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1. Preliminaries

A map f: 4 > B in a category ¥ is called monic if fg = fh implies that
g = hforall maps g, h : C — A; it is called epic if gf = hf implies that g = A4 for
all maps g, h : B — C. An object A € € is called an S-object if every monic map
f: A4 — Ais also epic; it is called a Q-object if every epic map f: 4 — A is also
monic. If A4 is both an S-object and a Q-object then A4 is called an SQ-object. In
the category of sets the SQ-sets are the finite sets. In the category of vector spaces
over a field F the SQ-spaces are precisely the finite dimensional spaces. In the light
of these simple examples, it seems reasonable to view the SQ-objects of a category
as being of ‘finite type’. We shall be chiefly concerned with investigating the
SQ-objects in certain subcategories of the category of locally compact abelian
groups.

If € and €* are dual categories then a map f'€ % is epic if and only if f* € €*
is monic, and f'is monic if and only if f* is epic. As a result, we have

PROPOSITION 1. If € and @* are dual categories, then A € € is an SQ-object if
and only if A* € €* is an SQ-object.

PROPOSITION 2. Suppose € is an additive category, A,, A, €€, and B = A, ®
A,. (@) If B is an SQ-object then A, and A, are SQ-objects. (b)If A, and A, are
SQ-objects, Hom (4,, A,) = 0, and Hom (A4,, A,) = 0, then B is an SQ-object.

ProoF. (a) If f: A, — A, then there is [6, p. 251] a unique map g : B — B
satisfying either, and hence both, of the dual conditions

(1) myg = fr; and 1,9 = 75, or

(2) gu =y fand g1, = 1,
(the maps 7; and 1; may be thought of as the canonical projections and injections
associated with a direct sum). Suppose that f is monic and that gh = gk. Then
Jrnh = n,gh = n,gk = fn, k, so i h = a k. Also n,h = n,gh = n,gk = nyk.
Thusty,n h = 4y mk,1i,nh = 1yn,k,s0h = ynh+,mh = ynk+i,n,k = k,
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and g is monic. Since B is SQ, g is also epic. If Af = kf, then hn, g = hfn, = kfn,
= kn; g, and so A = k, since m, g is epic. Thus f is epic. A similar argument
shows that if fis epic then f is monic. Thus 4, is an SQ-object.

The proof of Proposition 4(b), below, is categorical in essence; it provides a
proof of Proposition 2(b) as well.

2. Locally Compact Abelian Groups

The category of locally compact abelian groups with continuous homomor-
phisms will be denoted by #%.«/. The subcategories of compact and discrete
abelian groups will be denoted by ¥/ and 2., respectively. By the Pontryagin
Duality Theorem the category %/ is self dual, and the categories ¥/ and
%54 are dual to one another. Note that a map f'€ €.« is monic if and only if it
is one-to-one, and epic if and only if it has dense range.

The following groups, with their usual topologies, will enter into the discus-
sion: Z will denote the additive group of integers, R the real numbers, R, € 2
the rationals, S, €%/ the a-adic solenoid (where a = (2,3,4,- "), see [5,
p. 114]), Q,€ L%/ the p-adic numbers, and 4, €./ the p-adic integers.

PROPOSITION 3. Suppose Ge L€ is the local direct product of groups
G, e L€ A relative to open subgroups H, (see [5, p. 56]), and let n, : G - G, and
1,: G, — G denote the canonical projections and injections. Suppose He L€/ .
(a) If g, h e Hom (G, H) and g1, = hi,, all «, then g = h. (b) If g, h € Hom (H, G)
and n,g = n,h, all a, then g = h.

The proof is elementary, and will be omitted.

PROPOSITION 4. Suppose Ge L€ is the local direct product of groups
G, e £€A. (a) If G is SQ then each G, is SQ. (b) If each G, is SQ and if
Hom (G,, Gg) = 0 for o # f then G is SQ.

PROOF. (a) F€ s is an additive category, and G is topologically isomorphic
with G, @ G’, where G’ is the local direct product of all G4, § # «. By Proposition
2(a), G, is SQ. (b) If fe Hom (G, G), define f, = =, fi, € Hom (G,, G,) for each a.
We show that f'is monic (epic) if and only if every f, is monic (epic). Observe that
n,1,7, = n,, and hence that n,f1, = n,1,7,fi,. Also 7z fi, = ng1,m,f1, = 0 if
B # «, and so, by Proposition 3(b), fi, = 1,7, f1, = 1.f, for all a. A similar
argument shows that =, f = f,#, for all «.

