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THE KUNZE-STEIN PHENOMENON
ON THE ISOMETRY GROUP OF A TREE

ALESSANDRO VECA

Let G be the group of isometries of a homogeneous tree X. In the first part of this
paper we decompose G in terms of certain subgroups N, Z and K to obtain the
related integral formula

/ f(z)dz = / Z/ f(nT7k)q I dk du(n).
G N K
JEZ
Then, by using ideas of A. Ionescu and the formula above, we prove that
LPY(G) x L*Y(G) € L>*°(G)

and that a related maximal operator on ¥ is bounded from L%!(X) to L2°(%). We
finally show that LP!(K\G/K) is a commutative Banach algebra of convolutors for
LP(G) and give an explicit description of its Gelfand spectrum.

1. INTRODUCTION

The principal aim of this paper is to prove that if G is the group of isometries of a
homogeneous tree X, then (Theorem 6.4)

(1.1) L*Y(G) » L*'(G) C L**(G).

The continuous inclusion (1.1) is called the generalised Kunze-Stein phenomenon for G.
The classical Kunze-Stein phenomenon

LAG)*LP(G)C L} G) 1<p<?2

was shown for G = SL(2,R) by Kunze and Stein [6] and for every semisimple Lie group
with finite centre by Cowling [1]. Cowling, Meda and Setti stated a more accurate version
of this phenomenon, by using the Lorentz spaces LP9(G) (see [2] and {3]). Finally, in
2000, Ionescu showed that the continuous inclusion (1.1) holds for every semisimple Lie
group of real rank one and finite centre [5]. We present here a detailed version of his
proof, adapted to the homogeneous tree case.
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The key ingredient in Ionescu’s proof is the relation between Iwasawa and Cartan
decompositions for semisimple Lie groups. In Section 3 we introduce and study in some
detail a suitable subgroup N (see [4]) which leads to a decomposition “of Iwasawa type”
for the group G of isometries of a homogeneous tree (Theorem 3.5). Although this
decomposition is not a bijection, there is a related integral formula

/fz)dz—/Z/fnT’k ~idk dn,

JEL

where f is a compactly supported continuous function on G, 7 is a one step translation
in G, K is the isotropy group of a base point o in X and dk and dn are the Haar measures
on K and N respectively. The analogy with the Iwasawa decomposition for Lie groups
is apparent.

In Section 5 we show that the maximal operator

Mf(z) = sup—— e > @)

re IB vEBGer)

is bounded from L?!(X) to L2°(X) (following [5]) and, as a corollary, we obtain a K-
bi-invariant version for the generalised Kunze—Stein phenomenon for G. In Section 6 we
prove (1.1) and finally, in Section 7, we use the generalised Kunze-Stein phenomenon to
show that there is a natural norm (see {2, 8, 3]) which makes L»!(K\G/K) a commu-
tative Banach algebra of convolutors of LP(G). We give an explicit description of the
Gelfand spectrum of this subalgebra (Theorem 7.7).

2. DEFINITIONS AND NOTATIONS

A homogeneous tree of degree ¢ + 1 is a connected graph X with no loops, in which
every vertex is adjacent to g + 1 other vertices. It carries a natural distance d, d(z,y)
being the number of edges between vertices z and y. Let S(z,r) and B(z,r) denote the
sphere and the closed ball centred at z and of radius r in the metric space (¥, d). Let [ be
a subset of Z of the form INZ, where [ is any (possibly infinite) interval of real numbers.
A chain is a collection of vertices {z;}ie1 such that d(z;,z;) = [i — j| whenever 7, j € L.
We say that a chain is a geodesic ray or a geodesic if I is equal to N or Z respectively. We
say that a geodesic ray {z;}ien starts at z if 7o = z. Geodesic rays {z;}ien and {y;};en
are identified if there exist integers ¢ and j such that z, = y,; for every n greater than
j; this identification is an equivalence relation. We denote by {2 the set of equivalence
classes and by , the set of all geodesic rays starting at . Note that for every element
in w € § there exists a unique representative geodesic ray in §2,: we denote this geodesic
ray by [z,w).

Let 0 and w™ be fixed but arbitrary reference points of X and Q respectively and
assume that v+ = {-; }ien is the representative of w* in Q,. Define the height function h
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(associated to w*) by the rule

h(z) = lim (i — d(z, 13)).

1—00

For j € Z, we set
={z€ X : h(z) =5},
so that X decomposes disjointly: X = |J H(j). The level sets $(j) of the height function
h are called horocycles of X. jez
Denote by G the group of isometries of (X, d). The group G acts transitively on ¥,

is unimodular and locally compact, a neighbourhood basis being given by the sets of type
U(g,E)={h€G:h-z=¢g-2 VzeE}

where ¢ is in G and E is a finite subset of X. It is easily satisfied that if {z;};en and
{y;};en are equivalent geodesic rays, then {g-z;};en and {g-y;};en are equivalent geodesic
rays. This defines a transitive action of G on Q2. We denote by K, and G, the stabilisers
of z € X and w € Q under the G action and write K for K,. Then K is a maximal
compact subgroup of G and X may be identified with the coset space G/K. A function
f on X is said to be radial if it only depends on d(z,0). We identify K-right-invariant
and K-bi-invariant functions on G with functions and radial functions on X respectively.

We need some more notation. Given a topological space X, denote by C.(X) the
set of continuous compactly supported functions on X.

