
Proceedings of the Edinburgh Mathematical Society (2013) 56, 853–871
DOI:10.1017/S0013091513000606

MAXIMAL REGULARITY FOR DEGENERATE DIFFERENTIAL
EQUATIONS WITH INFINITE DELAY IN PERIODIC

VECTOR-VALUED FUNCTION SPACES

CARLOS LIZAMA1 AND RODRIGO PONCE2

1Departamento de Matemática y Ciencia de la Computación,
Universidad de Santiago de Chile, Casilla 307-Correo 2,

Santiago, Chile (carlos.lizama@usach.cl)
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Abstract Let A and M be closed linear operators defined on a complex Banach space X and let
a ∈ L1(R+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary
and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equation

d
dt

(Mu(t)) = Au(t) +
∫ t

−∞
a(t − s)Au(s) ds + f(t), t > 0,

with initial condition Mu(0) = Mu(2π), solely in terms of spectral properties of the data. Our results are
obtained in the scales of periodic Besov, Triebel–Lizorkin and Lebesgue vector-valued function spaces.
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1. Introduction

In this paper, we study maximal regularity in Lebesgue, Besov and Triebel–Lizorkin
vector-valued function spaces for the following class of differential equation with infinite
delay:

d
dt

(Mu(t)) = Au(t) +
∫ t

−∞
a(t − s)Au(s) ds + f(t), 0 � t � 2π, (1.1)

where (A, D(A)) and (M, D(M)) are (unbounded) closed linear operators defined on a
Banach space X, with D(A) ⊆ D(M), a ∈ L1(R+) a scalar-valued kernel and f an
X-valued function defined on [0, 2π].

The model (1.1) corresponds to problems related to viscoelastic materials, that is,
materials whose stresses at any instant depend on the complete history of strains that
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the material has undergone (see [21]) or heat conduction with memory. For more details,
see, for example, [14,15,23].

The recent linear theory of maximal regularity is not only important in its own right,
but it is also the indispensable basis for the theory of nonlinear evolution equations (see,
for example, [1,13,23] and references therein). In the case when M = I (the identity in
X) and a ≡ 0, (1.1) with periodic initial conditions has been studied by Arendt, Bu and
Kim, and characterizations of the maximal regularity in Lebesgue, Besov and Triebel–
Lizorkin vector-valued function spaces have been obtained using the resolvent set of A

(see [3,4,8]).
On the other hand, characterizations of maximal regularity for (1.1) when M = I and

a ∈ L1(R) have been obtained by Keyantuo and Lizama [18] in Lebesgue and Besov
vector-valued function spaces and by Bu and Fang [7] in Triebel–Lizorkin vector-valued
spaces. We note that periodic solutions have also been studied by other authors, for
example, by Burton and Zhang [11] using topological methods.

Characterizations of maximal regularity in these vector-valued function spaces for the
degenerate abstract equation (1.1) with periodic initial conditions

Mu(0) = Mu(2π) (1.2)

and a ≡ 0 have been studied recently by the authors [22]. The method used in [22] is
based on the results given in [3,4,8], for operator-valued Fourier multipliers in Lebesgue,
Besov and Triebel–Lizorkin vector-valued function spaces. It is worthwhile mentioning
that this method enables us to improve and extend results on degenerate abstract equa-
tions obtained previously in the literature (cf. [5,22]).

In this paper, we apply the same method to obtain characterizations of maximal reg-
ularity for (1.1) in the above-mentioned vector-valued function spaces. The advantage
of our approach is clear. We recover, as special cases, the results in [3, 4, 7, 8, 18, 22].
In addition, we are also able to improve the results in [22], where the closedness of the
operator ikM − A is assumed, for all k ∈ Z, to prove boundedness of (ikM − A)−1.
Indeed, we give a simple argument to show that this condition is not necessary under the
presence of maximal regularity (see the proof of Theorem 3.4).

It is remarkable that in the characterizations that we obtain, no conditions on the
commutativity of operators A and M , or on the existence of bounded inverses of A or
M , are needed. Also, in the case of periodic Besov and Triebel–Lizorkin function spaces,
no geometrical assumption on the underlying Banach space X is needed.

The plan of the paper is the following: after some preliminaries in § 2, assuming that
X have the unconditional martingale difference property (UMD), we characterize in § 3
the uniqueness and existence of a strong Lp-solution for the problem (1.1), (1.2) solely
in terms of a property of R-boundedness for the sequence of operators ikM(ikM − (1 +
ã(ik))A)−1. Here the tilde denotes the Laplace transform of a(t). In § 4, we obtain a
characterization in the context of Besov spaces. We notice that, as a particular case
of this characterization, the following simple condition to guarantee the existence and
uniqueness of solutions in Hölder spaces Cs((0, 2π); X), 0 < s < 1, in general Banach
spaces X, is obtained.
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Theorem 1.1. Let s > 0 and A : D(A) ⊆ X → X, M : D(M) ⊆ X → X be closed lin-
ear operators on a Banach space X. Suppose that D(A) ⊆ D(M), the sequence {ã(ik)}k∈Z

is 2-regular and (ikM−(1+ã(ik))A) are closed operators for all k ∈ Z. Then, the following
assertions are equivalent:

(i) for every f ∈ Cs((0, 2π); X) there is a unique strong Cs-solution of (1.1) such that
Mu(0) = Mu(2π);

(ii) (ikM − (1 + ã(ik))A)−1 exists for all k ∈ Z and

sup
k∈Z

‖ikM(ikM − (1 + ã(ik))A)−1‖ < ∞.

In § 5 we give the corresponding characterization in case of the scale of Triebel–Lizorkin
vector-valued spaces. The difference with the scale of Besov vector-valued spaces is only
that we need more regularity of the sequence ã(ik). In § 6, we apply our results to two
concrete examples.