Suppose then that f'e Hom (G, G) is monic and that g, € Hom (H, G,),
with f,g = f,h. Then fi,g = 1,£,9 = 1,/ h = fi,h. Since fi, is monic we have
g = h, and so f, is monic.

Suppose every f, is monic and that g, # € Hom (H, G), with fg = fh. Then
fimeg = 7, f9 = n,fh = f,n,h, so n,g = n,h for all a. Thus g = h by Proposi-
tion 3(b), and so f is monic.
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An analogous argument establishes that f'is epic if and only if each £, is epic,
and the proposition follows immediately.

COROLLARY 1. Suppose G € D is a torsion group, with p-primary component
G, for each prime p. Then G is SQ if and only if each G, is SQ.

An example of an infinite primary SQ-group in 2% was given by Pierce [8,
p. 302]. His construction was simplified by Megibben [7, p. 158]. It has been shown
by Beaumont and Pierce [3, pp. 213 and 218] that any infinite primary S-group
(hence any infinite primary SQ-group) must be uncountable but have cardinality
less than or equal to that of the continuum.

We give another corollary to Proposition 4 that will prove useful later. If
n(p) is a cardinal number then 2" denotes the group consisting of all elements
x € Q4P for which the set of values of the p-adic valuation of the components of x
is bounded. It is shown in [5, p. 420] that Q}?" € L€ is an injective envelope
(minimal divisible extension) for 43 ”. Furthermore, the local direct product £ of
the groups ;7" relative to the open subgroups 45 is an injective envelope for

[T, 4.
COROLLARY 2. The group E (above) is SQ if and only if each n(p)is finite.

PrOOF. Observe that if fe Hom (2,, Q,) then f(r) = rf(1) for every re R,
(viewing R, as a subfield of both Q, and Q). Since fis continuous and €, is a topo-
logical field it follows that every p-Cauchy sequence in R, is also a g-Cauchy
sequence unless f(1) = 0, in which case f = 0. Butif p # gand a, = ) ; p* then it
is easy to see that {a,} is p-Cauchy but not g-Cauchy. Thus Hom (2,, Q,) = 0
ifp # q.

Suppose E is SQ. If some n(p) were infinite then clearly a shift map on Q)"
would be monic but not epic, contradicting Proposition 4(a). Suppose then that
every n(p) is finite. If f € Hom (2, Q,), then f(r) = rf(1) for all r € R,, and hence
f(x) = xf(1) for all x € Q,, since R, is dense in ©, and f is continuous. Thus fis
either 0 or an isomorphism. If @7 = Q%P is viewed as a vector space over , then
clearly every fe Hom (}”, @i?) is a linear transformation. It follows that
@ is an SQ-group, and hence that E is SQ, by Proposition 4(b).

THEOREM 1. If G € 2oL is torsion free then G is SQ if and only if it is isomorphic
with R} for some non-negative n € Z. Dually, if G € €/ is connected then G is SQ
if and only if it is (topologically) isomorphic with S, for some non-negative ne Z.

ProOF. (see [2, p. 384]). If G is not divisible then nG is a proper subgroup of
G for some positive integer n. Thus the map x — nx is monic but not epic. As a re-
sult G is divisible if it is SO, hence it is a vector space over the field R,. Every map
f:G > G is alinear transformation so G is an SQ-group if and only if it is finite
dimensional as a vector space over R,. The dual statement follows from Proposi-
tion 1 since G € 2%/ is torsion free if and only if G* € €./ is connected, the duality
preserves direct sums, and R} = S, (see [5, pp. 385 and 404)).
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An investigation of (discrete) S-groups and Q-groups was conducted by
R. Baer in [1]. Special cases of two theorems from [1, pp. 268 and 274] can be
combined to give a set of sufficient conditions in order that G should be an SQ-
group.

BAER’S THEOREM. Suppose Ge 2 has a finite chain of subgroups 0 =
H, < H ¢ - < H, = G, satisfying

(1) iff: G —» G is monic, then fH; = H,,
(2) if f: G > G is epic, then fH; = H;, and
(3) H;+,/H;is an SQ-group, i = 0,1, - n—1.

Then G is an SQ-group.

The proof, which is valid even for G nonabelian, will not be reproduced here.
The essential steps may be seen, however, in the proof of Theorem 3, below, if the
topological details are ignored.