If f is a measurable function on a measure space (X, ) define the distribution
function A; and nonincreasing rearrangement f* by

Ap(s) = u{x € X : |f(:1:)| > s} and f*(t) = sierﬁg{s s Ap(s) € t}.

Consider a measurable function F' : X x X — R*. Denote by F**(-,-) the rearrangement
of the function z — F*(z,-), where F*(z,-) is the rearrangement of y — F(z,y). The
function F** is called the double rearrangement of F. We summarise some properties of
rearrangements and double rearrangements in the next lemma.

LEMMA 2.1. Let f: X = R*and F: X x X = R* be measurable functions.

Then
o (aeraes)” ([ rurs)”
(i) / /F z,y) du(z) duly) = /u(X) /u(X)F” (s,t)dsdt;

(iii) if D and E are measurable subsets of X of measures ¢ and ¢, then

[ [ ey < | ! [ Fanasa
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3. THE GROUP N AND THE BOUNDARY {2

Recall that v+ = {v:}ien is a reference geodesic ray in Q, and that G+ is the
stabiliser of its equivalence class w*. Choose another geodesic ray v~ = {7v-;}ien such
that v~ N+ = {o} and write -y for the geodesic {:}icz. Note that h(y;) = j for all
j € Z. Given w and wy in § there exists a unique (up to renumbering) geodesic {y;}icz
such that w; and w, are the equivalence classes of {y;}ien and {y_;}icn respectively. For
brevity, we denote this geodesic by (w;,ws) disregarding the labels.

Let N be the subset of all elements in G+ which also fix some vertex of X (see [4]).
The next lemma gives a description of N in terms of the height function A.

LEMMA 3.1. An isometry z belongs to N if and only if h(z - £) = h(z) for every
z € X. Further N is a closed subgroup of G.

ProOF: Let n be in N. By definitionn-w* = w* and n-z = z for some z € %, so
that n fixes every vertex in the geodesic ray [z,w™) starting at z and equivalent to w*.
1t follows that N is the set of those elements in G that fix the elements -y; of v* for i
big enough and it is therefore apparent that IV is a subgroup. In particular n~! fixes the
elements in vt eventually and

h(n-2) = lim (j - d(z,n™" - 1)) = lim (j - d(z, %)) = h(z).
On the other hand, suppose z € G satisfies h(z -y) = h(y) foreveryy € X. Let z = z - o,
assume [z,w™) = {z; }ien and note that z; = +; for sufficiently large 1. Observe also that,
for any j in N, d(z - v;,z) = j and h(z - v;} = h(7y;) = j. Since S(z,7) N H(F) reduces to
the point {z;}, we conclude that z - 7; = z; and then z belongs to N. We finally show
that NV is closed by proving that its complement N€ is open in G. Let z be in N¢. Then
there exists z € X such that 4(z - =) # h(z), so that the set

U(z,{z}) ={9€G : g =21}
is an open neighbourhood of z, contained in N¢. 0

COROLLARY 3.2. Theorbitofz € X under the N action is exactly the horocycle
5(h(z)).
PROOF: Choose y # = in $(h(z)) and a vertex 7; in

v N[z, wt) N [y,w™).

It is clear that i > h(z) and that z, y € S(v;,% — h(z)). Since elements of K., act as
permutations on S(v;,7 — h(z)) (and every permutation of S(v;,: — h(z)) derives from
an element of K,,) there exists (actually infinitely many) n € G,+ N K,, C N such that
n -z = y and the claim is proved. 0
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We denote by N, the stabiliser of z € X under the N action and we write N; for N,
for all 7 € Z. The following lemma describes some properties of the Haar measure 4 on
the locally compact group N. If E is a finite set, then we write |E| for the number of its

elements.

LEMMA 3.3. Letpy, Np and h be as above. Then
(i) the measure p can be normalised such that pu(N,) = ¢"® for all z € %;

(ii) N is unimodular.

REMARK 3.4. In the following we shall assume that the Haar measure on N is nor-
malised as in (i).
PRoOOF: To prove part (i), first note that N, = K, NN is a compact subgroup of N

and so its measure in N is finite. Moreover, since X is countable and N = {J N, there
eX

exists Z € X such that p(Nz) > 0. Let y be the unique vertex such that d(Z,y) = 1 and

hy) = h(Z) + 1. Tt is clear that N, acts transitively on S(y,1) N H(h(Z)) and that the

stabiliser of T in IV, is exactly N;. From the left invariance of u and since the index of

Nz in N, is equal to ‘S(y, 1)n Y)(h(i))' = g, it follows that

u(Ny) = u(U ZeNz) = Z 1(z:Nz) = qu(Nz),

{2i}i=1...,¢ being a complete family of representatives for the coset space N,/Nz. With a
similar argument it turns out that u(N;) = ¢"®~*3) for all z € X and, normalising y so
that u(N,) = 1, we have u(N;) = ¢"* as required.

To show part (ii), let n be an element in NV and let Ay denote the modular function
on N (that is, the function such that p(An) = Ax(n)u(A) for any measurable set A).
Using part (i) and the fact n"'Nyn = N,_1.;, we have

p(N) = ¢ = "7 = (N, L) = p(nT Non) = p(Non) = Ay (n)u(N,),

which implies Ay = 1. 0

The main result of this section is contained in Theorem 3.5 below which underlines
the analogies between G and semisimple Lie groups of rank one. Let 7 be a fixed one-step
translation along the reference geodesic -y towards w, that is, 7-v; = ;4 for all j € Z.

