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THE KUNZE-STEIN PHENOMENON
ON THE ISOMETRY GROUP OF A TREE

ALESSANDRO VECA

Let G be the group of isometries of a homogeneous tree X. In the first part of this
paper we decompose G in terms of certain subgroups N, Z and K to obtain the
related integral formula

f(z)dz= [ V

Then, by using ideas of A. Ionescu and the formula above, we prove that

L2>\G) * L2'\G) <Z L2>°°(G)

and that a related maximal operator on X is bounded from L2'X(X) to L2'°°(X). We
finally show that LP'1 (K\G/K) is a commutative Banach algebra of convolutors for
LP(G) and give an explicit description of its Gelfand spectrum.

1. INTRODUCTION

The principal aim of this paper is to prove that if G is the group of isometries of a
homogeneous tree X, then (Theorem 6.4)

(1.1) L2-1(G)*L2-1{G)CL2'°°{G).

The continuous inclusion (1.1) is called the generalised Kunze-Stein phenomenon for G.
The classical Kunze-Stein phenomenon

L2{G) * LP{G) C L2{G) 1 ^ p < 2

was shown for G = SL(2,E) by Kunze and Stein [6] and for every semisimple Lie group
with finite centre by Cowling [1]. Cowling, Meda and Setti stated a more accurate version
of this phenomenon, by using the Lorentz spaces i7'9(G) (see [2] and [3]). Finally, in
2000, Ionescu showed that the continuous inclusion (1.1) holds for every semisimple Lie
group of real rank one and finite centre [5]. We present here a detailed version of his
proof, adapted to the homogeneous tree case.
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154 A. Veca [2]

The key ingredient in Ionescu's proof is the relation between Iwasawa and Cartan
decompositions for semisimple Lie groups. In Section 3 we introduce and study in some
detail a suitable subgroup N (see [4]) which leads to a decomposition "of Iwasawa type"
for the group G of isometries of a homogeneous tree (Theorem 3.5). Although this
decomposition is not a bijection, there is a related integral formula

/ f(z)dz = / £ / f(nrjk)q-jdkdn,
JG JN , C 7 J K

where / is a compactly supported continuous function on G, r is a one step translation
in G, K is the isotropy group of a base point o in X and dk and dn are the Haar measures
on K and N respectively. The analogy with the Iwasawa decomposition for Lie groups
is apparent.

In Section 5 we show that the maximal operator

is bounded from L2>1(X) to L2'°°(X) (following [5]) and, as a corollary, we obtain a K-
bi-invariant version for the generalised Kunze-Stein phenomenon for G. In Section 6 we
prove (1.1) and finally, in Section 7, we use the generalised Kunze-Stein phenomenon to
show that there is a natural norm (see [2, 8, 3]) which makes LP'1(/C\G/A') a commu-
tative Banach algebra of convolutors of LP{G). We give an explicit description of the
Gelfand spectrum of this subalgebra (Theorem 7.7).

2. DEFINITIONS AND NOTATIONS

A homogeneous tree of degree q + 1 is a connected graph X with no loops, in which
every vertex is adjacent to q + 1 other vertices. It carries a natural distance d, d(x, y)
being the number of edges between vertices x and y. Let S(x, r) and B(x,r) denote the
sphere and the closed ball centred at x and of radius r in the metric space (X, d). Let I be
a subset of Z of the form 7 n Z , where / is any (possibly infinite) interval of real numbers.
A chain is a collection of vertices {xi}i€i such that d(xi,Xj) = \i - j \ whenever i, j e 1.
We say that a chain is a geodesic ray or a geodesic if I is equal to N or Z respectively. We
say that a geodesic ray {xi}i€n starts at x if x0 = x. Geodesic rays {XJ},€ N and {yj}jen
are identified if there exist integers i and j such that xn — yn+i f°r every n greater than
j ; this identification is an equivalence relation. We denote by fi the set of equivalence
classes and by Qx the set of all geodesic rays starting at x. Note that for every element
in w e Q there exists a unique representative geodesic ray in Qx: we denote this geodesic
ray by [X,UJ).

Let o and w+ be fixed but arbitrary reference points of X and fi respectively and
assume that 7 + = {7,}tgN is the representative of ui+ in ilo. Define the height function h
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[3] Kunze-Stein phenomenon 155

(associated to LJ+) by the rule

h(x) = \im^(i-d(x,ji)).

For j € Z, we set
j) = {x e X : h(x)=j},

so that X decomposes disjointly: X = \J fy(j). The level sets fy{j) of the height function
h are called horocycles of X. ; € Z

Denote by G the group of isometries of (X, d). The group G acts transitively on X,
is unimodular and locally compact, a neighbourhood basis being given by the sets of type

U ( g , E ) = { h e G : h - x = g - x V i e £ } ,

where g is in G and E is a finite subset of X. It is easily satisfied that if {xj}igN and
{Uj}j€N a r e equivalent geodesic rays, then {g-Xi}i€^ and {g-yj}jew are equivalent geodesic
rays. This defines a transitive action of G on Q. We denote by Kx and Gw the stabilisers
of x € X and u) € fi under the G action and write A' for A"o. Then K is a maximal
compact subgroup of G and X may be identified with the coset space G/K. A function
/ on X is said to be radial if it only depends on d(x,o). We identify A'-right-invariant
and A'-bi-invariant functions on G with functions and radial functions on X respectively.

