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Abstract
Objective: High Na intake has been associated with different health problems.
However, serious controversies exist over studies investigating associations of Na
intake with mortality from all-causes and CVD. The present systematic review and
meta-analysis was done to investigate, for the first time, the dose–response association
of dietary Na intake with all-cause and CVD mortality among prospective studies.
Design: Relevant papers published up to August 2017 were searched in
MEDLINE, EMBASE and Google Scholar databases. Prospective cohort studies
on the association of dietary Na intake with all-cause or/and CVD mortality were
included. Linear and non-linear dose–response associations between Na intake
and CVD and all-cause mortality were examined.
Results: Overall, twenty publications met inclusion criteria. A significant non-linear
association (P< 0·001) was found between Na intake and CVD mortality risk among
studies assessing urinary Na excretion, with a relatively steep slope at Na intakes
above 2400mg/d. However, the association was not significant in studies using
dietary Na intake (P= 0·61). Additionally, the non-linear association of Na intake
with all-cause mortality was also non-significant. No linear association (effect size;
95 % CI; I 2) was seen between 100mg/d increment in Na intake and CVD mortality
(1·01; 0·97, 1·05; 98·4 %) or all-cause mortality (1·01; 1·00, 1·02; 89·2%). Following
subgroup analyses, the association between Na intake and CVD mortality was
observed only among studies conducted in the USA (0·99; 0·99, 1·00; 20·0 %).
Conclusions: The study showed a direct association between urinary Na excretion
and CVD mortality which was more considerable at intakes above 2400mg/d. In
contrast, no significant association was found between Na intake and all-cause
mortality. Further long-term prospective studies on different populations are
required to confirm these findings.

Keywords
All-cause mortality

Cardiovascular mortality
Meta-analysis

Sodium
Systematic review

Among non-communicable diseases, CVD are the most
common accounting for the largest fraction of deaths(1).
More than 17·3 million CVD-related deaths were reported
in 2013, which represented a 41% increase over the prior
three decades(2). It should be noted that these deaths
occur before the age of 60 years, resulting in substantial
costs due to loss of human resources(3). Therefore, pri-
mary and secondary prevention of CVD are very important
to reducing CVD morbidity and even mortality.

Different lifestyle-related risk factors have been sug-
gested to be related to CVD incidence and mortality(4).
Among these risk factors, diet is a critical one(5). Studies

have shown that adherence to a Western dietary pattern
compared with a traditional diet will increase the risk of
CVD events(6). In addition, a large number of studies have
found that high dietary Na intake causes an increase in
blood pressure that in turn may be associated with
increases in CVD and all-cause mortality(7,8). A meta-
analysis of prospective studies showed that high salt intake
was associated with increased risks of stroke and CVD(9).
However, some studies failed to find such significant
association between dietary Na intake and all-cause or
cause-specific mortality(10,11). Another meta-analysis in
2012 showed serious conflicting results among
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observational studies linking Na intake to CVD events(12).
Although Graudal claimed that there is a ‘U-shaped’ asso-
ciation between dietary Na intake and CVD mortality(13), a
letter by Whelton and Appel rejected this hypothesis(14).

High Na intake has been strongly associated with dif-
ferent health problems(15,16). However, as mentioned
above, there are major controversies over studies investi-
gating the association of Na intake with all-cause and CVD
mortality. In addition, to the best of our knowledge, the
exact threshold dose of Na intake to decrease risk of all-
cause and CVD events has still not been established.
Establishment of this threshold is a health priority and
would help to improve available guidelines. Given these
reasons, the current systematic review and meta-analysis
was done to investigate, for the first time, a dose–response
association of dietary Na intake with all-cause and
cardiovascular mortality among prospective studies pub-
lished up to August 2017.