THEOREM 3.5. Let G, N, K and 7 be as above. Then for every z € G there
exist n € N, j € Z and k € K such that z = nr’k. Further, if f is a continuous
compactly supported function on G, then

(3.2) /Gf(z) dz=/NZ/Kf(nTjk)q_jdkd,u(n).

Jj€z
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PROOF: An element in G must be a translation along some geodesic, a rotation
around some vertex or an inversion (an isometry which exchanges two adjacent vertices)
(see [4], Chapter 2). Since an inversion can not fix any point in €, an element z,+
of G,+\N is a translation along some geodesic {z;}icz with {z;};en equivalent to y*.
Choose an element z lying on both v and {z;}icz and let j, be the integer such that
Zu+ " Tj = Tjyj, for all j € Z. It is clear that z,+777 fixes w* and z so that z,+77% € N.
1t follows that each element in G+ may be written as the product of an element of N
and an element of the subgroup generated by 7. Finally, if z is a generic element of G,
there exists k € K such that k-w™ = z-w" so that zk~! belongs to G+, and there exist
n € N and j € Z such that zk=7 = n77, as required. To show the second part of the
theorem, suppose first F' is a K-invariant function on G. We can write

(3.3) / F2)dz =S Fo) =Y 3 Fa).
9 z€X J€Z zeH(H)

We know that N acts transitively on $(j) for all j € Z. Denote by {n(z)}zeﬁ(j) a com-

plete family of representatives for the cosets of N; in N. We have that N = |J n(z)N;
z€H(5)

(disjoint union) and that p(n(z)N;) = p(N;) = ¢’ in view of Lemma 3.3. We have

Z Fle) = Z (#(n(;)Nj) /n(z)Nj du)F(z)

z€9H(7) z€H(5)

Z q’j/ F(nt? - 0)dn
2€5(5) n(z)N;

= q‘j/ F(n1? - 0) dn,
N

and then, by (3.3),
(3.4) / F(2)dz = Zq'j/ F(n7? - 0)dn.
G ez N
If f € C.G), then F(z) = /f(zk) dk is K-invariant and /f(z)dz = /F(z) dz. The
desired result follows from (3151) ¢ ¢

REMARK 3.6. Observe that the decomposition in Theorem 3.5 is not unique. Denote
by 7 the projection (n, 7, k) — n77k and suppose z = 7(n, 7, k) = w(ni, j1. k1). It follows
that 7 = 7; because '
J=h(y)=h(n-v;) = h(n7'k - 0) = h(ni7k; - 0) = 7.

Furthermore k~'w* = 27! w* = k{'w* and then kk;! € G+ N K = N,. There
exists n, € N, such that k = n,k; so that nr/k = n(tin,77)17k,. It follows that n, =
n(tn,7~7) and that 7 is constant on the sets of N x Z x K of type {(nr/n,7=7,j,n;k) :
n, € No}.
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REMARK 3.7. Consider a function f on X (that is, a K-right-invariant function on G).
In this case it may be useful to rewrite formula (3.2) as an integral on 2 instead of as
N. Note that for any w in 2\{w*}, the geodesic (w,w?*) intersects $(j) in exactly one
point, so that the map ® : Q x Z — X, defined by the rule ®(w, ) = H(H) N (w,wt), is
well defined. This map is surjective and ®~'(z) = Q(z) x {h(z)}, where Q(z) = {w €
Q:z€ (wuwh)}. Set p({w*}) =0 and p(Q(z)) = ¢"=), so that p extends to a Borel
measure on . Since w € Q(z) if and only if z € (w,w), given an integrable function on

X we have_
= Q)" dp(w
gf(z) zezxp( (2)) /  4)1@)
. = ¢~ f (z) dp(w)
(35) / Py
= / S0 £(@(w, 5)) do(w).
Q jez

LEMMA 3.8. Let f be in C.(N). The map n + 77inr? is an automorphism of
N and

/ fr7inri)dn = qj/ f(n)dn.
N N
PROOF: Let j be an integer. Since
h(179n7? - z) = h(nt? - 2) — j = h(7? - 2) — § = h(x),

we have 777n77 € N in view of Lemma 3.1, so that n — 77 7n7/ is an automorphism.
Let A be the modular function associated to this automorphism, that is, the group
homomorphism A : Z — R* such that

(3.6) / fr=inrd) dn = A(j)/ f(n) dn.
N N
To show that A(j) = ¢/ for all integers j, consider f € C.(G/K). In view of Theorem 3.5
and since
p{n:n-y=z}=¢  Vje€ZVzengj),
we have

> 1@ =% [ fort-gian

zeX i€Z

= 2GS [ o idn

i€Z

=AY Y / fr7in - yi4)q " dn

i€Z zes(i+i) ¥ (i +=z)
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=06, Y feTa)d

i€Z zeH(j+i)

= AG)'¢ S f(=),

reX
which implies A(j) = ¢. The desired result now follows from (3.6). 0
Recall that X = |J H(j) and note that X = |J S(o,r). The first decomposition for
JjE€Z reN

X is associated to the decomposition for G described in Theorem 3.5. The second one is

related to the Cartan decomposition G = |J K7"K. Lemmas 3.10 and 3.11 below relate
reN
these decompositions.