THEOREM 2. Suppose G € 25 has torsion subgroup T. If T and G|T are SQ-
groups then G is an SQ-group. Dually, suppose G € €4 has connected component of
the identity C. If C and G|C are SQ-groups then G is an SQ-group.

ProOF. We prove only the first statement; the dual statement follows as in the
proof of Theorem 1.

Set Hy =0, H, = T,and H, = G.If f: G — G is epic, set g{x+T) = fx+T.
Then g is clearly well defined and epic in Hom (G/T, G/T). Since G/T is SQ, g is
also monic, so fx+7T = T if and only if xe 7, i.e. fxeT if and only if x e T.
Thus f|T is epic in Hom (7, T), and condition (2) of Baer’s Theorem holds.
Conditions (1) and (3) obviously hold, so G is an SQ-group.

COROLLARY. If Ge D splits, i.e. G = T ® G/T, then G is SQ if and only if
both T and G|T are SQ.

It is reasonable to ask whether the splitting hypothesis in the corollary is
necessary. The answer, unfortunately, is yes, and as a result the torsion free and
primary cases are not independent of one another in 2.%/. For example, let G,
be the integers mod p for each prime p and set G = [[,G,. Then T = 2, ® G,
and it can be shown that Hom (G, G) = [], Hom (G,, G,) in the obvious fashion.
It follows easily that G is SQ. Also, T'is SQ by Proposition 4, Corollary 1. However,
G/T is divisible and infinite dimensional as a vector space over R,. Thus, by Theo-
rem 1, G/T is not an SQ-group.

The next theorem is a topological version of Baer’s Theorem.

THEOREM 3. Suppose G e L€/ has a finite chain of subgroups 0 = Hy <
H, < --- < H, = G, satisfying, for i =0,1,---, n—1,

(1) if f: G — G is monic, then fH; = H,,
(2) iff: G > G is epic, thenfH; = H,,
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(3) H;e €64, and
(4) H,.1/H;is SQ.
Then G is an SQ-group.

PROOF. We prove the theorem with n = 2, writing H; = H. An easy induction
completes the proof.

Suppose first that f: G — G is monic. Then f|H is epic, since H is SQ. If
q : G — G/H is the quotient map then g finduces a homomorphism g : G/H — G/H
via g(x+H) = fx+H, i.e. gq = qf. If U is an open neighborhood of 0 in G/H,
set W = qf “'(q~'(U)). Then Wis open in G/H since fis continuous and ¢ is both
open and continuous. But gW = ¢ff " *(¢~*(U)) < U, so g is continuous. Also,
ker gf = {x : fxe H} = H since f is monic and f}{H is epic, and so g is monic.
But then g is epic since G/H is SQ. Since ¢ is an open map, g(G\ f(G) ™) is an open
subset of G/H. If it were not disjoint from ¢fG = range g, then there would exist
x € G\f(G)™ and y € G such that gx = qfy, i.e. x—fy € H. But fH = H, so then
x—fy = fz for some z € H. This is impossible because x ¢ fG. Since g is epic we
conclude that ¢(G\f(G)~) is empty, hence that f(G)~ = G, i.e. that f is epic.

Suppose next that f: G — G is epic, and denote ker f by N. As above, ¢fin-
duces g € Hom (G/H, G/H), with gq = qf. Since H is compact ¢ is a closed map
[5, p. 37]. Since fis epic we have G/H = qG = q(f(G)") = (¢f(G))” = (949(G))~
= (¢9(G/H))", i.e. g is epic. Thus g is monic since G/H is SQ, and so fx+H =
g(x+H) = H if and only if x € H. In particular, if xe N then fx = 0, so xe€ H,
and N € H. But f|H is epic and H is SQ, so f|H is monic and G is an SQ-group.

THEOREM 4. If He €. is SQ and 0 £ neZ then G=R"@® H is SQ
in €.

PRrOOF. Since maps are continuous in X%/ every fe Hom (R", R") is a
linear transformation if R" is considered as a vector space over R, and so R" is
SQ. If fe Hom (G, G) then, since Hom (H, R") = 0, we have f(x,y) = (gx,
hx+ky), where g € Hom (R", R"), h € Hom (R", H), and k € Hom (H, H).