Methods

Search strategy
The present systematic review and meta-analysis of stud-
ies was done according to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Ana-
lyses) guidelines(17). Eligible studies published up to
August 2017 were searched in MEDLINE, EMBASE and
Google Scholar databases using combinations of the fol-
lowing keywords: ((sodium chloride[mesh] OR sodium
chloride[tiab] OR sodium chloride, dietary[mesh] OR salt
[tiab] OR sodium, dietary[mesh] OR sodium[tiab]) AND
(cardiovascular diseases[mesh] OR cardiovascular disease*
[tiab] OR CVD[tiab] OR all-cause[tiab]) AND (mortality
[mesh] OR mortality[tiab] OR death[mesh] OR death[tiab])).
The search strategy was limited to studies on human
subjects which were published in the English language.
We also hand-searched reference lists of the relevant
publications to include additional studies.

Eligibility criteria
Publications were selected according to the following
inclusion criteria: population age ≥ 18 years; categorized
Na intake (at least three categories) for non-linear associa-
tion as well as continuous intake of Na for linear associa-
tion; reported number of participants in each Na intake
category; reported all deaths or/and CVD death numbers in
total population and in each Na intake category; and cal-
culated the hazard ratio (HR) or relative risk (RR) with 95%
CI of all-cause or/and CVD mortality in each category.
Exclusion criteria were: randomized clinical trials, cross-
over, cross-sectional and review studies, letters, comments;
non-English language articles; in vitro or animal studies;
studies on pregnant women; studies on patients with renal
diseases, heart failure, cancers, liver diseases, hypertension,

cystic fibrosis and chronic obstructive pulmonary disease;
studies in which patients used surgery, drug therapy,
transplantation or other physical treatments; and studies
that reported only serum Na concentrations.

Study selection
Two reviewers independently evaluated titles and
abstracts of publications retrieved in the initial search for
relevance. Publications which did not meet the eligibility
criteria based on study design, population or exposure
and outcome were excluded using a screen form. Then,
full texts of the candidate relevant articles were retrieved
and evaluated again for relevance by the same reviewers.
Any disagreements between reviewers were discussed
and resolved by the third reviewer (S.S.-B.).

Data extraction
The following data were extracted from all included
publications: study title; study authors; country; year of
publication; journal name; study population; participants’
sex; follow-up duration; Na intake categories as well as
number of cases; mean Na intake; mean age; total number
of deaths; crude and adjusted HR/RR for all-cause mor-
tality as well as crude and adjusted HR/RR for CVD mor-
tality in each category of Na intake; and adjustments made.

Statistical analysis
All statistical analyses were conducted using the statistical
software package Stata version 14. We selected studies in
which the HR/RR were reported for all-cause or/and CVD
mortality across categories of Na intake. A dose-dependent
meta-analysis using the method proposed by Greenland
and Longnecker(18) and Orsini et al.(19) was used to
compute the trend from the correlated log HR/RR esti-
mates across Na intake categories. The midpoint of the Na
intake category was considered as the corresponding HR/
RR estimate. We assumed the open-ended categories to be
the same width as the neighbouring categories. A two-
stage random-effects dose–response meta-analysis was
used to investigate a probable non-linear relationship
between dietary Na intake and risk of all-cause and CVD
mortality. This was conducted using Na intake modelling
and restricted cubic splines with three knots at fixed per-
centiles of 10, 50 and 90 % of the distribution(20). As
described by Orsini et al, a restricted cubic spline model
was calculated using generalized least-squares regression
accounting for the correlation within each set of published
HR/RR(19). Then, we combined the study-specific esti-
mates using the restricted maximum likelihood method in
a multivariate random-effects meta-analysis(21). A prob-
ability value for non-linearity was estimated using null
hypothesis testing in which the coefficient of the second
spline was considered equal to 0. A linear dose–response
relationship between 100mg/d increments in Na intake
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with CVD and all-cause mortality was estimated using the
generalized least-squares trend estimation(18,19,22). We
used the two-stage generalized least-squares trend esti-
mation method. To obtain an overall average slope, the
study-specific slope lines were estimated and then com-
bined with studies in which the slopes were directly
reported(19). Study-specific results were combined using a
random-effects model. Studies in which the risk was esti-
mated per any unit increment in Na intake were also
included. Cochran’s Q test and the I 2 statistic were used to
assess statistical heterogeneity between the recruited stud-
ies(23). I 2 values less than 30 % were considered as no or
marginal heterogeneity, between 30 and 75 % as mild
heterogeneity, and ≥75 % as notable between-study het-
erogeneity. In addition, publication bias was examined
using Egger regression(24). Furthermore, the methodolo-
gical quality of included studies was assessed using the
Newcastle–Ottawa Scale adapted for cohort studies.
Studies with at least six stars were considered high quality
and the rest as low quality.

