a

Ar-dimensional free isotropic direct summand of R2".

1.2. THEOREM. If R is a semi-local ring and n » i then Y(R2") is i-connected (the sign
» always means "much bigger").

The proof of this theorem will occupy the next section. Now we will prove that
Theorem 1.2 implies Theorem A. From now on R always denotes a commutative
semi-local ring. By the previous discussion about Charney's results it is enough to show:

1.3. PROPOSITION. / / Y^R2") is i-connected and n is large enough then X(R2n) is
i-connected.

Proof. Let YiR2") be the poset of unordered sets {vx,. . . , vk}, where each
{«! , . . . ,vk) forms a simplex in Y(R2n) and Y^R2") is ordered by inclusion. Then
IYIR2")] is the same as the barycentric subdivision of Y^R2"), so high connectivity of
Y(R2n) implies that lY^/?2")! is highly connected. There is the natural map of posets
fiXiR2")^?^) which takes (i / l f . . . , vk) to {vu ..., vk}. We would like now to
apply Quillen's machinery from [7, Section 9]. We will need two more lemmas.

1.4. LEMMA. For every element {vu .. . , vk) = w e Y^/?2") the poset Y(R7n)>w is
highly connected if k « n.

Proof. We can assume that {vu . . . , vk} = {eu . . . , ek}, where eu .. . , en,
fu . . . , / „ is the canonical basis for R2". Then |y(/?2")>>v| is the barycentric subdivision of
a simplicial complex Z which is obtained by the following rule:

(a) the set of vertices consists of the simplices of Y{R}") which are of the type
{<?!,. . . ,ek, v};

(b) {eu ... ,ek, w j , . . . , {eu . . . ,ek, vs} form an (s - l)-simplex in Z iff
{eu . . . , ek,Vi,. . . , vs} forms an (s + k - l)-simplex in Y(R2n).

It is obvious that {e,, . . . , ek, v) is a vertex in Z if v =
(xu . . . , * „ , 0 , . . . , 0 ,y k + 1 , . . . ,yn) in the canonical basis eu .. . , en,fu . . . , / „ and
(xk+u ... ,xn, yk+1, . . . , yn) is a vertex for Y(R2(n~k)). So if k « n then n - k is large and
our lemma follows in the same way as Theorem 1.2.

1.5. LEMMA. For every {vu ..., vk} = w e YiR2") the poset f/w is homotopy
equivalent to a wedge of spheres of dimension k — 1.

Proof. This is an immediate consequence of [3, Theorems 4.1 and 6.1].
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So now we can finish the proof of Proposition 1.3. It is an immediate consequence of
the following lemma, which is a weaker version of [7, Theorem 9.1].

1.6. LEMMA. Let f.X-* Y be a map of posets of dimension n and let s «n. Assume
that Y is s-connected and that, for every y eY such that h(y) (the height ofy) is not larger
than s, the poset Y>y is s-connected. Moreover, assume that the poset fly is h(y)-spherical
for every y eY. Then X is s-connected.

Proof. Proceed just as in the proof of [7, Theorem 9.1].

Section 2. In this section R always denotes a commutative, semi-local ring with d
maximal ideals m 1 ( . . . , md. We will use the machinery which was developed in [2,
Sections 1 and 2] and we will use the same notation as in [2].

2.1. LEMMA. Let {vx, . . . ,vs) be an (s — \)-simplex in Y(R2"). Then there is a vector
v eR2" such that {v, vx, . . . , vs} forms an s-simplex in Y^R2") and v has fewer than
\ds + 2 coordinates not equal to 0.

We will call v "the special vector for {vlt.. . , vs}" and the way of finding v "the
special construction for {vx,.. . , vs}".

Proof. For every i = 1, . . . , d the ring Rm. is a local ring. Let {v\, . . . , v's} be the
image of {vx,... ,vs} in Y(R%). It is well known (see [1, Chapter IV]) that
span(i»i, . . . , vs) is a free s-dimensional direct summand of R2" iff for every i = l, . . . , d,
span(u'i,. . . , v's) is a free, s-dimensional direct summand of R^..

Let i[, . . . , i's be the numbers of coordinates used in some special construction for
{v'u .. . , v's} (see [2, Remark 2.5]), 1 = 1,. .. , d. Let {jl3... , ;„} be the same set as
{/}, . . . ,i], . . . ,ii, . . . , i^} if we count every coordinate only once. Let {/,-,, . . . , ;',J be
the subset of {jx, • • • , ju} which consists of the numbers such that for every 1 < q < k, jt

and j* belong to the set {jx,. .. ,ju) (* denotes the dual coordinate; see [2] for the
definition) and for every r =£ q, /,,=;,*, r, q = 1, . . . , k.

Let p i , . . . , pk be numbers such that:
(1) if i ¥=j then p, =£pj and p, ¥=p*;
(2) for every 1 < ^ < u and 1 < / < A:, p, -^jq and p, J=j*.