If £ is epic then g must clearly be surjective since it is a linear transformation
and since the range of fis a subset of (range g) x H. But then g is also monic, and
in fact a homeomorphism. Let us show that kH = H. If not, H\kH is an open
subset of H. Choose y € H\kH and an open neighborhood N of 0 in H such that
(y+N) n (kH+ N) is empty. Next choose a neighborhood W of 0 in R" such that
hx e N if x € W, and finally choose an open neighborhood U of 0 in R" such that
xe Wif gxe U(g~"is continuous). Then U x (y+N)is an open set in G; we show
it to be disjoint from the range of /. Suppose (1, v) e Ux(y+N). If also (v, v) e
range f, then there exists (r, s) € G such that gr = u and hr+ks = v. But then
re W and so hre N. Thus v = ks+hr e kH+N, contradicting ve y+ N.

If we consider H as a subgroup of G then we have just shown that fH = H
for every epic fin Hom (G, G). The theorem now follows from Theorem 3.
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COROLLARY 1. Suppose G e LE A is compactly generated. Then G is SQ if
and only if it is topologically isomorphic with R* ® H, where He €.« is SQ and
0<neZ

Proor. Since G is compactly generated it is topologically isomorphic with
R®Z"® H [5 p.9]. If G is SQ then it follows from Proposition 2 that
m = 0 and His SQ.

Corollary 1, together with Proposition 1, shows that the problem of determin-
ing all compactly generated SQ-groups in £%€ .o is equivalent with that of deter-
mining all SQ-groups in the category 2/. An application of Theorem 1 deter-
mines all compactly generated connected SQ-groups in L€ .

COROLLARY 2. If G in L€ is compactly generated and connected, then G is
SQ if and only if it is topologically isomorphic with R* @ S, 0 < n,me Z.
Finally, we determine all divisible torsion free SQ-groups in £¥€ /.

THEOREM 5. Suppose G in LE s is torsion free and divisible. Then G is SQ if
and only if it is topologically isomorphic with R’ @ R ® ST @ E, where j, k, and m
are non-negative integers and E is the injective envelope of [ |, 43" with0 < n(p)e Z
for each prime p.

ProoOF. By [5, p. 421] G is topologically isomorphic with R/ @ (£ ® R,) @
Sy @ E, where 0 £ je Z, k and m are cardinals, there are k copies of R, in the
(discrete) direct sum, and E is the injective envelope of [, 427, with n(p) a car-
dinal for each prime p. By Proposition 1, Theorem 1, and Corollary 2 of Proposi-
tion 4 we see that m, k, and all n(p) are finite.

For the converse we first observe that E is self dual. This follows from remarks
on page 422 of [5] and the fact that 4; = (2,/4,)* = (Z(p®))* = 4,. For each
prime p let 7, be the projection on E to Q. If fe Hom (R’, E) then n,f€
Hom (R, &P} so m, f = 0since R’ is connected and Q37 is totally disconnected.
Thus /= 0 by Proposition 3, and Hom (Rf , E) = 0. It follows, since both R/ and
E are self dual, that Hom (E, R’) = 0. By Proposition 2(b), R/ @ E is SQ. Since
Sy is compact and connected we have Hom (ST, R’ ® E) =~ Hom (S], R)) ®
Hom (S7, E) = 0. Viewing S7 as a subgroup of R ® E@® SI' we see that
R’ @ E @ SIis SQ, by Theorem 3, and hence that R/ @ R* @ Eis SQ, substitut-
ing k for m and applying Proposition 1. Finally, Hom (ST, R) = 0 since S, is
connected and R, is discrete, and so Hom (ST, R ® R @ E) = 0. Another ap-
plication of Theorem 3 yields the fact that R @ RX @ S™ @ E is SQ, proving the
theorem.

The divisibility hypothesis in Theorem 5 may not be necessary. The argument
used in the proof of Theorem 1 yields only denseness of #G in G, but not divisibil-

ity.
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3. Remarks

It might be of interest to study the SQ-objects in other specific categories. To
mention one example, suppose & is the category of commutative B*-algebras with
identity and symmetric algebra homomorphisms. Then £ is dual to the category
9~ of compact Hausdorff spaces. It can be checked that epic means onto and monic
means one-to-one in both categories. Thusif 4 € #, X e .7 ,and 4 = X* = C(X),
then A is an SQ-algebra if and only if X is an SQ-space.

An example has been constructed (see [4]) of an infinite compact connected
Hausdorff space X for which the only continuous maps f: X — X are the identity
and constant maps onto single points. Thus X is SQ in .7 and 4 = C(X) is SQ
in 4.
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