2. Preliminaries

Given 1 � p < ∞, we denote by Lp
2π(R, X) the space of all 2π-periodic Bochner measur-

able X-valued functions f , such that the restriction of f to [0, 2π] is p-integrable. For a
function f ∈ L1

2π(R, X) we denote by f̂(k) the kth Fourier coefficient of f :

f̂(k) =
1
2π

∫ 2π

0
e−iktf(t) dt

for all k ∈ Z. We remark that the Fourier coefficients determine the function f , that is,
f̂(k) = 0 for all k ∈ Z if and only if f(t) = 0 almost everywhere (a.e.). Let X, Y be
Banach spaces. We denote by B(X, Y ) the space of all bounded linear operators from X

to Y . When X = Y , we write simply B(X). For a linear operator A on X, we denote its
domain by D(A) and its resolvent set by ρ(A). We denote by [D(A)] the domain of A

equipped with the graph norm.
We begin with some preliminaries about operator-valued Fourier multipliers. More

information can be found in [4] in the periodic case; for the non-periodic case, see, for
example, [25].

Definition 2.1 (Arendt and Bu [3]). For 1 � p < ∞, we say that a sequence
{Mk}k∈Z ⊂ B(X, Y ) is an Lp-multiplier if, for each f ∈ Lp

2π(R, X), there exists u ∈
Lp

2π(R, Y ) such that
û(k) = Mkf̂(k) for all k ∈ Z.

It follows from the uniqueness theorem of the Fourier series that u is uniquely deter-
mined by f .

For j ∈ N, denote by rj the jth Rademacher function on [0, 1], i.e. rj(t) =
sgn(sin(2jπt)), and for x ∈ X, we denote by rj ⊗x the vector-valued function t → rj(t)x.
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Definition 2.2. A family of operators T ⊂ B(X, Y ) is called R-bounded if there is a
constant Cp > 0, p ∈ [1,∞), such that for each N ∈ N, Tj ∈ T , xj ∈ X, j = 1, . . . , N

the inequality
∥∥∥∥

N∑
j=1

rj ⊗ Tjxj

∥∥∥∥
Lp((0,1);Y )

� Cp

∥∥∥∥
N∑

j=1

rj ⊗ xj

∥∥∥∥
Lp((0,1);X)

(2.1)

is valid.

If (2.1) holds for some p ∈ [1,∞), then it holds for all p ∈ [1,∞). The smallest Cp

in (2.1) is called the R-bound of T ; we denote it by Rp(T ).
We note that large classes of classical operators are R-bounded (see [16] and references

therein). Hence, this assumption is not too restrictive for the applications that we consider
in this paper.

Remark 2.3. Several properties of R-bounded families can be found in [13]. For the
reader’s convenience, we summarize here some results from [13, § 3].

(a) If T ⊂ B(X, Y ) is R-bounded, then it is uniformly bounded, with

sup{‖T‖ : T ∈ T } � Rp(T ).

(b) The definition of R-boundedness is independent of p ∈ [1,∞).

(c) When X and Y are Hilbert spaces, T ⊂ B(X, Y ) is R-bounded if and only if T is
uniformly bounded.

(d) Let X, Y be Banach spaces and let T ,S ⊂ B(X, Y ) be R-bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}

is R-bounded as well, and Rp(T + S) � Rp(T ) + Rp(S).

(e) Let X, Y , Z be Banach spaces, and let T ⊂ B(X, Y ) and S ⊂ B(Y, Z) be R-
bounded. Then

ST = {ST : T ∈ T , S ∈ S}
is R-bounded, and Rp(ST ) � Rp(S)Rp(T ).

(f) Let X, Y be Banach spaces and let T ⊂ B(X, Y ) be R-bounded. If {αk}k∈Z is a
bounded sequence, then {αkT : T ∈ T , k ∈ Z} is R-bounded.

Proposition 2.4 (Arendt and Bu [3]). Let X be a Banach space and let {Mk}k∈Z

be an Lp-multiplier, where 1 � p < ∞. Then, the set {Mk : k ∈ Z} is R-bounded.

A Banach space X is said to be UMD if the Hilbert transform is bounded on Lp(R, X)
for some (and then all) p ∈ (1,∞). Here the Hilbert transform H of a function f ∈
S(R, X), the Schwarz space of rapidly decreasing X-valued functions, is defined by

Hf :=
1
π

PV

(
1
t

)
∗ f.
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These spaces are also called HT spaces. It is a well known that the set of Banach
spaces of class HT coincides with the class of UMD spaces. This has been shown by
Bourgain [6] and Burkholder [9]. Some examples of UMD spaces include the Hilbert
spaces, Sobolev spaces W s

p (Ω), 1 < p < ∞, and Lebesgue spaces Lp(Ω, µ), 1 < p < ∞,
Lp(Ω, µ; X), 1 < p < ∞, when X is a UMD space. Moreover, a UMD space is reflexive
and therefore, L1(Ω, µ), L∞(Ω, µ) (in the infinite-dimensional case) and Cs([0, 2π];X)
are not UMD. More information on UMD spaces can be found in [6,9,10].

We recall the following theorem, due to Arendt and Bu [3, Theorem 1.3], in the context
of UMD spaces.

Theorem 2.5 (Arendt and Bu [3]). Let X, Y be UMD spaces and let {Mk}k∈Z ⊆
B(X, Y ). If the sets {Mk}k∈Z and {k(Mk+1 − Mk)}k∈Z are R-bounded, then {Mk}k∈Z is
an Lp-multiplier for 1 < p < ∞.

We shall need the following lemmas.

Lemma 2.6 (Arendt and Bu [3]). Let f, g ∈ Lp
2π(R; X), where 1 � p < ∞ and A

is a closed operator on a Banach space X. Then, the following assertions are equivalent:

(i) f(t) ∈ D(A) and Af(t) = g(t) a.e.;

(ii) f̂(k) ∈ D(A) and Af̂(k) = ĝ(k) for all k ∈ Z.

Lemma 2.7 (Lizama and Ponce [22]). Let M be a closed operator, let u ∈
Lp

2π(R; [D(M)]) and u′ ∈ Lp
2π(R; X) for 1 � p < ∞. Then, the following assertions

are equivalent:

(i) ∫ 2π

0
(Mu)′(t) dt = 0

and there exist x ∈ X such that

Mu(t) = x +
∫ t

0
(Mu)′(s) ds

a.e. on [0, 2π];

(ii) (̂Mu)′(k) = ikMû(k) for all k ∈ Z.