Results

Study selection and characteristics of included
studies
Overall, twenty-one publications were included in the
current systematic review(11,25–44). The flow diagram of
study selection is presented in Fig. 1. In total, 4084 poten-
tially relevant publications were identified through the
initial search. After screening based on title and abstract,
195 publications were candidates for more detailed eva-
luation. Of those, review studies (n 25), randomized clinical
trials (n 6), non-English language articles (n 11), studies in
which only serum Na concentration (n 81) was reported
and those lacking mortality data (n 51) were excluded.

All included studies were prospective cohort studies
published between 1998 and 2017. Duration of follow-up
of the included cohorts was between 1·02 and 20 years. In
total, 222 189 participants (aged 40·9–74·6 years) were
enrolled in the studies. The characteristics of the studies
are summarized in Table 1. Among the included studies,
nine studies were done in the USA(11,26,28,31,33–36,44), four
in Japan(25,29,30,41) and the rest in Canada(32), the Nether-
lands(27), Belgium(40), China(37), France(38), Finland(39),
Brazil(43) and Australia(42). In total, 20 270 patients died
due to all causes in the studies, while 13 806 deaths were
due to CVD. Mean Na intake was 3749·03mg/d (range:
1035–9400mg/d) among the participants. All studies were
done on both sexes. Na intake was assessed using 24 h
urinary Na excretion in eight studies(26,27,32,33,38–40,42) and
using dietary intake assessment in thirteen stud-
ies(11,25,28–31,34–37,41,43,44). Among studies in which dietary
intake of Na was assessed, seven studies had used an
FFQ(25,29–31,41,43,44) and five studies used a 24 h food

recall(11,28,34–36). In addition, in one study(37) dietary Na
intake was estimated using a 3 d food record.

In four studies, participants with the highest con-
sumption of Na had higher risk of mortality due to all
causes than those with the lowest intake(26,32–34). In
addition, two studies showed that participants with the
highest intake of Na also had higher cardiovascular
mortality compared with those with the lowest
intake(25,32). In Nagata et al.’s study, this association was
significant only among men(41). In contrast, an inverse
association was found for Na intake with all-cause mor-
tality(36,40) and CVD mortality(11,36,40) when comparing
participants in the highest category of Na intake with
those in the lowest. However, differences in all-cause
mortality between participants in the highest v. those in
the lowest category of Na consumption were not sig-
nificant in five studies(11,27–29,31). Furthermore, CVD
mortality was not also significantly different between
participants in the highest v. the lowest Na intake cate-
gory in five studies(28,30,33,34,44).

In addition, a significant inverse association was found
between Na intake and all-cause(35,37,38,42) as well as CVD
mortality(37,38,42). In contrast, the association of Na intake
with all-cause(39) and CVD mortality(39,43) was positively
significant in some other studies. However, the association
of Na intake with all-cause and CVD mortality(35) was not
significant in one study. It should be pointed out that
among the included studies, only one study did not adjust
findings for potential confounders(42).

Meta-analysis
After excluding studies without enough required data,
nine studies were included in a non-linear dose–response
meta-analysis of Na intake and CVD mortal-
ity(11,25,28,30,32,33,40,41,44) and eight studies in a non-linear
meta-analysis of Na intake and all-cause mortal-
ity(11,26,28,29,31–33,40). We found a significant non-linear
association (Pnon-linearity< 0·001) between Na intake and
the risk of CVD mortality among studies in which urinary
excretion of Na was examined, with a relatively steep
slope at Na intakes higher than 2400mg/d (Fig. 2(b)).
However, the association was not significant in those
studies which examined dietary intake of Na (P= 0·61; Fig.
2(a)). In contrast, the non-linear association of Na intake
with all-cause mortality was not significant in studies
assessing both dietary intake (P= 0·85; Fig. 3(a)) and
urinary excretion (P= 0·79; Fig. 3(b)). When we combined
data from studies using dietary intake and those assessing
urinary excretion of Na, a significant association was
found between Na intake and CVD mortality (Fig. 4).
However, the association of Na intake with all-cause
mortality was still not significant (Fig. 5).