We need some more notation. Given a topological space X, denote by CC{X) the
set of continuous compactly supported functions on X.

If / is a measurable function on a measure space (X, fi) define the distribution
function Xf and nonincreasing rearrangement /* by

Xf(s) =n\xeX : \f(x)\ > s) and /*(*) = inf {s : Xf(s) <: t}.

Consider a measurable function F : I X X H R+. Denote by F **(•, •) the rearrangement
of the function x t-> F*(x, •), where F*(x, •) is the rearrangement of y H-> F(x,y). The
function F" is called the double rearrangement of F. We summarise some properties of
rearrangements and double rearrangements in the next lemma.

LEMMA 2 . 1 . Let f : X •-»• K+ and F : X x I H 1 + be measurable functions.
Then

a \ 1/2 / MX) \ 1/2

(ii) / F(x,y)dti(x)du.(y)= / F"(s,t)dsdt;
JX JX JO J0

(iii) if D and E are measurable subsets of X of measures 6 and e, then

f f F(x, y) dn(x) dn{y) < / f F" («, *) ds dt.
JDJE JO JO
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3. T H E GROUP TV AND THE BOUNDARY fi

Recall that 7 + = {7i}ieN is a reference geodesic ray in Qo and that Gu+ is the
stabiliser of its equivalence class w+. Choose another geodesic ray 7" = {7_i}i£N such
that 7~ n 7"1" = {0} and write 7 for the geodesic {7i}igz- Note that h(jj) = j for all
j € Z. Given u>\ and w2 in fi there exists a unique (up to renumbering) geodesic {2/Jiez
such that u)\ and co2 are the equivalence classes of {yi}ien and {y_i}i€N respectively. For
brevity, we denote this geodesic by (wi ,^ ) disregarding the labels.

Let TV be the subset of all elements in Gu+ which also fix some vertex of 3C (see [4]).
The next lemma gives a description of TV in terms of the height function h.

LEMMA 3 . 1 . An isometry z belongs to TV if and only ifh(z • x) = h(x) for every
x £ X. Further TV is a closed subgroup ofG.

P R O O F : Let n be in TV. By definition n • w+ = w+ and n • x = x for some x € X, so
that n fixes every vertex in the geodesic ray [x, ui+) starting at x and equivalent to w+.
It follows that TV is the set of those elements in G that fix the elements 7* of j + for i
big enough and it is therefore apparent that TV is a subgroup. In particular n~l fixes the
elements in 7 + eventually and

h(n • x) — lim (j - d(x, n"1 • 7,-)) = lim (j - d(x, 7,)) = h(x).

On the other hand, suppose z e G satisfies h(z • y) = h(y) for every y € X. Let x = z • o,
assume [x, w+) = {xJjgN and note that xt = 7* for sufficiently large i. Observe also that,
for any j in N, d(z • jj,x) = j and h(z • jj) = h{^j) = j . Since S(x,j) n fj(j) reduces to
the point {XJ}, we conclude that z • 7, = Xj and then z belongs to TV. We finally show
that TV is closed by proving that its complement TVC is open in G. Let z be in TVC. Then
there exists x € X such that h(z • x) ^ h(x), so that the set

U(z,{x})={geG : g • x = z • x}

is an open neighbourhood of z, contained in TVC. D

COROLLARY 3 . 2 . The orbit ofx e X under the TV action is exactly the horocycle

{x)).

PROOF: Choose y ^ x in $j(h(x)) and a vertex 7* in

It is clear that i > h(x) and that x, y e S(ji,i - h(x)). Since elements of A"7i act as
permutations on 5(7;, i — h{x)) (and every permutation of S(fi,i — h(x)) derives from
an element of Klt) there exists (actually infinitely many) n £ Gw+ n K7i C TV such that.
n • x = y and the claim is proved. D
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[5] Kunze-Stein phenomenon 157

We denote by Nx the stabiliser of x € X under the TV action and we write N{ for TV7j

for all i € Z. The following lemma describes some properties of the Haar measure fi on

the locally compact group iV. If E is a finite set, then we write \E\ for the number of its

elements.

LEMMA 3 . 3 . Let fi, Nx and h be as above. Then

(i) the measure JJ, can be normalised such that n(Nx) = qh^ for all x € X;

(ii) TV is unimodular.

R E M A R K 3.4. In the following we shall assume tha t the Haar measure on TV is nor-

malised as in (i).

P R O O F : TO prove part (i), first note tha t Nx = Kx n TV is a compact subgroup of TV

and so its measure in TV is finite. Moreover, since X is countable and TV = (J TVX, there

exists x S X such that n(Nx) > 0. Let y be the unique vertex such that d(x, y) — 1 and

h(y) = h(x) + 1. It is clear tha t TVy acts transitively on S(y, 1) n Sj(h(x)) and tha t the

stabiliser of x in TVy is exactly TV£. From the left invariance of n and since the index of

TV? in Nv is equal to \S(y, 1) r\Sj(h(x)) \= q, it follows tha t

( )
t=i t=i

{zi}i-i....,q being a complete family of representatives for the coset space TVy/TVj. With a
similar argument it turns out that fi{Nx) = g/l(a:)-'l(I) for all a; € X and, normalising /j so
that u(N0) = 1, we have fi(Nx) = qhW as required.