Let
vx = (x\,... , xi,),. . . , vs = (x\,.. . , xs

2n).
Let r be a number such that r¥=px, r¥^px,. . . ,r^pk, r+p\, r+]x, r^j*,.. . ,

Consider the following system of equations:

' x\ah + ...+ x)ak + 4 , a P l + x\xapX + ...+ xl
PkaPk + xptapi = -x\,

, + • • • + x J A A , a P i + x U a P i + • • • + *Pfipk + xSpiaPi = - * * >

'aP, = \<

ap, = -ah.,

II.

https://doi.org/10.1017/S0017089500009307 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009307


258 STANISLAW BETLEY

It is easy to see that this system of equations has a solution. Let now v be a vector
which has ah on the coordinate /*> • • • . «/„ on the coordinate /*, aPl on the coordinate p*,
ap. on the coordinate pu . . ., aPt on the coordinate pt, apt on the coordinate pk, 1 on the
coordinate r* and the rest of the coordinates 0. Then part I of our system of equations
can be rewritten as:

qn(vu v) = 0, ... ,qn(vs,v) = 0.

Part II assures us that v is isotropic. By [1, Chapter IV] we know that
span{v, w,,. . . , w,} is an (s + l)-dimensional, free direct summand of R2" because its
image in every R2^., i = 1,. . . , d, is of that type.

2.2. DEFINITION. Let Y(R2")P mean the subcomplex of Y(R2n) which is generated by
vertices which have fewer than p coordinates not equal to 0, where p is an arbitrary
natural number.

2.3. LEMMA. Let K be a finite subcomplex of Y^R2") of dimension m having fewer
than t vertices. Let A = {u,, . . . , vs} be an (s — l)-simplex in K, s ==m + 1, and let
ji> . • • , ju be as in the previous lemma. Then there exist functions a(t, m), /3(f)> y(', m)
such that if n> a(t, m) then the inclusion K-^ Y(R2n) is homotopic by an inclusion
Af-> Y(R2") to an inclusion K'-*Y(R2n), where M and K' have the following properties:

(a) vertices(M)\(vertices(M) D vertices^)) c Y^2")^, m);
(b)AiK';
(c) M has fewer than /3(f) vertices.

Proof. This lemma is almost the same as Lemma 2.8 in [2] and the proof is similar.
We will point out the differences between these two proofs without going into details.

Step I of the proof is the same for both lemmas. The only new problem which occurs
now is to find an extension of an inclusion K—*• Y(R2n) to an inclusion i:M-> Y(7?2n).

(i) If (s - 1) = m then the proof from Lemma 2.8 of [2] is still valid.
(ii) If {s - l)<m then again by an induction we can get an extension of i to Ms-X

(see [2, 2.8] for the definition of Ms_x). But now we have to do that extension very
carefully using the same method as was used in Lemma 2.19 in [2]. It means that if
wx,. . . , wq is the full set of vectors which we have added to i(K) during the construction
of i{Ms_{), then for every \<j<q there is a coordinate r; such that:

(1) the r;th coordinate of Wj is equal to 1;
(2) the coordinates ry and r* in wk are equal to 0 for k # / ;
(3) for \<j<q, rj¥=/,, . . . , ry¥=/„, r; =£/?, . . . , r, =£/*.

Then i(vA) is obtained by solving the same system of equations as was used in 2.1 if we
take the set {vu . . . ,vs, wu ..., wq) instead of {vx, . . . , vs}.

Obviously it is easy to satisfy (l)-(3) because q < fi(t) and n can be arbitrarily large.

2.4. PROPOSITION. Let i:L—> Yft2") be an embedding of some simplicial complex of
dimension m into YiR2"). If n is large enough then there is a triangulation of Lx I, a
function y'{m) and a simplicial map I.Lx /—» y(/?2") such that:

(a) Lx{0}=L;

Proof. This proof is precisely the same as the proof of Proposition 2.9 from [2]. We
have only to use our Lemma 2.4 instead of Lemma 2.8 from [2].
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2.5. REMARK. The function y'(m) in 2.4 came from the function y(m, t) of 2.3. But
now, because of the construction, the number t is precisely determined by the number m
so the function y' depends only on m.

2.6. DEFINITION. Let X be a simplicial complex spanned by the set of vertices {v,}16/.
We say that the complex X satisfies the condition Ek if for every subset {«/}"=i of {u,},6/,
n^k, there exists a vertex v e {u,},6/ such that X contains the join of v and the
subcomplex spanned by the set {vj}"=l.

In [2, Proposition 1.2] we proved that if a simplicial complex X satisfies the condition
Ek and k is sufficiently large with respect to s then X is 5-connected. Now we have the
following remark.

2.7. REMARK. If k. y'(m) < n then the complex Y(/?2")y.(m) satisfies the condition
Ek.

Proof. Every vertex of Y(R2")Y^m) has at most y'(m) coordinates not equal to 0.
Hence if k. y'{m)<n then for every vu . . . ,vke Y(i?2n)y(m) there exists a vector v from
the canonical basis for R2" such that the join of v and the subcomplex spanned by
{vu .. . , vk) is contained in Y(R2n)Y^m).

Now we are able to prove our Theorem 1.2.

Proof. If A: < i and n is sufficiently large with respect to i, then by 1.3 of [2] and 2.4
every/:5*^- Y^R2") is homotopic t o / ' :S*-> Y(R2n)Y.(m). But then by 1.2 of [2] and 2.7,
/ is homotopic to 0.
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