In addition, the linear trend of Na intake
with CVD(11,25,28,30,32,33,35,37–42,44) and all-cause
mortality(11,26,28,29,31–33,35,37–40,42) was analysed. No
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significant association was found between 100mg/d
increment in Na intake and CVD mortality in the current
study (effect size= 1·01; 95 % CI 0·97, 1·05; I 2= 98·4 %;
Fig. 6). Due to substantial heterogeneity between the
included studies, we conducted a subgroup analysis based
on publication country (USA/Japan/other countries),
follow-up duration (<10 years/≥ 10 years), exposure
assessment method (dietary intake assessment/urinary Na
excretion), study sample size (<5000 persons/≥ 5000
persons), study quality (low/high) and daily Na intake
(<3000mg/≥ 3000mg; Fig. 7(a)–(f)). Among the subgroup
analyses, between-study heterogeneity disappeared only
among studies conducted in the USA (effect size= 0·99; 95
% CI 0·99, 1·00; I 2= 20·0 %). Sensitivity analysis showed
that neither an individual study nor a group of studies had
a significant influence on our results (data not shown).

Furthermore, a 100mg/d increment in Na intake was
not significantly associated with all-cause mortality in the

current study (effect size= 1·01; 95 % CI 1·00, 1·02;
I 2= 89·2%; Fig. 8). The subgroup analysis was done
based on publication country (USA/non-USA), follow-up
duration (<10 years/≥ 10 years), exposure assessment
method (dietary intake assessment/urinary Na excretion),
study sample size (<5000 persons/≥ 5000 persons),
study quality (low/high) and daily intake of Na
(<3000mg/≥3000mg; see online supplementary
material, Supplemental Fig. 1(a)–(f)); results showed that
none of them was the potential source of heterogeneity.
However, the most reduction in heterogeneity occurred
when we did the reanalysis based on exposure assessment
method among the studies which had used dietary
intake measures (effect size= 1·00; 95 % CI 1·00, 1·01;
I 2= 65·8%). In addition, sensitivity analysis showed that
neither an individual study nor a group of studies had a
considerable influence on the final finding (data not
shown).

13 001 publications found in initial search
(3089 MEDLINE, 1897 EMBASE, 8015 Google Scholar)

3889 irrelevant articles excluded based on title/abstract

195 articles retrieved for detailed evaluation

21 studies included in the systematic review 

174 studies excluded, with reasons:

•  Review articles (n 25)
•  Randomized clinical trials (n 6)
•  Not in English language (n 11) 
•  Examined serum Na concentration (n 81)
•  Did not report mortality (n 51)

Studies without necessary data excluded

14 studies included
in the non-linear

meta-analysis of Na
intake and CVD

mortality

13 studies included
in the non-linear

meta-analysis of Na
intake and all-cause

mortality

9 studies included
in the linear meta-

analysis of Na
intake and CVD

mortality

8 studies included
in the linear meta-

analysis of Na
intake and all-cause

mortality

Duplicated publications excluded

4084 potentially relevant publications identified and
screened

Fig. 1 Flow diagram of study selection for the present systematic review and meta-analysis of prospective studies on the
association of dietary sodium intake with all-cause and cardiovascular mortality
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Table 1 General characteristics of studies included in the present systematic review and meta-analysis of prospective studies on the association of dietary sodium intake with all-cause and
cardiovascular mortality

Study Country
Age (years),

range or mean

Mean Na
intake
(mg/d) Sex

Sample
size

No. of all-
cause deaths

No. of CVD
deaths

Duration
follow-up
(years)