To show part (ii), let n be an element in TV and let AN denote the modular function
on TV (that is, the function such that fi(An) = AN(n)n(A) for any measurable set A).
Using part (i) and the fact n~1Nxn = Nn-i.x we have

xn) = AN(n)»(Nx),

which implies A# = 1. D

The main result of this section is contained in Theorem 3.5 below which underlines
the analogies between G and semisimple Lie groups of rank one. Let r be a fixed one-step
translation along the reference geodesic 7 towards w+, that is, r -jj = 7 J + 1 for all j e Z.

THEOREM 3 . 5 . Let G, TV, K and T be as above. Then for every z e G there
exist n € TV, j € Z and k e K such that z — nrjk. Further, if f is a continuous
compactly supported function on G, then

(3.2) f f(z) dz= f J2 f !{p"rik)q-'dk dn(n).
JG JNJ&.JK
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P R O O F : An element in G must be a translation along some geodesic, a rotation
around some vertex or an inversion (an isometry which exchanges two adjacent vertices)
(see [4], Chapter 2). Since an inversion can not fix any point in Q, an element zu+
of G^+\N is a translation along some geodesic {xi}^z with {xi}igN equivalent to j + .
Choose an element x lying on both j and {xi}i€z and let j0 be the integer such that
zw+ • Xj = Xj+jo f°r aH j S Z. It is clear that 2w+r~J fixes w+ and x so that Z^+T"-'0 S TV.
It follows that each element in G^ may be written as the product of an element of N
and an element of the subgroup generated by r. Finally, if z is a generic element of G,
there exists k 6 K such that k • ui+ — z • u>+ so that zk~l belongs to Gw+, and there exist
n € N and j e Z such that zk~i = nrj, as required. To show the second part of the
theorem, suppose first F is a /f-invariant function on G. We can write

(3.3) / F(z) dz =

We know that N acts transitively on S){j) for all j £ Z. Denote by {n(x)}x . a com-
plete family of representatives for the cosets of JV,- in TV. We have that N = \J n(x)Nj

(disjoint union) and that n(n(x)Nj) — (J.(NJ) = qi in view of Lemma 3.3. We have

" °)dn

= q~j f F(nrj • 6) dn,
JN

and then, by (3.3),

(3.4) / F(z) dz = Y\ q-j f F{nrj • o) dn.
JG j€Z JN

j€Z

If / 6 CC(G), then F(z) = [ f(zk)dk is ^-invariant and f f(z)dz = f F{z)dz. The
JK JG JG

desired result follows from (3.4). Q

REMARK 3.6. Observe that the decomposition in Theorem 3.5 is not unique. Denote
by n the projection (n,j,k) >-> nr^k and suppose z = it(n,j,k) = 7r(ni,ji,Jfci). It follows
that j = ji because

j = hijj) = h(n • jj) = h(nrJk • o) = hfar^ki • o) = j v

Furthermore k~1w+ - z~x • u+ = k^lw+ and then kk^1 6 Gu+ n K = No, There
exists n0 6 No such that k = nokx so that nr^k — n(Pn0T~j)Tjki. It follows that n\ =
n(VnoT~i) and that n is constant on the sets of /V x Z x K of type {(nrJ'noT"J'1 j , n~xk) :
n0 € 7VO}.
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REMARK 3.7. Consider a function / on X (that is, a if-right-invariant function on G).
In this case it may be useful to rewrite formula (3.2) as an integral on Q instead of as
N. Note that for any w in fl\{w+}, the geodesic (w,w+) intersects 9){j) in exactly one
point, so that the map $ : Q x Z -¥ X, defined by the rule <3>(w, j) = S)(j) D (w,w+), is
well defined. This map is surjective and $~l(x) = tt{x) x {h(x)}, where Q(x) = {w 6
n : x e (w,w+)}. Set p({w+}) = 0 and p(fi(z))-= gft(l), so that p extends to a Borel
measure on fi. Since UJ e fi(x) if and only if x € (w,w+), given an integrable function on
X we have

= /(3.5)

j€Z

LEMMA 3 . 8 . Let / be in CC(N). The map n »-> T'^UT^ is an automorphism of
N and

/ f(T-jnTj) dn = qj / /(n) dn.