Let a be a complex valued function. We define the set

ρM,a(A) = {λ ∈ C : (λM − (1 + a(λ))A) : D(A) ∩ D(B) → X

is invertible and (λM − (1 + a(λ))A)−1 ∈ B(X)},

and denote by σM,a(A) the complementary set C \ ρM,a(A). If M = I is the identity
operator on X and a ≡ 0, we simply denote the set ρM,a(A) by ρ(A), and as usual we
call this set the resolvent set of A. Denote by ã(λ) the Laplace transform of a. In what
follows, we always assume that ã(ik) exists for all k ∈ Z.
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Henceforth, we use the following notation:

ak := ã(ik),

and we assume that ak �= −1 for all k ∈ Z.

Remark 2.8. Note that by the Riemann–Lebesgue lemma we have that the sequences
{ak}k∈Z and {1/(α + ak)}k∈Z, α �= ak(k ∈ Z), are bounded.

Finally, from [20] we recall the concept of n-regularity for n = 1, 2, 3. The general
notion of n-regularity is the discrete analogue for the notion of n-regularity related to
Volterra integral equations (see [23, Chapter I, § 3.2]).

Definition 2.9. A sequence {ck}k∈Z ⊂ C \ {0} is said to be

(i) 1-regular if the sequence {
k

(ck+1 − ck)
ck

}
k∈Z

is bounded,

(ii) 2-regular if it is 1-regular and the sequence
{

k2 (ck+1 − 2ck + ck−1)
ck

}
k∈Z

is bounded,

(iii) 3-regular if it is 2-regular and the sequence
{

k3 (ck+2 − 3ck+1 + 3ck − ck−1)
ck

}
k∈Z

is bounded.

Note that if {ck}k∈Z is 1-regular, then lim|k|→∞ ck+1/ck = 1. For more details of
n-regularity sequences, see [20].

3. Maximal regularity on vector-valued Lebesgue spaces

To characterize the maximal regularity, we begin with the study of the relation between
multipliers and R-boundedness of a sequences of operators. Consider the problem

d
dt

Mu(t) = Au(t) +
∫ t

−∞
a(t − s)Au(s) ds + f(t), 0 � t � 2π,

Mu(0) = Mu(2π),

⎫⎪⎬
⎪⎭ (3.1)

where (A, D(A)) and (M, D(M)) are closed linear operators on X, D(A) ⊆ D(M),
a ∈ L1(R+) is a scalar-valued kernel and f ∈ Lp

2π(R, X), p � 1.
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From [22], we recall that, for a given closed operator M , and 1 � p < ∞, the set
H1,p

per,M (R; [D(M)]) is defined by

H1,p
per,M (R; [D(M)]) = {u ∈ Lp

2π(R; [D(M)]) : ∃v ∈ Lp
2π(R; X),

such that v̂(k) = ikMû(k) for all k ∈ Z}.

When M = I, we denote this by H1,p
per(R; X) (see [3]).

Lemma 3.1. Let X be a UMD space. Suppose that the sequence {ak}k∈Z is 1-regular.
Then, {I/(1 + ak)}k∈Z is an Lp-multiplier.

Proof. By Remarks 2.8 and 2.3 (f), {I/(1 + ak)}k∈Z is R-bounded. Moreover,

k

(
1

1 + ak+1
− 1

1 + ak

)
= −k

(
ak+1 − ak

ak

)
ak

1
1 + ak+1

1
1 + ak

.

Since {ak}k∈Z is 1-regular, we conclude the proof of the lemma by using Remark 2.8 and
Theorem 2.5. �

The following proposition is an extension of [22, Proposition 3.2].

Proposition 3.2. Suppose that the sequence {ak}k∈Z is 1-regular. Let A : D(A) ⊆
X → X and M : D(M) ⊆ X → X be linear closed operators defined on a UMD space
X. Suppose that D(A) ⊆ D(M). Then, the following assertions are equivalent:

(i) {ik}k∈Z ⊂ ρM,ã(A) and {ikM(ikM − (1 + ak)A)−1}k∈Z is an Lp-multiplier for
1 < p < ∞;

(ii) {ik}k∈Z ⊂ ρM,ã(A) and {ikM(ikM − (1 + ak)A)−1}k∈Z is R-bounded.

Proof. Define Nk := (ikM −(1+ak)A)−1 and Mk := ikM(ikM −(1+ak)A)−1, k ∈ Z.
By the closed graph theorem we can show that if ik ∈ ρM,ã(A), then Mk are bounded
operators for each k ∈ Z. By Proposition 2.4 it follows that (i) implies (ii). Conversely,
by Theorem 2.5, it is sufficient to prove that the set {k(Mk+1 − Mk)}k∈Z is R-bounded.
In fact, we note the following:

k[Mk+1 − Mk] = k[i(k + 1)MNk+1 − ikMNk]

= ikMNk+1[(k + 1)[ikM − (1 + ak)A] − k[i(k + 1)M − (1 + ak+1)A]]Nk

= ikMNk+1

[
k

(ak+1 − ak)
1 + ak

]
(1 + ak)ANk − Mk(1 + ak)ANk. (3.2)

Since {ak}k∈Z is 1-regular, the sequence
{

k

(
ak+1 − ak

1 + ak

)}
k∈Z

is bounded. The identity (1 + ak)ANk = Mk − I implies that {(1 + ak)ANk}k∈Z is
R-bounded. We conclude the proof by using Remark 2.3. �
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Next, we introduce the following definition of the solution of (3.1).

Definition 3.3. We say that a function u ∈ H1,p
per,M (R; [D(M)]) ∩ Lp

2π(R; [D(A)]) is a
strong Lp-solution of (3.1) if u(t) ∈ D(A) and (3.1) holds for almost every t ∈ [0, 2π].

Let a ∈ L1(R+) and let A be a closed operator defined on X. For u ∈ Lp
2π(R; [D(A)])

define

F (t) := (a ∗̇ Au)(t) =
∫ t

−∞
a(t − s)Au(s) ds.