Exposure
assessment

Na intake
categories Outcome OR or RR 95% CI Adjustments*

Study
quality

Saulnier et al.
(2017)(38)

France 65·3 2047 F/M 1439 429 254 5·7 24 h urinary
Na excretion

–† All-cause/
CVD mortality

All-cause: 0·73
CVD: 0·66

0·63, 0·85
0·54, 0·81

1, 2, 3, 4, 5 7

Cook et al.
(2016)(26)

USA 44·6 4046 F/M 3011 272 – 10 24 h urinary
Na excretion

<2300, 2300–
3600, 3600–
4800, ≥4800

mg/d

All-cause
mortality

All-cause: 1·42 1·22, 1·66 1, 2, 3, 6, 7, 8, 9, 10,
11, 12, 13

5

Singer et al.
(2015)(33)

USA 52 2990 F/M 3505 3052 1120 20 24 h urinary
Na excretion

Q1, Q2, Q3, Q4‡ All-cause/
CVD mortality

All-cause: 1·23
CVD: 1·00

1·00, 1·51
0·70, 1·41

1, 2, 3, 14, 15, 16,
17, 18, 19, 20, 21, 22

9

Kalogeropoulos
et al. (2015)(31)

USA 73·6 2550 F/M 2642 881 – 10 Dietary intake
(FFQ)

<1500, 1500–
2300, >2300

mg/d

All-cause
mortality

All-cause: 1·02 0·95, 1·11 1, 2, 4, 9, 14, 15, 23,
24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34

7

Horikawa et al.
(2014)(29)

Japan 58·7 4250 F/M 1588 75 – 8 Dietary intake
(FFQ)

Q1, Q2, Q3, Q4‡ All-cause
mortality

All-cause: 0·81 0·38, 1·73 1, 2, 8, 9, 15, 16, 24,
35, 36, 37, 38, 39,
40, 41, 42, 43

5

Ikehara et al.
(2012)(30)

Japan 57·2 1994 F/M 35 515 – 4417 16·4 Dietary intake
(FFQ)

Low, moderate,
high

CVD mortality CVD: 1·05 0·96, 1·15 1, 6, 8, 9, 15, 23, 27,
44, 45, 46,47

5

Gardener et al.
(2012)(44)

USA 69 ~3314 F/M 2657 – 371 10 Dietary intake
(FFQ)

≤1500, 1501–
2300, 2301–
3999, 4000–
10 000 mg/d

CVD mortality CVD: 1·49 0·81, 2·72 1, 2, 6, 8, 9, 11, 15,
23, 24, 27, 42, 48,
49, 50, 51, 52, 53

8

Costa et al.
(2012)(43)

Brazil 58·7 1855 F/M 372 – 61 1·02 Dietary intake
(FFQ)

–† CVD mortality CVD: 2·76 1·18, 6·47 1, 2, 54, 55, 56, 57 6

Yang et al.
(2011)(34)

USA 25–74 3594 F/M 12 267 2270 NR 14·8 Dietary intake
(24 h recall)

Q1, Q2, Q3, Q4‡ All-cause/
CVD mortality

All-cause: 1·73
CVD: 0·83

1·54, 2·63
0·31, 2·28

2, 6, 8, 9, 11, 12, 15,
24, 34, 38, 42

5

O’Donnell et al.
(2011)(32)

Canada 66·5 4770 F/M 28880 3430 2057 4·67 24 h urinary
Na excretion

<2, 2–2·99,
3–3·99, 4–5·99,
6–6·99, 7–8,

>8 g/d

All-cause/
CVD mortality

All-cause: 1·31
CVD: 1·21

1·30, 1·31
1·20, 1·21

1, 2, 3, 4, 7, 11, 15,
58, 59, 60, 61, 62

6

Stolarz-Skrzypek
et al. (2011)(40)

Belgium 39·7 4094 F/M 3681 219 84 7·9 24 h urinary
Na excretion

Low, moderate,
high

All-cause/
CVD mortality

All-cause: 0·92
CVD: 0·60

0·88, 0·96
0·58, 0·60

1, 2, 3, 6, 8, 9, 15,
16, 27, 34, 43, 63

7

Ekinci et al.
(2011)(42)