PROOF: Let j be an integer. Since

h(T-jnT> • x) = ^(nr^ • x) - j = h{rj • x) - j = h(x),

we have T'^UT3 € iV in view of Lemma 3.1, so that n *-¥ T~3TIT3 is an automorphism.
Let A be the modular function associated to this automorphism, that is, the group
homomorphism A : Z —» K+ such that

(3.6) / f(T-jnT3) dn - A(j) [ f(n) dn.
J J

To show that A(j) = q3 for all integers j , consider / G CC(G/K). In view of Theorem 3.5
and since

fi{n : n • jj — x} — q3 Vj € Z, Vx G

we have

E / f(T ^n'7i+i)9 ldn

https://doi.org/10.1017/S0004972700020177 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020177


160 A. Veca [8]

£

16X

which implies A(j) = q>'. The desired result now follows from (3.6). D

Recall that X = U f)(j) and note that X = {j S(o,r). The first decomposition for

3t is associated to the decomposition for G described in Theorem 3.5. The second one is
related to the Cartan decomposition G = \J KTTK. Lemmas 3.10 and 3.11 below relate

these decompositions.
Let

*(x,r) = B{x,r)C\!)(h{x)) = {yzB(x,r) : h(x) = h(y)}.

REMARK 3.9. Note that the intersection of two such "balls" 93(z,r) and <B(x',r') is
always trivial. It is simple to see that if 95 (x, r) f~l 95(x', r') ^ 0, then 95 (z, r) C 95(a;', r')
or53(a;',r')C<B(2;,r).

If a is a nonnegative real number, then we write \a\ for the maximum n S N such
that n ^ a.

LEMMA 3 . 1 0 . Let x e X, w e fl(x), r e N and let h be an integer such that
r^\h\. Then

(i) B(x,r)nS)(h(x) +

(ii) \B{x,r)nSj(h(x) +

PROOF: Observe that the result does not depend on the particular choice of w G
fi(x) because of the intersection properties of the balls 23. Suppose first that r - h is
even. It is not too hard to see that to reach f)(h(x) + h) in exactly r steps starting from
x, it is necessary to move toward w+ along the infinite chain [x, w+) by (r + h)/2 steps,
first arriving at the point y = $(w, h(x) + (r + h)/2) and then going down by (r — h)/2
steps along [y,w'), ui' being an arbitrary point in £l(y). This implies that

B(x, r)nS$ (h(x) + h)=S(y, (r - h)/2) D Sj (h(x) + h) = 03 ($(w, h(x) + h), r - h).

If r — h is odd, a similar argument shows that if y' = $(w, h(x) + (r + h— l)/2) then

B{x,r)nS)(h(x) + h) = S(y', (r-h-l)/2)r\f)(h(x)

and part (i) is proved; since finally |93(x,r)| = 9 /̂2] for a n y x € X and r 6 N, part (ii)
easily follows from part (i). D

Let j be an integer and r € N and set

(3.7) Trj- = {neJV :n-7,-eS(o,r)}

and ^(r, j) = q~^2fj.(TrJ). It is clear that Trj- = 0, and then il>(r,j) = 0, if r < | j | .
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LEMMA 3 . 1 1 . Suppose j € Z, r € N and r > | j | . Then T r j is an open subset of

N and

0 ifr — j is odd

qi if j = r

1 if j = -r

i q{r+J)/2 otherwise.
q

Consequently ip{r,j) ^ qT^2 for every (r,j) € N x Z.
PROOF: By using the same circle of ideas as Lemma 3.10 it is easy to see that

0 if T — j is odd

1 if j = r

q~i if j = -r

q(r~i)/2 otherwise.

Let {2/i}i=i t(rj) be the elements of S(o,r) nSj(j). Then T r j is the disjoint union of
{n : n • jj = j/j} where the index i varies over 1 , . . . , b(r,j). We conclude in particular
that Trj is open and that

: n • 7j = yi} = = qjb{r,j)

as required, by the left invariance of fj,.

4. THE ROLE OF L2-1

In this section we present some simple results which make clear the role played by
L2'1 in the following sections. We say that a measurable function / on a measure space
X belongs to the Lorentz space V'q(X) if and only if | | / | | M < oo, where

1/9

1 < p < oo, q < oo

1 < p < oo, q = oo.t >0 s>0

For more details about Lorentz spaces, see [10]. Note that the lemmas below depend

crucially on the following property of the quasinorm || • ||p>9: let E be a measurable subset

of a measure space (X, /x), then HXEIIP,? = M-^)1^ f°r a n v P € (1, oo) and q £ [1, oo].

Let / be a finitely supported function on X and let
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PROPOSITION 4 . 1 . The operator 971 is of weak type (1,1) and of type (p,p)

for any p > 1. Consequently 97t is bounded from L2>l(G/K) to itself.

P R O O F : Let / be a finitely supported function on X and set

Fs = {yeX: \Tlf(y)\>s).

If y G Fs, then there exists ry such that

(48) mvyi £ I/Ml>5-
Since <8(j/,ry) = <B{w,ry) if w € 95(j/,ry), it follows that

2 % , r , ) c F s .

It is possible to find x\,...,xi such that Fs decomposes disjointly as (J 23(XJ, rXj.) so that

hence 971 is of weak type (1,1). The IP and L2'1 boundedness follow from the trivial L°°
boundedness and from interpolation theorems. D

LEMMA 4 . 2 . Let Xx and X2 be measurable spaces with measure fi\ and ̂ 2- Then

VF G L2'l(X, x X2).