An easy computation shows that F̂ (k) = Aã(ik)û(k), k ∈ Z (where the hat denotes
Fourier transform). It is remarkable that, in the case when a ≡ 0, the next theorem
improves the main result in [22].

Theorem 3.4. Let X be a UMD space. Let A : D(A) ⊆ X → X and M : D(M) ⊆
X → X be linear closed operators. Suppose that D(A) ⊆ D(M) and the sequence
{ak}k∈Z is 1-regular. Then, the following assertions are equivalent:

(i) for every f ∈ Lp
2π(R, X), there exists a unique strong Lp-solution of (3.1);

(ii) {ik}k∈Z ⊂ ρM,ã(A), and {ikM(ikM − (1 + ak)A)−1}k∈Z is an Lp-multiplier for
1 < p < ∞;

(iii) {ik}k∈Z ⊂ ρM,ã(A), and {ikM(ikM − (1 + ak)A)−1}k∈Z is R-bounded.

Proof. (i) ⇒ (ii) Let k ∈ Z and let y ∈ X. Define f(t) = eikty. By hypothesis, there
exists u ∈ H1,p

per,M (R; [D(M)]) ∩ Lp
2π(R; [D(A)]) such that u(t) ∈ D(A) and (Mu)′(t) =

Au(t) + (a ∗̇ Au)(t) + f(t). Taking the Fourier transforms of both sides, we have û(k) ∈
D(A) and

ikMû(k) = (1 + ak)Aû(k) + f̂(k)

= (1 + ak)Aû(k) + y.

Thus, (ikM − (1+ak)A)û(k) = y for all k ∈ Z and we conclude that (ikM − (1+ak)A)
is surjective. Let x ∈ D(A). If (ikM − (1 + ak)A)x = 0, then u(t) = eiktx defines a
periodic solution of (3.1). Hence, u ≡ 0 by the assumption of uniqueness, and thus x = 0.
Therefore, (ikM − (1 + ak)A) is bijective.

Now, we must prove that (ikM − (1 + ak)A)−1 is a bounded operator for all k ∈ Z.
Suppose that (ikM − (1 + ak)A)−1 has no bounded inverse. Then, for each k ∈ Z there
exists a sequence (yn,k)n∈Z ⊂ X such that ‖yn,k‖ � 1 and

‖(ikM − (1 + ak)A)−1yn,k‖ � n2 for all n ∈ Z.

Thus, we obtain that the sequence xk := yk,k satisfies

‖(ikM − (1 + ak)A)−1xk‖ � k2 for all k ∈ Z.

Let
f(t) :=

∑
k∈Z\{0}

eikt xk

k2 .
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Observe that f ∈ Lp
2π(R, X) and so, by hypothesis, there exists a unique strong solution

u ∈ Lp
2π(R, X) of (3.1). One can check that

u(t) =
∑

k∈Z\{0}
(ikM − (1 + ak)A)−1eikt xk

k2 .

Since ∥∥∥∥(ikM − (1 + ak)A)−1eikt xk

k2

∥∥∥∥ � 1 for all k ∈ Z \ {0},

we obtain u �∈ Lp
2π(R, X): a contradiction. Thus, we conclude that (ikM − (1 + ak)A)−1

is a bounded operator for all k ∈ Z, and therefore ik ∈ ρM,ã(A) for all k ∈ Z.
Using the closed graph theorem, we have that there exists a constant C > 0 indepen-

dent of f ∈ Lp
2π(R; X) such that

‖(Mu)′‖Lp + ‖a ∗̇ Au‖Lp + ‖Au‖Lp � C‖f‖Lp .

Note that for f(t) = eitky, y ∈ X, the solution u of (3.1) is given by

u(t) = (ikM − (1 + ak)A)−1eikty.

Hence,
‖ikM(ikM − (1 + ak)A)−1y‖ � C‖y‖.

We obtain that, for k ∈ Z, ikM(ikM − (1 + ak)A)−1 is a bounded operator. Let
f ∈ Lp

2π(R, X). By hypothesis, there exists u ∈ H1,p
per,M (R; [D(M)]) ∩ Lp

2π(R; [D(A)]) such
that u(t) ∈ D(A) and (Mu)′(t) = Au(t)+(a ∗̇ Au)(t)+f(t). Taking the Fourier transform
of both sides, and using that (ikM − (1 + ak)A) is invertible, we have û(k) ∈ D(A) and
û(k) = (ikM − (1 + ak)A)−1f̂(k). Now, since u ∈ H1,p

per,M (R; [D(M)]) and by the defini-
tion of H1,p

per,M (R; [D(M)]), there exists v ∈ Lp
2π(R, X) such that v̂(k) = ikMû(k) for all

k ∈ Z. Therefore, we have

v̂(k) = ikMû(k) = ikM(ikM − (1 + ak)A)−1f̂(k).

(ii) ⇒ (i) Define Mk = ikM(ikM −(1+ak)A)−1 and Nk = (ikM −(1+ak)A)−1. Suppose
that {ik}k∈Z ⊂ ρM,ã(A), and that {Mk}k∈Z is an Lp-multiplier. For f ∈ Lp

2π(R, X) there
exists u ∈ Lp

2π(R, X) such that û(k) = ikM(ikM − (1 + ak)A)−1f̂(k) for all k ∈ Z. The
identity I = Mk − (1 + ak)ANk implies that

û(k) = ikM(ikM − (1 + ak)A)−1f̂(k)

= (I + (1 + ak)ANk)f̂(k).

So, we obtain ̂(u − f)(k) = (1 + ak)ANkf̂(k). By Lemma 3.1, {I/(1 + ak)}k∈Z is an
Lp-multiplier. Thus, for u − f ∈ Lp

2π(R, X) there exists v ∈ Lp
2π(R, X) such that

v̂(k) =
1

1 + ak

̂(u − f)(k) = ANkf̂(k).
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Since 0 ∈ ρM,ã(A), we obtain that A−1 ∈ B(X), and therefore w := A−1v ∈ Lp
2π(R, X)

and ŵ(k) = Nkf̂(k). Hence, ikMŵ(k) − (1 + akA)ŵ(k) = f̂(k). Now, observe that for all
k ∈ Z we have

û(k) = ikM(ikM − (1 + ak)A)−1f̂(k) = ikMŵ(k).