Australia 64 4232 F/M 638 175 75 9·9 24 h urinary
Na excretion

–† All-cause/
CVD mortality

All-cause: 0·72
CVD: 0·65

0·55, 0·94
0·44, 0·95

– 4

Dong et al.
(2010)(37)

China 59·4 1897 F/M 305 74 32 2·62 Dietary intake
(3 d food
record)

–† All-cause/
CVD mortality

All-cause: 0·44
CVD: 0·11

0·20, 0·95
0·03, 0·48

2, 4, 15, 25, 27, 33,
37, 64, 65, 66, 67, 68

5

Cohen et al.
(2008)(11)

USA 48 3231 F/M 8699 1150 436 8·7 Dietary intake
(24 h recall)

Q1=<2060,
Q2=2060–

2921,
Q3=2922–

4·047,
Q4=4048–9946

mg/d‡

All-cause/
CVD mortality

All-cause: 0·80
CVD: 0·55

0·59, 1·10
0·32, 0·95

1, 2, 6, 7, 8, 9, 10,
14, 16, 27, 34, 42,
43, 69, 70, 71

5

Umesawa et al.
(2008)(25)

Japan 56·2 2103 F/M 58 730 – 2087 12·7 Dietary intake
(FFQ)

Q1, Q2, Q3, Q4,
Q5§

CVD mortality CVD: 1·42 1·20, 1·69 1, 2, 6, 8, 9, 15, 23,
27, 44, 45, 46, 67,

71, 72, 73

6
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Table 1 Continued

Study Country
Age (years),

range or mean

Mean Na
intake
(mg/d) Sex

Sample
size

No. of all-
cause deaths

No. of CVD
deaths

Duration
follow-up
(years)

Exposure
assessment

Na intake
categories Outcome OR or RR 95% CI Adjustments*

Study
quality

Geleijnse et al.
(2007)(27)

Netherlands 69·2 2691 F/M 1448 420 – 5 24 h urinary
Na excretion

Q1, Q2, Q3, Q4‡ All-cause
mortality

All-cause: 0·98 0·54, 1·78 1, 2, 3, 4, 6, 8, 9, 15,
27, 42, 49, 67, 74

5

Cohen et al.
(2006)(36)

USA 48 2718 F/M 7154 1343 541 13·7 Dietary intake
(24 h recall)

<2300, ≥2300
mg/d

All-cause/
CVD mortality

All-cause: 0·83
CVD: 0·71

0·73, 0·94
0·57, 0·88

1, 2 5

Nagata et al.
(2004)(41)

Japan 54 5659 M 13 355 – 137 7 24 h urinary
Na excretion

Low, moderate,
high

CVD mortality CVD: 2·33 1·23, 4·45 1, 6, 7, 8, 9, 15, 23,
27, 42, 48, 71, 75, 76

5

Nagata et al.
(2004)(41)

Japan 55·2 5210 F 15 724 – 132 7 24 h urinary
Na excretion

Low, moderate,
high

CVD mortality CVD: 1·7 0·96, 3·02 1, 6, 7, 8, 9, 15, 23,
27, 42, 48, 71, 75, 76

5

Tuomilehto et al.
(2001)(39)

Finland 45·5 4140 F/M 2436 180 87 NR 24 h urinary
Na excretion

–† All-cause/
CVD mortality

All-cause: 1·22
CVD: 1·36

1·02, 1·47
1·05, 1·76

1, 2, 9, 15, 16, 34,
38, 77

8

He et al. (1999)(28) USA 48·2 1952 F/M 6797 1676 566 19 Dietary intake
(24 h recall)

Q1, Q2, Q3, Q4‡ All-cause/
CVD mortality

All-cause: 1·02
CVD: 1·18

0·88, 1·19
0·92, 1·51

1, 2, 6, 8, 9, 14, 15,
16, 24, 27, 34, 42, 74

5

Alderman et al.
(1998)(35)

USA 49·2 2023 F/M 11 346 3923 1970 20 Dietary intake
(24 h recall)