Let
B(z,7) = B(z,r) NH(h(z)) = {y € B(z,7) : h(z) = h(y)}
REMARK 3.9. Note that the intersection of two such “balls” B(z,r) and B(z',r') is
always trivial. It is simple to see that if B(z,r) N B(z',r') # O, then B(z,r) C B(z',r)
or B(z',7') C B(z,r).

If & is a nonnegative real number, then we write @] for the maximum n € N such
that n < a.

LEMMA 3.10. Letz € X, w € z), r € N and let h be an integer such that
r 2 |h|. Then _

(i) B(z,7)NH(h(z) + k) = B(2(w, h(z) + h),2|(r — h)/2])
(i) |Ble,r) N5 (h(z) + k)| = g2/,

PROOF: Observe that the result does not depend on the particular choice of w €
Q(x) because of the intersection properties of the balls B. Suppose first that r — & is
even. It is not too hard to see that to reach $3(h{z) + A) in exactly r steps starting from
z, it is necessary to move toward w™ along the infinite chain [z,w™") by (r + h)/2 steps,
first arriving at the point y = ®(w, A(z) + (r + h)/2) and then going down by (r — h)/2
steps along [y,w’), w’ being an arbitrary point in Q(y). This implies that

B(z,r) N H(h(z) + h) = S(y, (r — h)/2) N H(h(z) + k) = ‘B(@(w,h(z) +h),r— h).
If r — h is odd, a similar argument shows that if 3 = ®(w, h(z) + (r + h — 1)/2) then
B(z,r)n$H(h(z)+h) = S, (r—h—1)/2)nH(h(z) +h) = Qs(q>(w,h(z)+h),r—h—1)

and part (i) is proved; since finally |B(z,r)| = g!"/%! for any z € X and r € N, part (i)
easily follows from part (i). 0

Let j be an integer and r € N and set
(3.7) T,;={n€N :n-y;€ S(o,7)}

and ¥(r, 5) = ¢79/2u(T, ;). It is clear that T,; = 0, and then %(r, j) = 0, if r < |j].
J ¥
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LEmMMA 3.11. Supposej€ Z,r € N and r 2 |j|. Then T, ; is an open subset of

N and
0 ifr —j is odd
qj ifj=r
mTra) =4 ifj=—r
%q(”‘j)/? otherwise.

Consequently 1(r, j) < g"/? for every (r,j) € N x Z.

ProOF: By using the same circle of ideas as Lemma 3.10 it is easy to see that

0 ifr—jis odd
1 ifj=r
b(r,3) = |S(,r) N HG] =4 - ifj = —r
g—g—lq("j)/z otherwise.
Let {yi}i=1,..b(rj) be the elements of S(o,r) N H(j). Then T ; is the disjoint union of
{n : n-v; = y;} where the index ¢ varies over 1,...,b(r,j). We conclude in particular

that T ; is open and that

b(r.j)
/J.(T,-,]‘) = Z ,U,{TL Ny = yi} = b(r7j).u'(Nj) = qu(’l‘,j)

i=1

as required, by the left invariance of p. 0

4. THE ROLE OF L%!

In this section we present some simple results which make clear the role played by
L?! in the following sections. We say that a measurable function f on a measure space
X belongs to the Lorentz space L?¥(X) if and only if || f||,,, < 0o, where

t
sup(t!/7 f*(t)) = sup(s”/\,(s))l/p 1<p<g o0, q=00.
t>0 s>0

Qoo 1y poomradt i/q
il = Efo (e £ (1)) l1<p<oo,g<oo
pg =

For more details about Lorentz spaces, see [10]. Note that the lemmas below depend

crucially on the following property of the quasinorm || -||,4: let E be a measurable subset

of a measure space (X, p), then [|xgllp,q = u(E)"/? for any p € (1,00) and ¢ € [1, c0].
Let f be a finitely supported function on X and let

M () = sup > 1wl

reN |%($, "')I yEB(z.r)
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PROPOSITION 4.1. The operator 9 is of weak type (1,1) and of type (p,p)
for any p > 1. Consequently 9 is bounded from L*'(G/K) to itself.

PROOF: Let f be a finitely supported function on X and set
Fy, = {y €X: |Mfy)] > s}.

If y € F;, then there exists r, such that

1
(4.8) m ze%fy)lf(z)l > 8.

Since B(y, ry) = B(w,ry) if w € B(y,ry), it follows that
‘B(y, Ty) C Fs-

1
It is possible to find z1,. .., z; such that F, decomposes disjointly as |J B(z;, r;,) so that

=1

! !
Fl= Y18 <2 Y ) = Yl < b,

i=1 ye‘).i(z,»,r, ) y€EF,

* hence 9 is of weak type (1,1). The L” and L*' boundedness follow from the trivial L
boundedness and from interpolation theorems. 0

LEMMA 4.2. Let X, and X, be measurable spaces with measure p, and uy. Then

1/2
</x ”F(m")”iz.l(x» dul(z)) SCOIFllerxixxy  YF € LX) x Xa).
1

PRrRoOOF: It is sufficient to assume that F = xg is a characteristic function of a set
E of finite measure. We have

/ ”F z,- “Lu(xz)d/ll / “F Z,- |'L2(X2)d/1‘1( )— ”F”L2(X1XX2) = IIF”L“(X1><X2)7

so that the result is proved. ]

LEMMA 4.3. Suppose 8 is a nonzero real number and let v; and v, be the mea-
sures on Z such that v,(j) = €7 and 1,(j) =e?7. Then

Iy < Iflle2a@e, VS € L2Y(Z,v,).