PROOF: It is sufficient to assume that F = \E is a characteristic function of a set
E of finite measure. We have

/ l
so that the result is proved. 0

LEMMA 4 . 3 . Suppose 0 is a nonzero real number and let vx and v2 be the mea-
sures on Z such that i>x{j) = e0j and u2{j) = e2^'. Then

P R O O F : Suppose 0 < 0. Let E be a finite subset of Z, so that j0 = min(.E') is well
defined, and / = XE- We have

1/2

If 0 > 0 the proof is similar.
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5. A MAXIMAL OPERATOR ON X

The purpose of this section is to show that the operator

r e N \B(x,r)\ y 6 B ( l , r )

is bounded from L2tl(G/K) to L2'°°(G/K). We use the same ideas as Ionescu [5], who
showed an analogous result in the case of noncompact Lie groups of real rank one.

THEOREM 5 . 1 . The operator M is bounded from L2'l(G/K) to L2'°°(G/K).

PROOF: Observe first that

E I/(»)I = E E I/Ml-
y€B(x,r) h

Write ^B(x, r, /i) for B(x, r) n 55(/i(a;) + /i) and choose w in Q(x). We may assume that
r ^ \h\, otherwise Q$(:r, /i, r) = 0. In view of part (ii) of Lemma 3.10,

and

E | / ( » ) | = E \f(v)\£Qir

so that

\f(y)\

(5.9) ^ C ^
/lEZ

In view of formula (3.5), the measure in X of E\ = {x € 3C : Mf(x) > A} is equal to
the measure of ^ " ^ E A ) in fi X Z, and from (5.9),

C j(w,0 € ft x Z :

,o e n x z : g ' /2^
iez
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It follows that, if g(u) = log, Wx>-J'/2<3K/($(w,.7))) and \EX\ denotes the measure

of Ex in X, then

= f
/ez

f(l2 9~')dPtx>Jn W ) y

Let 0 = —1/2 and denote by vi the measure on Z associated to the function j i-t q2^ as
in Lemma 4.3. By using Lemmas 4.2 and 4.3,

U - sup\2\EX\ <C f (^2q-i/2m(f)(9(w,j))) dp(w)
A>O Jn y-^ J

zc [\\m{f)(;u,)\\l. dfa)
J fl

= c\\m(f)\\2
L2,HX)

and the theorem follows from Proposition 4.1. D

Observe that Theorem 5.1 implies a A'-invariant version of the generalised Kunze-
Stein phenomenon.

COROLLARY 5 . 2 . Let G denote the group of isometries of a homogeneous tree
X of degree q + 1. Then the following continuous inclusion holds:

(5.10) I?'l{G/K) * L2'X{K\G/K) C L2'°°(G/K).

P R O O F : Let / and <j> be the characteristic functions of finite subsets of X and suppose
4> is radial. Let M be maxl6X{|a;| : <f>(x) ^ 0} and observe that XS{O,M) ^ <f> ^ XB(O,M)

so that there exist two positive constants C\ and c-i such that

Ci<7M/2 ^ 110112,1 < c2q
M'2.
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It follows that

f*4>(x)= [ f{z- o) 4>{z-l9 -o)dz= ( f(z • o) cftg-'z • o) dz
JG JG

nSN y:d(i,y)=n

^ £ f(v)
y£B(x,M)

^ qM'2Mf(x)
and then

11/ * flkoo ^ ?M/2||M/Il2,oo ^ C9M/2||/I|2,i ^ C||0| |2 i l | | / | |2 i l . D

6. AN ENDPOINT ESTIMATE FOR THE GENERALISED KUNZE-STEIN PHENOMENON

The main result of this section is to remove the /f-invariance hypothesis in Corol-
lary 5.2, by showing the continuous inclusion

(6.11) L2'\G) * L2'l{G) C L2'°°(G).

An analogous statement in the case of real rank one noncompact Lie groups was proved
by Ionescu [5] and we present here a detailed arboreal version of his proof. Observe first
that to show (6.11) it is sufficient to prove that

/ f f(z)g(z-lz')h(z')dzdz' < C\\f\\2tl\\g\hiM2,u
JG JG

assuming / , g and h to be characteristic functions of finite measurable sets. By using
the decomposition for G described in Theorem 3.5, we know that the previous integral is
equal to

(6.12) f f T2J2 f I f{nTik)g{k-lT-in-ln'Ti'k')h{n'T?k')q-i-i'dndn'dkdk'.

Fubini's Theorem ensures that it is possible to change the order of integration because
of our assumption on / , g and h.