Thus w ∈ H1,p
per,M (R, [D(M)]) ∩ Lp

2π(R; [D(A)]). Moreover, Mw(0) = Mw(2π), since
w(0) = w(2π) and w(t) ∈ D(A). Since A and M are closed operators and

(̂Mw)′(k) = ikMŵ(k) = (1 + ak)Aŵ(k) + f̂(k) for all k ∈ Z,

one has (Mw)′(t) = Aw(t) + (a ∗̇ Au)(t) + f(t) a.e by Lemmas 2.6 and 2.7. Thus, we
conclude that w is a strong Lp-solution of (3.1).

Finally, to see the uniqueness, let u ∈ H1,p
per,M (R, [D(M)]) ∩ Lp

2π(R, [D(A)]) such that
(Mu)′(t) = Au(t) + (a ∗̇ Au)(t). Taking the Fourier transforms of both sides, we have
û(k) ∈ D(A) and (ikM − (1 + ak)A)û(k) = 0 for all k ∈ Z. Since (ikM − (1 + ak)A) is
invertible for all k ∈ Z, we obtain û(k) = 0 for all k ∈ Z, and thus u ≡ 0.

(ii) ⇔ (iii) See Proposition 3.2. �

In the Hilbert case, we obtain a simple condition for existence and uniqueness of
solutions of (3.1). Since in Hilbert spaces the concepts of R-boundedness and boundedness
are equivalent [13], the proof of the next corollary follows from Theorem 3.4.

Corollary 3.5. Let H be a Hilbert space and let A : D(A) ⊂ H → H and M : D(M) ⊂
H → H be closed linear operators satisfying D(A) ⊆ D(M). Suppose that the sequence
{ak}k∈Z is 1-regular. Then, for 1 < p < ∞, the following assertions are equivalent:

(i) for every f ∈ Lp
2π(R, H), there exists a unique strong Lp-solution of (3.1);

(ii) {ik}k∈Z ⊂ ρM,ã(A) and supk∈Z
‖ikM(ikM − (1 + ak)A)−1‖ < ∞.

Note that the solution u(·) given in Theorem 3.4 satisfies the following maximal regu-
larity property.

Corollary 3.6. In the context of Theorem 3.4, if condition (iii) is fulfilled, we have
(Mu)′, Au, a ∗̇ Au ∈ Lp

2π(R, X). Moreover, there exists a constant C > 0 independent of
f ∈ Lp

2π(R; X) such that

‖(Mu)′‖Lp + ‖Au‖Lp + ‖a ∗̇ Au‖Lp � C‖f‖Lp . (3.3)

Remark 3.7. Fejer’s theorem (see [3, Proposition 1.1]) can be used to construct the
solution u given in Theorem 3.4. More precisely, if Mk = ikM(ikM−(1+ak)A)−1 satisfies
condition (ii) or (iii) in Theorem 3.4, then for f ∈ Lp

2π(R, X) the solution u ∈ Lp
2π(R, X)

of (3.1) is given by

u(·) = lim
n→∞

1
n + 1

n∑
m=0

m∑
k=−m

ek ⊗ Mkf̂(k),

where ek(t) := eikt, t ∈ R, and the convergence holds in Lp
2π(R, X).
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4. Maximal regularity on Hölder and Besov spaces

In this section, we formulate analogous theorems to those in the above section, in the
context of Hölder and Besov spaces.

Besov spaces form one class of function spaces that are of special interest. The relatively
complicated definition is recompensed by useful applications to differential equations
(see [2] for a concrete model).

We consider solutions to (3.1) in Bs
p,q((0, 2π); X), the vector-valued periodic Besov

spaces for 1 � p � ∞, s > 0. It is remarkable that in this case there are no geometrical
conditions on the Banach space X. For the definition and main properties of these spaces
we refer to [4,19]. For the scalar case, see [12,24]. Contrary to the Lp case, the multiplier
theorems established for vector-valued Besov spaces are valid for arbitrary Banach spaces
X (see [1,4,17]). Note also that, for 0 < s < 1, Bs

∞,∞ is the usual Hölder space Cs. We
now summarize some useful properties of Bs

p,q((0, 2π); X). See [4, § 2] for a proof.

(i) Bs
p,q((0, 2π); X) is a Banach space.

(ii) If s > 0, then Bs
p,q((0, 2π); X) ↪→ Lp((0, 2π); X), and the natural injection from

Bs
p,q((0, 2π); X) into Lp((0, 2π); X) is a continuous linear operator.

(iii) Let s > 0. Then f ∈ Bs+1
p,q ((0, 2π); X) if and only if f is differentiable a.e. and

f ′ ∈ Bs
p,q((0, 2π); X).

We begin with the definition of operator-valued Fourier multipliers in the context of
periodic Besov spaces.

Definition 4.1. Let 1 � p, q � ∞, s > 0. A sequence {Mk}k∈Z ⊂ B(X, Y ) is a
Bs

p,q-multiplier if for each f ∈ Bs
p,q((0, 2π); X) there exists a function g ∈ Bs

p,q((0, 2π); Y )
such that

ĝ(k) = Mkf̂(k), k ∈ Z.

Definition 4.2 (Keyantuo et al . [20]). We say that {Mk}k∈Z ⊂ B(X, Y ) satisfies
the Marcinkiewicz condition of order 2 if

sup
k∈Z

‖Mk‖ < ∞, sup
k∈Z

‖k(Mk+1 − Mk)‖ < ∞, (4.1)

sup
k∈Z

‖k2(Mk+1 − 2Mk + Mk−1)‖ < ∞. (4.2)

We recall the following operator-valued Fourier multiplier theorem on Besov spaces.

Theorem 4.3 (Arendt and Bu [4]). Let X, Y be Banach spaces and suppose
{Mk}k∈Z ⊆ B(X, Y ) satisfies the Marcinkiewicz condition of order 2. Then, for 1 �
p, q � ∞, s ∈ R, {Mk}k∈Z is a Bs

p,q-multiplier.