PROOF: Suppose 3 < 0. Let E be a finite subset of Z, so that jo = min(E) is well
defined, and f = xg. We have

1/2
1l = 36% < 36 = GpePio < Gy (Zeﬂ’f) = Collf iz

JjEE J2jo j€E

If 8 > 0 the proof is similar. 1]
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5. A MAXIMAL OPERATOR ON X
The purpose of this section is to show that the operator

Mf(z)z 1/2 Z |f

rGN IB( yEB(z,r)

is bounded from L>'(G/K) to L>*(G/K). We use the same ideas as Ionescu [5], who

showed an analogous result in the case of noncompact Lie groups of real rank one.
THEOREM 5.1. The operator M is bounded from L*(G/K) to L**(G/K).
PROOF: Observe first that

o =Y. Y lfwl

vEB(z,r) heZ veH(A(z)+h)
yEB(z,r)

Write B(z, 7, h) for B(z,r) N $H(k(z) + h) and choose w in (z). We may assume that
r > |h|, otherwise B(z, h,7) = 0. In view of part (ii) of Lemma 3.10,

|B(z,7, h)| = g2 < g

and
S @l= 3 f@] < s (8w, h(z) + b)),
véyz(gg?;(;h) yE€B(z,r,h)
so that
Mf(z) = Mf(‘b(w,h(x))) <Csupg™? Y |f(w)|
reN y€B(z,r)
(5.9) < Czq-"ﬂmf(cb(w,h(x) + h))
heZ
=C Y "M (3(w, 7).
JjEZ

In view of formula (3.5), the measure in X of E) = {z € X Mf(:z) > /\} is equal to
the measure of ®~!(E,) in Q x Z, and from (5.9),

®~YE,) C {(w,l) €QAxZ: Yy ¢“IMmf(d(w,5)) > ,\}
Jj€Z

= {(w,l) ENXZ: q‘ﬂzq—f/?mtf(@(w,j)) > A}

jez

A
- {(w,l) €ENXZ:1/2>]og, }:j q_j/zgnf(qu(w,j)) }
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, -2
It follows that, if g(w) = log, \? (Z g i?mf (@(w,j))) and |E\| denotes the measure
J
of E, in X, then

1B = [ 30 'xemrce0 () dole)

leZ

/ ( )y q-')dp(w)

I>g(w)

<ox [ (Serm(ree)) dote).

JEZ

N

Let 8 = —1/2 and denote by v, the measure on Z associated to the function j — q%% as
in Lemma 4.3. By using Lemmas 4.2 and 4.3,

2
T = 50 1B < © [ (X 0m(1)(200,3) ) dpo)
>0 o \iez
2
<C [ I s g0
2
<C “m(f)“L?vl(ﬂxZ,pxug)
2
=C ”m(f)”m-l(x)
and the theorem follows from Proposition 4.1. 0
Observe that Theorem 5.1 implies a K-invariant version of the generalised Kunze-

Stein phenomenon.

COROLLARY 5.2. Let G denote the group of isometries of a homogeneous tree
X of degree ¢ + 1. Then the following continuous inclusion holds:

(5.10) L*Y(G/K) + L*Y(K\G/K) C L**(G/K).

PRrRoOOF: Let f and ¢ be the characteristic functions of finite subsets of X and suppose
¢ is radial. Let M be maxzex{lz:l D o(z) # O} and observe that xseam) < ¢ < XB(o,m)
so that there exist two positive constants c¢; and c¢; such that

1™ < ||@llan < 2™/
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It follows that
- / f(z-0)$(z"'g o) dz = / f(z-0)d(g™'z - 0) dz
G
= fWeélg™"y

yeX

=Y 3 i)

neN y:d(z,y)=n

> fw

yEB(z,M)
< MM f(z)

and then
1 * Bllz00 < 21 M fllao < CT"| fllan < Clidllaall Fllz.s. 0

6. AN ENDPOINT ESTIMATE FOR THE GENERALISED KUNZE-STEIN PHENOMENON

The main result of this section is to remove the K-invariance hypothesis in Corol-
lary 5.2, by showing the continuous inclusion

(6.11) L*(G) + L*1(G) C L**(G).

An analogous statement in the case of real rank one noncompact Lie groups was proved
by Ionescu [5] and we present here a detailed arboreal version of his proof. Observe first
that to show (6.11) it is sufficient to prove that

/ / F(2)9(e™ 2 )h() dz d < Cliflaallglizallbllan,
GJG

assuming f, g and h to be characteristic functions of finite measurable sets. By using
the decomposition for G described in Theorem 3.5, we know that the previous integral is
equal to

oo [ f5

Fubini’s Theorem ensures that it is possible to change the order of integration because

/ / frk) gk~ 7 In 077 K Yh(n' 77 k') g™~ dn dn'dk dE'.
JEZ j'el

of our assumption on f, g and h.
LEMMA 6.1. Let f, g and h be characteristic function of finite sets. Then

//f(nTjk)g(k‘IT“jn"ln'Tj'k’)h(n"rj'k’)dndn’
NN

< min{fn(k, 3), hn(K', 5] / g(k~n77k') dn,
N

where fn(k,7) = /f(nrjk)dn and hy(K',j') = / h(n'T7 kY dn'
N N
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ProOOF: This follows because || f||« and |lg]le are less than or equal to one and N

is unimodular.
Observe that ||f|l3, = Eq‘J/ fn(k,5)dk and |[R||3, = Z ' /hN(k’,j’)dk'.
i€z K