LEMMA 6 . 1 . Let f, g and h be characteristic function of finite sets. Then

f f /(n^ifeMife-V-'n-Wk')h(n'Tj'k')dndn'
JN J N

^min[fN(k,j),hN(k',j')] f g{k-lnTjk')dn,
JN

where fN(k,j) = f f(nTjk)dn and hN{k',f) = / h{n'Tj'k')dn'.
JN JN

https://doi.org/10.1017/S0004972700020177 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020177


166 A. Veca [14]

P R O O F : This follows because ||/||oo and \\g\\oo are less than or equal to one and N
is unimodular. D

Observe that U l̂li i = £ <Tj f U(k,j)dk and \\h\\2
2l = £ q~i' [ hN(k',j')dk'.

iez JK j'ez JK

The main problem is to relate the expression containing g with its L2'1 norm. Ionescu's
idea of using the link between the Cartan and Iwasawa decompositions in the semisimple
Lie group case works in the tree context too. To find the link, we use the subset T r j

defined in formula (3.7). In view of Lemma 3.8,

f g(k-l
T-jnTj'k') dn = qj f gik^n^'^k') dnx = q> V f g{k-lnlT

i'-ik') dnx.
JN . JN r>\y-j\}Tr,i<-i

Recall that ip(r,j) = q-j/2\TrJ\ so, setting

f - ^ - L g(k-lnTik')dn r > \j\
(6.13) gN(k,k',r,j)={\Trj\jT*>yK

[0 r < \j\,

we have

/ (k-lT-'nr*'k')dn = q«+W£gN(k,k',r, f - j)i/,(r, f - j),

and (6.12) may be dominated by

(6.14) J^J^ J2 ^2mm[fN(k),hN(k')]q-^+^2gN(k,k',rJ' - j)^(r,f - j)dkdk'.

The proposition below summarises how the link between the decompositions for G
allows us to relate the expression containing g with its L2'1 norm.

PROPOSITION 6 . 2 . Let g be a characteristic function of a finite set, denote by
*<?*("> •>?") tne double rearrangement of the function (k, k') >-> g(k~lTrk') and let gN be as
in formula (6.13). Then

r6Nio h

I)/?) V / [ Y(s,t,r)qrdsdt;
r€NJo Jo
r€N

(ii) Let D and E be measurable subsets of K of measure 6 and e. Then

f f gN{Kk',T,j)dkdk'^ f [ey(s,t,r)d8dt.
JDJE JO JO

P R O O F : Recall that, by the Cartan decomposition for G, for every z € G there exist
k\{z), ki{z) in K and a unique r in N such that z — k\(z)~lTTk2{z). To prove part (i),
first note that

\ { z e G : \ z - o \ = r } \ = \{xeX: d(x, o) = r}\ = C(q,r)qr,
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where C(q, 1) = 1 and C{q,r) = {q + l)/q if r ^ 1. Fubini's Theorem and the left
invariance of the normalised Haar measure dk on K imply that

*..(c, = [ g(z)dz= f [ f g(k-lzk')dkdk'dz
JG JKJKJG

= I I Y^t g{k-lzk')dkdk'dz

= I I Y^ f g({kik)-1Trk2k')dkdk'dz
JKJK^J{Z&G:\ZO\=T}

r) f f g(k-lT'k')qrdkdk'

q,r) f f Y(s,t,r)qrdsdt,
Jo Jo

reN

f
by the property of rearrangements summarised in Lemma 2.1; this proves part (i). Note
that part (ii) is trivial whenever r < | j | . If r ^ \j\, then the same argument used in
part (i) and Lemma 3.8 show that

/ [ gN(k,k',r,j)dkdk' = f f r^-r f g{k-lnTjk')dndkdk'
JDJB JD JE\J-Tj\ JTrj

= [ [ Jr-i [ gdkiWkyVkiinWdndkdk1

J D JE l J r j | JTrJ

= -J-,f dnf [ g(k-lTrk')dkdk'
\1rj\ JTrj Jki{n)D Jki(n)E

^ f I Y{s,t,r)dsdt
Jo Jo

and the proposition follows. D

Let f(k) = E fN{k,j)q-i and h(k') = E hN(k',f)q^ .
\jez J Vez /

LEMMA 6 . 3 . Let f * and h* be the rearrangement functions of f and h and let
*g' be as in Proposition 6.2. Then

[ I f(z)g{z-lz')h{z')dzdz' s$ C f f 'Vf*{s)ht(t)Y(s,t,r)qr/2dsdt.'
JG JG JO JO r €N

PROOF: We know (see (6.14)) that / / f(z)g(z~lz')h(z')dzdz' is dominated by
JG JG

I I E Y,^in\^^h^k'^'U'+i)'23N^k',r,j' - j)^{r,j' - j)dkdk'. •
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Let Xi be the characteristic function of {(k,k', j , j') : fN(k,j) < hN(k',j')} and let X2
be 1 — xi- It is clear that

so

like

k,V,j,f) ^ hN(k',f) and hN(k',j')x2(k,k',j,f) < fN(k,j),

that / / f(z)g(z~1z')h(z')dzdz' may be dominated by the sum of two expressions
JG Jc

(6.15) f f ^

>,l6Zr6N

1 / 2/ V/2 ~ / \1/2

Recall that f(k) = ^ fN(k,j)q^ and h(k') = Z hN{k',?)q-i' and set
\j€Z J \j'ez /

so that expression (6.15) becomes

(6.16) f f J 2 1
JK JK ( gZ r 6 N

Since A(k, k\ 1) < f(k)2 and also

the expression (6.16) may be dominated by

( 6 . 1 7 ) / / E ^ 2 N

JK JK / e / ( 4 k,)+ r g

E
K lel(k.k')- rgN

where

I(k,k')+ = {leZ: q-"2 ^ h(k')/f(k)} and / (* ,* ' ) " = {' e Z : g " ' / 2 ^ h(k')/f(k)}.