The following proposition is analogous to Proposition 3.2.
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Proposition 4.4. Let A : D(A) ⊆ X → X, M : D(M) ⊆ X → X be linear closed
operators on a Banach space X. Suppose that D(A) ⊆ D(M) and the sequence {ak}k∈Z

is 2-regular. Then, the following assertions are equivalent:

(i) {ik}k∈Z ⊂ ρM,ã(A), and {ikM(ikM − (1 + ak)A)−1}k∈Z is a Bs
p,q-multiplier for

1 � p, q � ∞;

(ii) {ik}k∈Z ⊂ ρM,ã(A), and supk∈Z
‖ikM(ikM − (1 + ak)A)−1‖ < ∞.

Proof. (i) ⇒ (ii) This follows the same lines as the proof in [18, Proposition 3.4].

(ii) ⇒ (i) For k ∈ Z, define Mk = ikM(ikM−(1+ak)A)−1 and Nk = (ikM−(1+ak)A)−1.
From the identity (3.2) we obtain

sup
k∈Z

‖k(Mk+1 − Mk)‖ < ∞, (4.3)

proving (4.1). To verify (4.2), note that

k2[Mk+1 − 2Mk + Mk−1]

= ik2M [(k + 1)Nk+1 − 2kNk + (k − 1)Nk−1]

= ik2MNk+1[(k + 1)N−1
k − 2kN−1

k+1 + (k − 1)N−1
k+1Nk−1N

−1
k ]Nk

= ik2MNk+1[(k + 1)N−1
k − 2k[(ikM − (1 + ak)A) − (ak+1 − ak)A + iM ]

+ (k − 1)[(i(k − 1)M − (1 + ak−1)A)

+ 2iM − (ak+1 − ak−1)A]Nk−1N
−1
k ]Nk

= ik2MNk+1[(k + 1)N−1
k − 2kN−1

k + 2k(ak+1 − ak)A − 2ikM

+ [(k − 1)N−1
k−1 + 2i(k − 1)M − (k − 1)(ak+1 − ak−1)A]Nk−1N

−1
k ]Nk

= ik2MNk+1[(k + 1)I − 2kI + 2k(ak+1 − ak)ANk − 2ikMNk

+ [(k − 1)I + 2i(k − 1)MNk−1 − (k − 1)(ak+1 − ak−1)ANk−1]]

= ik2MNk+1[2k(ak+1 − ak)ANk − 2(Mk − Mk−1) − (k − 1)(ak+1 − ak−1)ANk−1]

= ikMNk+1[2k2(ak+1 − ak)ANk − 2k(Mk − Mk−1)

− k(k − 1)(ak+1 − ak−1)ANk−1]

= ikMNk+1

[
2k2 (ak+1 − ak)

1 + ak
(Mk − I) − 2k(Mk − Mk−1)

− k(k − 1)
(ak+1 − ak−1)

1 + ak−1
(Mk−1 − I)

]
.

Using the identities

2k2(ak+1 − ak) = k2(ak+1 − 2ak + ak−1) + k2(ak+1 − ak−1)

and

k(k − 1)(ak+1 − ak−1) = k2(ak+1 − ak−1) − k(ak+1 − ak−1),
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we obtain

2k2 (ak+1 − ak)
1 + ak

[Mk − I] − k(k − 1)
(ak+1 − ak−1)

1 + ak−1
[Mk−1 − I]

= k2 (ak+1 − 2ak + ak−1)
1 + ak

[Mk − I]

+ k2 (ak+1 − ak−1)
1 + ak

[
(Mk − Mk−1) + (ak − ak−1)I + ak−1Mk − akMk−1

1 + ak−1

]

+ k
(ak+1 − ak−1)

1 + ak−1
[Mk−1 − I]

= k2 (ak+1 − 2ak + ak−1)
1 + ak

[Mk − I]

+ k
(ak+1 − ak−1)

1 + ak

[
1

1 + ak−1
k(Mk − Mk−1) + k

(ak − ak−1)
1 + ak−1

I

+
k

1 + ak−1
[ak−1Mk − akMk−1]

]

+ k
(ak+1 − ak−1)

1 + ak−1
[Mk−1 − I].

Since the identities
k

1 + ak−1
[ak−1Mk − akMk−1] =

ak−1

1 + ak−1
k[Mk − Mk−1] + k

(ak−1 − ak)
1 + ak−1

Mk−1,

k
(ak+1 − ak−1)

1 + ak
= k

(ak+1 − ak)
1 + ak

+
k

k − 1
(k − 1)

(ak − ak−1)
ak−1

ak−1
1

1 + ak
,

k
(ak+1 − ak−1)

1 + ak−1
= k

(ak+1 − ak)
1 + ak−1

+ k
(ak − ak−1)
1 + ak−1

,

and

k[Mk − Mk−1] =
k

k − 1
(k − 1)[Mk − Mk−1]

are valid, and from the fact that {k(Mk+1−Mk)}k∈Z is bounded and {ak}k∈Z is 2-regular,
we conclude from the above identities and Remark 2.8 that

sup
k∈Z

‖k2(Mk+1 − 2Mk + Mk−1)‖ < ∞. (4.4)

Thus, {Mk}k∈Z, satisfies the Marcinkiewicz condition of order 2 and therefore, by The-
orem 4.3, {Mk}k∈Z is a Bs

p,q-multiplier. �

Lemma 4.5. Let X be a Banach space. Suppose that the sequence {ak}k∈Z is
2-regular. Then, {I/(1 + ak)}k∈Z is a Bs

p,q-multiplier for 1 � p, q � ∞.

Proof. Define mk := 1/(1 + ak), k ∈ Z. By Remark 2.8, the sequence {mk}k∈Z is
bounded. Moreover, {mk}k∈Z satisfies the identities

k[mk+1 − mk] = −k
ak+1 − ak

1 + ak

1
1 + ak+1
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and

k2[mk+1 − 2mk + mk−1] = − 1
(1 + ak+1)(1 + ak)(1 + ak−1)

k2(ak+1 − 2ak + ak−1)

+
2

(1 + ak+1)(1 + ak)(1 + ak−1)
k(ak − ak−1)k(ak+1 − ak)

− ak

(1 + ak+1)(1 + ak)(1 + ak−1)
k2(ak+1 − 2ak + ak−1).