The main problem is to relate the expression containing g with 1ts L21 norm. lonescu’s
idea of using the link between the Cartan and Iwasawa decompositions in the semisimple
Lie group case works in the tree context too. To find the link, we use the subset 7 ;
defined in formula (3.7). In view of Lemma 3.8,

/g(k‘l‘r‘jn'rj'k')dn=q’/ gk~ 7 Ik dny = ¢ Z / g(ktny 77 k) dn,.
N r21j=j1 Y Trat =3

Recall that ¥(r, j) = ¢7/2|T, ;| so, setting

1 .
= Jr,, 9(k7'n7ik ) dn T > |j]
(6.13) gN(k, k', 5) = ITr,jlfT'-’

0 r < s,

we have
/ gk~ 77 InrT K )dn = VIR gV (kK - ) (r, 5 - ),
N reN
and (6.12) may be dominated by
(6.14) / / S S min[fu k), hn (E)] g0 42N (, K 1, 5 — j)b(r, 7 ~ )dk dk.
7, 7’€Z reN

The proposition below summarises how the link between the decompositions for G
allows us to relate the expression containing g with its L?! norm.

PROPOSITION 6.2. Let g be a characteristic function of a finite set, denote by
*9*(-,-,7) the double rearrangement of the function (k,k') — g(k='7"k') and let gV be as
in formula (6.13). Then

(l Z/ / S t T)q dsdt < ”9”%2,1(0)
reN
q+1/qZ// *(s,t,7)q" dsdt;

reN
(i) Let D and E be measurable subsets of K of measure § and €. Then

8 3 .
//g”(k,k',r,j)dkdk’gf / *g*(s,t,7) ds dt.
DJE 0 0

PRroOOF: Recall that, by the Cartan decomposition for G, for every z € G there exist
ki(z), k2(2) in K and a unique r in N such that z = k;(2)"!77ky(z). To prove part (i),
first note that

l{zGG’ : |z o =r}l = l{xex : d(x,o)=r}’ =Cl(q,7)q",
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where C(g,1) = 1 and C(q,7) = (¢ +1)/g if r # 1. Fubini’s Theorem and the left
invariance of the normalised Haar measure dk on K imply that

gl ey = / 9(z)dz = / / / g(k~'zk') dk dk'dz
G K
= / / / g(k™'zk") dk dk'dz
K {z€G :|z-0]=r}

-

=Y Clgr // (k7' kg dk dk'

reN

-ZCq,r)// ‘g*(s,t,7)q" ds dt,

reN

reN

/ 9((kuk) ™' 7" kok') dk dk'dz
{z€G: |z 0l=r}

by the property of rearrangements summarised in Lemma 2.1; this proves part (i). Note
that part (ii) is trivial whenever r < |j|. If r > |j|, then the same argument used in
part (i) and Lemma 3.8 show that

1 .
//gN(k,k',r,j)dkdk'=//— g(k_ln*rjk')dndkdk’
pJE |T,j| T,
/ / 9((k1(n)k) ' 7" ka(n)K') dn dk dk’
|T,.,1 T,,
dn/ / k‘l k') dk dk'
|T,J| T.; Jk(n)D kz(n)E

g/ / 9 (s, t,7)dsdt
o Jo

and the proposition follows. |
1/2 5 1/2
Lot J6) = (5 ulbile) - and K@) = (£ mwli 047 )
jezZ J'E€Z

LEMMA 6.3. Let f* and h* be the rearrangement functions of f and h and let
'g* be as in Proposition 6.2. Then

/G/Gf(z)g(z‘lz h(2')dz d2' <C/ / Zf (VR (9" (5. £, 7)q 2ds dt. *

reN

PROOF: We know (see (6.14)) that / /f(z)g(z'lz')h(z’)dz dz' is dominated by
¢Je

[ [ X S minlfu( ha(k))a70 26" b K5 = 3t ) k.

7.7’€Z reN
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Let x; be the characteristic function of {(k,¥’,5,5") : fx(k,7) < hn(K',5')} and let x,
be 1 — x;. It is clear that

fN(k)j)Xl(k‘yk‘I’j’j,) g h‘N(k‘l’jl) a‘“d hN(k'l)jl)XQ(kiklujyj,) g fN(kyj)i
so that / / f(2)g(z27'2")h(2')dz dz' may be dominated by the sum of two expressions
¢Je
like
©15) [ [ 30 3 fulhohxa kK4, 00 TG R, - )05 )
kJK

5,i’€Z reN

= /K/K SOtk )xak K 5,0+ 5)g 72N (k, k', 7, D (r, ) dk di.