For any integers n and m define

£»m = {k e K : f(k) G (g-

and

En = {k'GK : h(k') 6 ( 9 - ( n
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Set
Dx = {k € K : J{k) = 0} and £«, = {k' e K : h{k') = 0},

so that if = |J £>m = {JEn. Let <5m and en be the measures of the sets Dm and En. Note

that if (k,k') £ Dm x En then I(k,k')+ C {/ € Z : Z > n - m - 1}, so that the first
summand of (6.17) is dominated by

m,n€Z •

In view of Proposition 6.2, we see that (6.18) is less than or equal to

(6 19) C \ \ n~m i I I *n* (s t r) ds dt 1 \ ib(r /)o~'^

By using Lemma 3.11 we also know that rp(r, I) ^ qrl2, then

l^n—m—l l^n-m-1

and (6.19) is dominated by

Set

where xsm = X(o,i5m) and Xcn — X(o,en)- To conclude the estimate for the first term of
(6.17), it is enough to show that

(6.20) S(s,t)^Cf'(s)h'{t).

Fix s and t in (0,1). Observe that, since the measure of K is finite, there are only a
finitely many m and n such that 6m > s and en > t respectively, so that ms — min{m G
Z : <5m > s} and nt = min{n € Z : en > t} are well defined. We have

S(s,t) ^ E E 9"(m+n)/2 ^ Cq-{m'+nt)/2.E
m>m, n>m

On the other hand if fs(k) = q~{m'+l)/2Xom,{k)' [t i s c l e a r t h a t / / = 9"(m'+1)/2X,5m<>^hat
fs{k) < f(k) and finally that / ; ̂  /* . In particular / *(s) ^ / ; ( s ) = Ct iTm' / 2 . In the
same way one shows that h*(t) ^ C2q~nt/1, so that (6.20) is proved. The other term in
(6.17) may be dominated in a similar way so that the lemma is proved. D

We can finally prove inclusion (6.11).
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THEOREM 6 . 4 . Let G denote the group of isometries of a homogeneous tree X

of degree q + 1. The following continuous inclusion holds:

L2>l{G)*L2-\G)CL2-°°(G).

P R O O F : Lemma 6.3 above ensures that it is enough to show

f [
o Jo r£N

To do this, let D be a constant, U = {(s,t,r) : f*(s)*h*(t) ^ Dqr/2} and V = {{s,t,r) :
f*(s) *h*{t) ^ Dqr'2}. By Proposition 6.2,

ff'(s)h'(t)Y(s,t1r)q^2dsdt^D^2 f f Y(s,t,r)qrdsdt ^ D\\g\\l2,i{G);
Ju r€Z Jo Jo

on the other hand, since *g*(s,t, r) ^ 1, Lemma 2.1 implies that

~ ~ rl /•!

lv
[ f J~] qTl2}*{s)k{
o Jo r:(s,t,r)ev

o Jo ^

dkdk'=cLL o
I l /H? , , n/iii=

—— 0 D

The last equality uses the fact that / and h are characteristic functions and then

ll/lli'.>(C) = / /(*)<** = / E / f(nrjk)q^dndk
JG JK^JN

JK J •'^

and ||/i||£,2.i(G) — / h(k')2dk'. The theorem is proved by choosing D equal to
JK

7. O N RADIAL CONVOLUTORS OF LP{G)

In this section we illustrate a consequence of the Kunze-Stein phenomenon in the study
of convolutors of W(G). Recall that (G,K) is a Gelfand pair, that is, CC{K\G/K) is
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a commutative algebra with respect to convolution on G. In Theorem 7.1 below we
summarise some properties of the spherical functions associated to (G,K). Define the
Laplace operator on X by setting

y:d(i,y)=l

and set

(7.21) cj>z{x) = <

<
|X|/2 Vz €

1 + 2 - | i | ) 9"N/2(-i)W Vz € T/2 + •
o + l /9

c(z) ^

where r = 2n/ \ogq and c is the meromorphic function defined by

1/2 1/2+t* _ 0-l/2-«

THEOREM 7 . 1 . Suppose fj, S C. Then there is a unique K-bi-invariant solution
of the problem

(7.22)

The spherical functions associated to (G, K) are the solutions of (7.22) and are given by
formula (7.21). The corresponding eigenvalue /i(z) is

ffl/2

(7.23) Xi ( 9 + 9 ) .

The spherical functions <f>u(x) are positive for all t € K, the map £»-» <̂ >,((x) is increasing
on RT and | ^ 5 + i t ( i ) | ^ (/>it(x) for a7i z e X and s, t € R.

For the proof, see [4, Chapter 2]. Observe that Theorem 6.4 and the bilinear inter-
polation theorem of Lions and Peetre [7] imply the following result (see also [3]).

THEOREM 7 . 2 . Suppose that G is the isometry group ofX and that 1 < p < 2.
Then the continuous inclusion

L"'T{G) * L"'S(G) C Lp'l{G)

holds if and only if \/t ^ 1/r + 1/s - 1.