Since {ak}k∈Z is 2-regular, we conclude that {mk}k∈Z satisfies the Marcinkiewicz condi-
tion of order 2, and therefore {mk}k∈Z is a Bs

p,q-multiplier. �

Definition 4.6. Let 1 � p, q � ∞ and s > 0. A function u ∈ Bs
p,q((0, 2π); [D(A)]) is

said to be a strong Bs
p,q-solution of (3.1) if Mu ∈ Bs+1

p,q ((0, 2π); X) and (3.1) holds for
almost every t ∈ (0, 2π).

The next theorem is the main result of this section and is analogous to Theorem 3.4 in
the context of Besov spaces. We note that there are no special conditions in the space X.

Theorem 4.7. Let 1 � p, q � ∞ and s > 0. Let A : D(A) ⊆ X → X, M : D(M) ⊆
X → X be linear closed operators on a Banach space X. Suppose that D(A) ⊆ D(M),
and the sequence {ak}k∈Z is 2-regular. Then, the following assertions are equivalent:

(i) for every f ∈ Bs
p,q((0, 2π); X) there exists a unique strong Bs

p,q-solution of (3.1);

(ii) {ik}k∈Z ⊂ ρM,ã(A), and {ikM(ikM − (1 + ak)A)−1}k∈Z is a Bs
p,q-multiplier;

(iii) {ik}k∈Z ⊂ ρM,ã(A) and supk∈Z
‖ikM(ikM − (1 + ak)A)−1‖ < ∞.

Proof. (i) ⇒ (iii) Suppose that for every f ∈ Bs
p,q((0, 2π); X) there exists a

unique strong Bs
p,q-solution of (3.1). Fix x ∈ X and k ∈ Z. Define f(t) = eitkx.

Then f ∈ Bs
p,q((0, 2π); X). By hypothesis there exists u ∈ Bs

p,q((0, 2π); [D(A)]) with
Mu ∈ Bs+1

p,q ((0, 2π); X) such that u(t) ∈ D(A) and

(Mu)′(t) = Au(t) + (a ∗̇ Au)(t) + f(t) a.e. t ∈ (0, 2π).

By Lemma 2.7 we have ikMû(k) = Aû(k) + akAû(k) + x. Following the same reasoning
as in the proof of Theorem 3.4, we obtain that ik ∈ ρM,ã(A) for all k ∈ Z. Let Mk :=
ikM(ikM − (1+ak)A)−1. We shall see that {Mk}k∈Z is bounded. Using the closed graph
theorem, we have that there exists a constant C independent of f such that

‖Mu‖Bs+1
p,q ((0,2π);X) + ‖Au‖Bs

p,q((0,2π);[D(A)]) + ‖a ∗̇ Au‖Bs
p,q((0,2π);[D(A)])

� C‖f‖Bs
p,q((0,2π);X).

Note that for f(t) = eitkx the solution u of (3.1) is given by

u(t) = (ikM − (1 + ak)A)−1eiktx.
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Hence,

sup
k∈Z

‖ikM(ikM − (1 + ak)A)−1x‖ � C‖x‖.

(ii) ⇒ (i) Define Mk = ikM(ikM −(1+ak)A)−1 and Nk = (ikM −(1+ak)A)−1. Suppose
that {ik}k∈Z ⊂ ρM,ã(A) and {Mk}k∈Z is a Bs

p,q-multiplier. For f ∈ Bs
p,q((0, 2π); X) there

exists u ∈ Bs
p,q((0, 2π); X) such that û(k) = ikM(ikM − (1 + ak)A)−1f̂(k) for all k ∈ Z.

The identity I = Mk − (1 + ak)ANk implies that

û(k) = ikM(ikM − (1 + ak)A)−1f̂(k)

= (I + (1 + ak)ANk)f̂(k).

So, we obtain ̂(u − f)(k) = (1 + ak)ANkf̂(k). By Lemma 4.5, {I/(1 + ak)}k∈Z is a Bs
p,q-

multiplier. Thus, for u − f ∈ Bs
p,q((0, 2π); X) there exists v ∈ Bs

p,q((0, 2π); X) such that

v̂(k) =
1

1 + ak

̂(u − f)(k) = ANkf̂(k).

Since 0 ∈ ρM,ã(A), we obtain that A−1 ∈ B(X), and therefore w := A−1v ∈
Bs

p,q((0, 2π); X) and ŵ(k) = Nkf̂(k). Hence, ikMŵ(k) − (1 + akA)ŵ(k) = f̂(k). Observe
that, for all k ∈ Z, we have

û(k) = ikM(ikM − (1 + ak)A)−1f̂(k) = ikMŵ(k).

Thus, by uniqueness of Fourier coefficients, u(t) = (Mw)′(t). Since u ∈ Bs
p,q((0, 2π); X),

(Mw)′ ∈ Bs
p,q((0, 2π); X), and therefore Mw ∈ Bs+1

p,q ((0, 2π); X). Moreover, Mw(0) =
Mw(2π), since w(0) = w(2π) and w(t) ∈ D(A).

Since A and M are closed operators and

(̂Mw)′(k) = ikMŵ(k) = (1 + ak)Aŵ(k) + f̂(k) for all k ∈ Z,

one has (Mw)′(t) = Aw(t) + (a ∗̇ Au)(t) + f(t) a.e. by Lemmas 2.6 and 2.7. We conclude
that w ∈ Bs

p,q((0, 2π); X) is a strong Bs
p,q-solution to (3.1). Finally, the uniqueness follows

the same way as in the proof of Theorem 3.4.

(iii) ⇔ (ii) This follows from Proposition 4.4. �

5. Maximal regularity on Triebel–Lizorkin spaces

In this section, we study the existence and uniqueness of solutions to (3.1) in the context
of Triebel–Lizorkin spaces, F s

p,q((0, 2π); X), where X is a Banach space, 1 � p, q � ∞
and s ∈ R. More details of these spaces can be found in [8] and the references therein.

The next definition and theorem are analogous to those in the previous sections.