FIEZ reN

N 1/2 B 1/2
Recall that f(k) = (Z fN(k,j)q‘j) and h(k') = (Z hN(k’,j’)q‘j') and set

JEZ J'€Z

Ak, k1) =" fulk, i)xa(k, K, 5,5 + g,
jE€Z

so that expression (6.15) becomes
(6.16) / / ZZA(k,k’,l)q"/2gN(k,k',r, Dy(r,)dkdk'.
KK ez reN

Since A(k, k', 1) < f(k)? and also

Ak R, L) <D Ik 5k K55+ D7 <Y ha(K, 5+ Dg™0D < R(k)?,
J€EZ Jj€Z

the expression (6.16) may be dominated by
610 [ [ 3 S F7g kK e D0 dk
KK jer(kk)+ reN
w [ S SRR kK, Dt O dk
xJk

leI(k k)~ reN

where

10k, K)* = {teZ: ¢ <h(K)/F(k)} and I(k,K)" = {leZ: ¢ > h(K)/F(k)}.
For any integers n and m define

D= {ke K : f(k) € g™V ¢}
and

E.={k € K : h(K') € (g2, ¢g~"/?)}.
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Set
={ke K : f(k)=0} and E,={K €K : h(kK)=0},
so that K = U D,, =|J E,. Let é,, and ¢, be the measures of the sets D,, and E,. Note

that if (k, k') € Dy, x E, then I(k,k")* C{l € Z : | > n — m — 1}, so that the first
summand of (6.17) is dominated by

(6.18) > / / S S a g (kK Dg(r, 1) dk dk.

mmneZ En Zn-m-1 reN

In view of Proposition 6.2, we see that (6.18) is less than or equal to

619 ¢ X S ([T[Tveenaa) ¥ v

mmneZ reN I2n-m-1

By using Lemma 3.11 we also know that (r, 1) < qf/2, then
S v <C Y g g gl
1Zn-m-1 I>n-m-1

and (6.19) is dominated by

o Z Zq_(m+")/2 (/ / g* (s, t,T dsdt)

m,neZ reN

Set

St6.0)= 3 (47, (o)),

mneZ
where x5, = X(0,4m) a0d Xe, = X(0,6,)- 10 conclude the estimate for the first term of
(6.17), it is enough to show that

(6.20) S(s,t) < C f*(s)R*(2).

Fix s and t in (0,1). Observe that, since the measure of K is finite, there are only a
finitely many m and n such that d,, > s and €, > t respectively, so that m, = min{m €
Z :6,>s}and n; =min{n € Z : £, > t} are well defined. We have

S(s,t) < Z Z g mHm)/2 ¢ O gm(matni)/2,

m>m, n>n;

On the other hand if f,(k) = ‘('"-'*1)/2xpm (k), it is clear that f; = g=(ms*1)/2y,  that
fs(k) € f(k) and finally that fr < f*. In particular f* (8) > f1(s) = Cyq~™/2. In the
same way one shows that k*(t) > Cpq ™2, so that (6.20) is proved. The other term in
(6.17) may be dominated in a similar way so that the lemma is proved. 0

We can finally prove inclusion (6.11).
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THEOREM 6.4. Let G denote the group of isometries of a homogeneous tree X
of degree q + 1. The following continuous inclusion holds:
L*Y(G) » L*(G) C L*®(G).

PRrROOF: Lemma 6.3 above ensures that it is enough to show

1 1 L

|| S e e st 2ds d < Cll e lgllaaliblea:
0 J0 ,eN

To do this, let D be a constant, U = {(s,t,7) : f‘(s)*%*(t) < Dg?} and V = {(s,t,7) :

f*(s) » h*(t) > Dg"/?}. By Proposition 6.2,
- 1 1

[FeRweeanasa< DY [ [ nnd dsd < Dlglue
u rez /0 JO
on the other hand, since *g*(s,¢,r) < 1, Lemma 2.1 implies that

1 1
rETARYIT LN r/2 d < /27« e
[Foroeeanrtsas [ [ feioases

r:(str)ey

1 pl {Frlo\E* 2
o Jo

FIV2F (102
kJk D
"y ”f”ZL?-l(G)”hIEZ’.l(G)

The last equality uses the fact that f and h are characteristic functions and then

1y = [ f@dz= [ 3 [ joribygsanak
K 7
- /K WCHIS /K Fikydk

and ||h|| 21 = / h(k")2dk’. The theorem is proved by choosing D equal to
K

-1 .
(”9”1,2»1(0)) WAz llRll 26y 0

7. ON RADIAL CONVOLUTORS OF L*(G)

In this section we illustrate a consequence of the Kunze-Stein phenomenon in the study
of convolutors of LP{G). Recall that (G, K) is a Gelfand pair, that is, C.(K\G/K) is
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a commutative algebra with respect to convolution on G. In Theorem 7.1 below we
summarise some properties of the spherical functions associated to (G, K). Define the
Laplace operator on X by setting

Cf@)=f@) - — 3 i),

g+1 y:d(z,y)=1
and set
-1
142 1 |z| ) g7t/ Vz € TZ
q
_ -1
(721) ¢Z(I) - 1 + q + 1'z| q_'zl/z(_l)lzl VZ e 7—/2 + TZ
q

c(2) gDkl 4 ¢(—2z) g1l vy € €\ {72/2},

where 7 = 27/ log ¢ and c is the meromorphic function defined by

/2 1/2+iz —1/2—-iz

(o) = L2 4 —q

= - - Vze C\ {rZ/2}.
q+1 qll_q—‘ll \{ /}

THEOREM 7.1. Suppose u € C. Then there is a unique K-bi-invariant solution
of the problem

Lf=unf

7.22]
(7.22) flo) =1.

The spherical functions associated to (G, K) are the solutions of (7.22) and are given by
formula (7.21). The corresponding eigenvalue p(z) is

1/2
(7.23)

— s I (qiz _*_q—iz).

The spherical functions ¢;,(z) are positive for all t € R, the map t — ¢;(x) is increasing
on R and |¢s1i(z)| < du(z) forallz € X and s, t € R.