–† All-cause/
CVD mortality

All-cause: 0·88
CVD: 0·89

0·80, 0·96
0·77, 1·02

NR 3

F, female; M, male; NR, not reported.
*Adjustments: 1, age; 2, sex; 3, urinary potassium; 4, creatinine; 5, estimated 24 h Na excretion; 6, education; 7, exercise; 8, alcohol use; 9, current smoking; 10, weight; 11, race/ethnicity; 12, family history of CVD; 13, clinic
and treatment assignment; 14, race; 15, BMI; 16, systolic blood pressure; 17, estimated glomerular filtration rate, 18, haematocrit; 19, plasma renin activity; 20, history of diabetes mellitus; 21, history of smoking; 22, history
of baseline left ventricular hypertrophy; 23, history of hypertension; 24, physical activity; 25, prevalent CVD; 26, pulmonary disease; 27, history of diabetes; 28, depression; 29, blood pressure; 30, heart rate; 31,
electrocardiogram abnormalities; 32, serum glucose; 33, serum albumin; 34, cholesterol; 35, glycosylated Hb (HbA1c); 36, diabetes duration; 37, LDL-cholesterol; 38, HDL-cholesterol; 39, log-transformed TAG; 40,
treatment by insulin; 41, treatment by lipid-lowering agents; 42, energy intake; 43, treatment for hypertension; 44, time spent on sports activity; 45, walking time; 46, perceived mental stress; 47, fresh fish intake; 48, protein
intake; 49, saturated fat intake; 50, carbohydrate intake; 51, hypercholesterolaemia; 52, previous cardiac disease; 53, total fat intake; 54, myocardial infarction; 55, left ventricular end-diastolic volume; 56, C-reactive protein;
57, brain natriuretic peptide; 58, prior history of stroke or myocardial infarction; 59, co-morbid vascular risk factors; 60, treatment allocation; 61, fruit and vegetable consumption; 62, baseline blood pressure and change in
systolic blood pressure from baseline to last follow-up; 63, study population; 64, average mean arterial pressure; 65, Hb; 66, phosphate intake; 67, calcium intake; 68, Kt/V; 69, added table salt; 70, history of cancer; 71,
dietary potassium; 72, menopause; 73, hormone replacement therapy; 74, diuretic use; 75, marital status; 76, intake of vitamin E; 77, study year.
†Reported risk of mortality for continuous intake of Na.
‡Quartiles.
§Quintiles.
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Discussion

In the current study, we found that there was no significant
association of 100mg/d increment in Na intake with CVD
and all-cause mortality. High levels of heterogeneity were
found between the studies. The country where the study
was conducted and the method for the assessment of Na
were the potential sources of heterogeneity.

We also found a non-linear direct association between
urinary excretion of Na and the risk of CVD mortality. This
association was more considerable at Na intakes higher
than 2400mg/d. In addition, we failed to find a non-linear
association between Na intake and all-cause mortality.

Our meta-analysis showed a non-linear direct associa-
tion between Na urinary excretion and CVD mortality,
which was more considerable at Na intakes higher than
2400mg/d. This finding is in line with the American Heart
Association guidelines, which recommend consumption of
no more than 2400mg of Na daily(45). However, our
included studies did not have sufficient data for extreme
low and high intakes of Na. Mean Na intake of participants
in the studies was between 3000 and 5000mg/d. There-
fore, more studies are needed to find an association
between extreme low or high Na intakes and mortality.

Findings of previous meta-analyses in this area are con-
troversial. In Alderman and Cohen’s meta-analysis, although
there was an inverse association between Na intake and CVD
mortality among individuals who had consumed less than
4500mg Na/d, the association was direct among those with a
higher Na intake. Moreover, a ‘J-shaped’ association was
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found between Na intake and CVD mortality in two
observational studies included in that meta-analysis(12). In
addition, Graudal claimed that there is a ‘U-shaped’ asso-
ciation between dietary Na intake and CVD mortality(13).
Furthermore, another study reported a significant associa-
tion between Na intake and risk of CVD(9). However, the
significance was achieved only by the arbitrary exclusion
of the Alderman et al. study with sufficient numbers at the
low end.