Definition 5.1. Let 1 � p, q � ∞ and s ∈ R. A sequence {Mk}k∈Z ⊂ B(X, Y ) is a
F s

p,q-multiplier if, for each f ∈ F s
p,q((0, 2π); X), there exists a function g ∈ F s

p,q((0, 2π); Y )
such that

ĝ(k) = Mkf̂(k), k ∈ Z.
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We recall the following result due to Bu and Kim [8].

Theorem 5.2 (Bu and Kim [8]). Let X, Y be Banach spaces and let {Mk}k∈Z ⊆
B(X, Y ). Assume that

sup
k∈Z

‖Mk‖ < ∞, sup
k∈Z

‖k(Mk+1 − Mk)‖ < ∞, (5.1)

sup
k∈Z

‖k2(Mk+1 − 2Mk + Mk−1)‖ < ∞, (5.2)

sup
k∈Z

‖k3(Mk+2 − 3Mk+1 + 3Mk − Mk−1)‖ < ∞, (5.3)

where 1 � p < ∞ and 1 � q � ∞, s ∈ R, {Mk}k∈Z. Then {Mk}k∈Z is an F s
p,q-multiplier.

Remark 5.3. If X, Y are UMD spaces in the above theorem, then the conditions (5.1)
and (5.2) are sufficient for {Mk}k∈Z to be an F s

p,q-multiplier.

The definition of the solution of (3.1) in the Triebel–Lizorkin spaces is the same as
that in the Besov case. The proof of following theorem is similar to Theorem 4.7. We
omit the details.

Theorem 5.4. Let 1 � p, q � ∞ and s > 0. Let A : D(A) ⊆ X → X, M : D(M) ⊆
X → X be linear closed operators on a Banach space X. Suppose that D(A) ⊆ D(M)
and the sequence {ak}k∈Z is 3-regular. Then, the following assertions are equivalent:

(i) for every f ∈ F s
p,q((0, 2π); X) there exists a unique strong F s

p,q-solution of (3.1);

(ii) {ik}k∈Z ⊂ ρM,ã(A), and {ikM(ikM − (1 + ak)A)−1}k∈Z is an F s
p,q-multiplier;

(iii) {ik}k∈Z ⊂ ρM,ã(A) and supk∈Z
‖ikM(ikM − (1 + ak)A)−1‖ < ∞.

6. Applications

We conclude the paper with some applications of the above results.

Example 6.1. Let us consider the boundary-value problem

∂(m(x)u(t, x))
∂t

− ∆u =
∫ t

−∞
a(t − s)∆u(s, x) ds + f(t, x) in [0, 2π] × Ω, (6.1)

u = 0 in [0, 2π] × ∂Ω, (6.2)

m(x)u(0, x) = m(x)u(2π, x) in Ω, (6.3)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, m(x) � 0 is a given
measurable bounded function on Ω, and f is a function on [0, 2π] × Ω.

Let M be the multiplication operator induced by the function m. If we take X =
H−1(Ω), then by [5, p. 38] (see also the references therein) we have that there exists a
constant c > 0 such that

‖M(zM − ∆)−1‖ � c

1 + |z| ,
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whenever Re(z) � −c(1 + |Im(z)|). Thus, the inequality

‖ikM(ikM − (1 + ak)∆)−1‖ =
|k|

|1 + ak|

∥∥∥∥M

(
ik

1 + ak
M − ∆

)−1∥∥∥∥ � c

holds if

Re
(

ik
1 + ak

)
� −c

(
1 +

∣∣∣∣Im
(

ik
1 + ak

)∣∣∣∣
)

for all k ∈ Z,

that is, if
kβk � −c((1 + αk)2 + β2

k + |k(1 + αk)|) (6.4)

is valid for all k ∈ Z, where αk and βk denote the real and imaginary parts of ak, respec-
tively. In particular, if a(t) := tb−1/Γ (b), with b an even integer, then one can check that
{ak}k∈Z is 2-regular and βk = 0 for all k ∈ Z. Thus, the inequality (6.4) holds. Therefore,
by Theorem 4.7 (or Corollary 3.5), we conclude that for all f ∈ Lp

2π(R, H−1(Ω)) there
exists a unique solution for (6.1), (6.2).

Example 6.2. Consider, for t ∈ [0, 2π] and x ∈ [0, π], the problem

∂

∂t

(
∂2

∂x2 + 1
)

u(t, x) = −b
∂2

∂x2 u(t, x) − cu(t, x)

+
∫ t

−∞
a(t − s)

(
b

∂2

∂x2 + c

)
u(s, x) ds + f(t, x), (6.5)

u(t, 0) = u(t, π) =
∂2

∂x2 u(t, 0) =
∂2

∂x2 u(t, π) = 0, (6.6)
(

∂2

∂x2 + 1
)

u(0, x) =
(

∂2

∂x2 + 1
)

u(2π, x), (6.7)

where b is a positive constant and −2b < c < 4b. We take X = C0([0, π]) = {u ∈
C([0, π]) : u(0) = u(π)} and K the realization of ∂2/∂x2 with domain

D(K) =
{

u ∈ C2([0, π]) : u(0) = u(π) =
∂2

∂x2 u(0) =
∂2

∂x2 u(π) = 0
}

.

Define M = K + I and A = bM + (c − b)I. By [5, Example 1.2, p. 39] we have that

‖M(zM − A)−1‖ � d

1 + |z|

for all Re(z) � −d(1 + |Im(z)|), d being a suitable positive constant. Therefore, as in
Example 6.2, if for all k ∈ Z the inequality

kβk � −d((αk − 1)2 + β2
k + |k(αk − 1)|) (6.8)

is valid, then for all f ∈ Bs
p,q((0, 2π), C0([0, π])), s > 0, 1 � p, q � ∞, by Theorem 4.7,

we conclude that the problem (6.5)–(6.7) has a unique strong solution u with regularity

∂2u

∂x2 ∈ Bs
p,q((0, 2π), C0([0, π])).
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In particular, if a(t) := eγt, where γ ∈ R, we can check that {ak}k∈Z is 2-regular and the
inequality (6.8) holds with d = 1.
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