For the proof, see [4, Chapter 2]. Observe that Theorem 6.4 and the bilinear inter-
polation theorem of Lions and Peetre 7] imply the following result (see also [3]).

THEOREM 7.2. Suppose that G is the isometry group of ¥ and that1 < p < 2.
Then the continuous inclusion

LP"(G) » LP*(G) € LP(G)

holds if and only if 1/t < 1/r +1/s— 1.

CoROLLARY 7.3. Ifl < p <2, then L»'(G) is an algebra of convolutors for
LP(G) and, in particular, L' (K\G/K) is a commutative algebra of convolutors.
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PRrOOF: It is enough to put first r =s =t =1and thenr =1 and s =t = p in
Theorem 7.2 above. Finally, LP!(K\G/K) is commutative because (G, K) is a Gelfand
pair. D

Before proceeding we need a theorem due to Pytlik [9].

THEOREM 7.4. A radial function f on X belongs to LP(K\G/K) if and only if
7+ g"/? f(r) belongs to L(N) and ||g")/? f (-)|| Le(n) is & norm equivalent to || || Lra¢x\c/5)-
REMARK 7.5. Suppose 1 < p < 2. Write §(p) for 1/p — 1/2 and let S, be the strip
{zeC: |Imz| < 5(p)}. The explicit formula (7.21) show that a spherical function ¢,
belongs to L7 »*°(K\G/K) if and only if z € S),.

Herz’s principe de majoration ensures that a positive K-bi-invariant function f con-
volves LP(G) into itself if and only / f(2)¢isp)(2) dz is finite, where the spherical function

e
®is(p) 1s given by formula (7.21). This function is positive on G and it is therefore natural
to study the set of those K-bi-invariant functions f such that || f[|c, is finite, where

Ifllc, = /G 17(2)] s (2) =

By Pytlik’s theorem this set of functions is equal to LP'(K\G/K) (note that ¢isp) ~
q~/?") and the two norms ||-||c, and ||-|l,,; are equivalent. We write C,, for L»'(K\G/K)
with the norm || - |ic,. The dual space C; of Cj, is then isomorphic to LP*°*(K\G/K) and
the map I : L”*°(K\G/K) — C, given by setting

1#)(f) = /G f@dz)dz Y fe LM (K\G/K),

realises this isomorphism. The advantage of using C, instead of L»!(K\G/K) is that
C, is a Banach algebra. Note that Theorem 7.2 ensures that there exists a constant C
such that IIf * glla < Cllfllptllgllps. By replacing || - oy with | I, = C - [y we
obtain another norm which makes L*!(K\G/K) a Banach algebra. We prefer to use C,
to avoid confusion and because the norm is more explicit. We already know that C, isa
commutative algebra; if f and g are in C.(K\G/K), then

7 * glle, = (i) (| F * gl) < I(Bisny) (I£] * |9])
= Iiswy) (1F1) L ($ism) (l9]) = llfllc?llgllc,,

so that C, is a unital commutative Banach algebra (X being a discrete space). We
conclude by giving a description of its Gelfand spectrum A, that is, the compact space

(7.24)

of multiplicative functionals on C,.

LEMMA 7.6. Suppose thatl < p < 2. A continuous linear functional ® belongs
to A, if and only if there exists a spherical function ¢ € LP**°(K\G/K) such that

o = I(3).
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PROOF: Let & € A,. Since @ is continuous on C,, there exists ¢ € L***°(K\G/K)
such that ® = I(¢). Moreover & is multiplicative so that

(7.25) /G (f * 9)(z) $(z) dz = B(f » g) = B(f)B(g) = /G 1(z) 6(z) da /G o(z) $(z) da

for all f, g € C.(K\G/K), that is, ¢ is spherical. On the other hand, assume ¢ €
L7 *°(K\G/K) is a spherical function. Since I(¢) is continuous and C.(K\G/K) is
dense in L»(K\G/K), the relations (7.25), true on C.(K\G/K) by hypothesis, extend
to all C,. In other words I(¢) belongs to A, and the lemma follows. 0

Lemma 7.6 above and Theorem 7.1 ensure that the map A : p(S,) = A,, defined
by setting A(w) = I{¢,) if u(z) = w, is well defined and is a bijection. We prove now
that A is actually an homeomorphism.

THEOREM 7.7. A is a homeomorphism between u(S,) and A,.

PROOF: We first show that the map A : z — I(¢,) is continuous. Consider the open
set U in A, given by

U=Ufp,e) = {<I>e A, : |(@ - 0)(f)] <s},

where f € LP}(K\G/K), € > 0 and ¥ € A, are fixed. To show that A\~!(i/) is open in
S, C C, consider zp € A~'(U). We have

|(AG) - W) < |(AG) = A) ()] +| (M) = 9) (£)]
< [18:0) = 0@l @)] s+,

where 7 = ‘(A(zo) - \P)(f)’ < €. In view of Theorem 7.1,

|¢z(z) - ¢20(I)|< |¢z(x)| + Id)zo(x)l < 2¢i6(p) € LPI'OO(K\G/K),

for all z € S;. 1t follows, by Lebesgue’s Dominated Convergence Theorem, that if |z — z|
is small enough and z € S,, then z € A~!(U). This implies that A~!({) is open and A is
continuous. Since 4 is holomorphic, hence an open map, and A~'(U) = p(A~'(U)), this
implies that A is continuous too. Then A is a continuous bijection of compact Hausdorff
spaces, so a homeomorphism, and the theorem is proved. 0
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