We could not find a significant association between Na
intake and CVD mortality among studies in which a dietary
assessment tool was used to estimate participants’ Na
intake. But the association was significant among studies

which had used 24 h urinary Na excretion. It should be
noted that dietary intake assessment may not reflect actual
dietary intakes of participants such that intake of some
minerals including Na is frequently underestimated while
urinary Na may provide adequately acceptable population
estimates(46).

Additionally, there was no association between Na
intake and all-cause mortality in the current meta-analysis.
This finding was also observed even after the subgroup
analyses based on the method of Na intake estimation,
including 24 h urinary Na excretion and dietary intake
assessment methods. To the best of our knowledge, there is
no systematic review or meta-analysis available investigat-
ing the association of dietary Na intake with all-cause
mortality among cohorts. However, in line with our find-
ings, a huge body of evidence has failed to find any sig-
nificant association between dietary Na intake and all-cause
mortality(11,27–29,31). Moreover, other meta-analysis studies
have also shown inconsistent findings, such that a meta-
analysis in 2013 could not find a significant association
between lower dietary Na intake and all-cause mortality(47),
whereas another meta-analysis in 2014 found a significant
positive association between higher than normal Na intake
and all-cause mortality as well as CVD events(48). However,
neither of those studies performed a dose–response meta-
analysis; furthermore, few studies were included for the
mortality outcome in their analyses. Higher consumption of
Na has been linked to a higher risk of all-cause mortality in
some other studies(26,32–34). Although these studies found a
significant association, the observed increase in the risk of
all-cause mortality was often small and it was not adjusted
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for some important confounders, including dietary intakes
of participants. In contrast to these findings, two other
studies have shown an inverse association between Na
intake and all-cause mortality(36,40). However, mean Na
intake in these studies was frequently lower than that
observed among the rest of the studies.

Na concentration in serum regulates osmotic pressure
and thus blood pressure(49). The increase in Na con-
centration due to consumption of high-salt diets disturbs
normal function of blood vessel endothelium and elevates
heart burden(50). Accordingly, high Na consumption could
be assumed as a risk factor for CVD mortality.

The present study is the first dose–response meta-
analysis on the association of dietary Na intake with CVD
and all-cause mortality among cohort studies. Including
cohort studies with larger sample sizes and long-term
follow-ups may result in a firmer conclusion. However,
some limitations should be noted. The most of the cohorts
included were done in the USA, where the population has
specific dietary behaviours different from many other
countries. This is important to consider because we know
that the study country was a source of heterogeneity in our
linear meta-analysis on the association between Na intake
and CVD mortality. High between-study heterogeneity is
another limitation of the current meta-analysis. Further-
more, considering different confounders may also explain
different findings of the included studies. In addition,
dietary intake of Na was estimated using an FFQ or a 24 h
food recall in most of the included studies. Due to the low
number of studies using each of these two methods, we

could not separately analyse data for them. Moreover,
misclassification of participants may occur when using an
FFQ, and the latter also might not reflect sufficiently long-
term dietary intakes(51). Besides, a unique 24 h food recall
cannot reflect long-term dietary intakes of participants(52).

Conclusion

In conclusion, the current dose–response meta-analysis
showed a direct association between urinary excretion of
Na and CVD mortality which was more considerable at Na
intakes higher than 2400mg/d. However, we failed to find
a significant association between Na intake and all-cause
mortality. Further studies, especially long-term prospective
cohorts in different populations, are required to confirm
these findings.
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Fig. 8 (colour online) Forest plot for the linear trend meta-analysis between 100mg/d increment in sodium intake and all-cause
mortality. The effect size (ES) and 95% CI are represented by the black diamond and horizontal line, respectively; the study weight
is proportional to the inverse of the variance of the ES. The centre of the blue open diamond and the vertical dashed red line
represent the pooled ES, the width of the open diamond represents the pooled 95% CI and the vertical black line at ES= 1
represents the null effect
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