COROLLARY 7 . 3 . If 1 < p < 2, then W-^G) is an algebra of convolutors for

LP{G) and, in particular, LPtl{K\G/K) is a commutative algebra of convolutors.
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P R O O F : It is enough to put first r = s = t = 1 and then r — 1 and s = t — p in
Theorem 7.2 above. Finally, IS<l(K\G/K) is commutative because (G, K) is a Gelfand
pair. U

Before proceeding we need a theorem due to Pytlik [9].

THEOREM 7 . 4 . A radial function f on X belongs to Lp'«(A'\G//;f) if and only if

r y-¥ qr/pf{r) belongs to L'(N) and ||<?(')/P/(-)I|L«(N) is a norm equivalent to || • \\LP«{K\G/K)-

REMARK 7.5. Suppose 1 < p < 2. Write 5(p) for 1/p - 1/2 and let Sp be the strip
{z € C : |Im.z| ^ 6(p)}. The explicit formula (7.21) show that a spherical function <pz

belongs to IS''<°°{K\G/K) if and only if z € Sp.

Herz's principe de majoration ensures that a positive A"-bi-invariant function / con-

volves LP(G) into itself if and only / f(z)(pmP)(z) dz is finite, where the spherical function
JG

4>i6(p) is given by formula (7.21). This function is positive on G and it is therefore natural
to study the set of those A"-bi-invariant functions / such that | | / | |cp is finite, where

lie, =

By Pytlik's theorem this set of functions is equal to Lp>l(K\G/K) (note that (f>,s(p) ~

9-<-)/p') a n d the two norms ||-||Cp and ||-||Pil are equivalent. We write Cp for IS~l(K\G/K)
with the norm || • \\cp- The dual space C* of Cp is then isomorphic to IP'iCO(K\G/K) and
the map / : V'^i^G/K) H-> C* given by setting

WU) = I /(*) 4>(x) dx V/ e L»'l(K\G/K),
JG

realises this isomorphism. The advantage of using Cp instead of LP>1(K\G/K) is that
Cp is a Banach algebra. Note that Theorem 7.2 ensures that there exists a constant C
such that | | / * s||Pi, < CH/IUMIp,!. By replacing || • ||p,, with ||| • | | p l = C|| • ||p,, we
obtain another norm which makes IS'l{K\GIK) a Banach algebra. We prefer to use Cp

to avoid confusion and because the norm is more explicit. We already know that Cp is a
commutative algebra; if / and g are in CC{K\G/K), then

11/ fflk H4>u(p)){\f * g\) ^ /(**o>))(l/l * \g\)

so that Cp is a unital commutative Banach algebra (X being a discrete space). We
conclude by giving a description of its Gelfand spectrum Ap, that is, the compact space
of multiplicative functionals on Cp.

LEMMA 7 . 6 . Suppose that 1 < p < 2. A continuous linear functional $ belongs

to Ap if and only if there exists a spherical function <f> G IS''°°(K\G/K) such that
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PROOF: Let $ € Ap. Since $ is continuous on Cp there exists <j> 6 Lp>i°°(K\G/K)

such that $ = I{4>). Moreover $ is multiplicative so that

(7.25) [ (f * g)(x) 4>{x) dx = $ ( / * g) = $(/)<%) = f f{x) <t>{x) dx [ g(x) cj>{x) dx
JG JG JG

for all / , g € CC(K\G/K), that is, cj> is spherical. On the other hand, assume <f> €
If'^iKXG/K) is a spherical function. Since I{<p) is continuous and CC(K\G/K) is
dense in V'l{K\G/K), the relations (7.25), true on CC{K\G/K) by hypothesis, extend
to all Cp. In other words I(cp) belongs to Ap and the lemma follows. D

Lemma 7.6 above and Theorem 7.1 ensure that the map A : ^(Sp) —> Ap, defined
by setting A(w) = I(<f>z) if n(z) = w, is well defined and is a bijection. We prove now
that A is actually an homeomorphism.

THEOREM 7 . 7 . A is a homeomorphism between /i(5p) and Ap.

P R O O F : We first show that the map A : z i-¥ I{4>2) is continuous. Consider the open
set U in Ap given by

where / £ Lp'l{K\G/K), e > 0 and * 6 Ap are fixed. To show that \~l(U) is open in
Sp C C, consider z0 6 A~l{U). We have

|(A(zb) -

G

where r\ = (A(^o) — ^ ) ( / ) < £- In view of Theorem 7.1,

\<j>z{x) - 0 2 o ( x ) | ^ \cj>z{x)\ + \<t>zo(x)\ ̂  24nt{p) e i/

for all z € Sp. It follows, by Lebesgue's Dominated Convergence Theorem, that if \z - zo\
is small enough and z 6 Sp, then z e X~l(U). This implies that \~1{U) is open and A is
continuous. Since fi is holomorphic, hence an open map, and A " 1 ^ ) = /x(A-1(ZY)), this
implies that A is continuous too. Then A is a continuous bijection of compact HausdorfF
spaces, so a homeomorphism, and the theorem is proved. D
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