CORRIGENDUM TO:

"A LATTICE-POINT PROBLEM IN HYPERBOLIC SPACE"

S. J. PATTERSON

In the above paper [1] there is an error in the statements of Proposition 1 and Theorem 1 which we shall now correct. The principal results, Theorems 2 and 3, are unaffected.

The incorrect statement is that of equation (12). This should read

$$
\left|h_{X}(r)\right| \leqslant c_{1} X^{\left|\operatorname{Re}\left(\frac{1}{2}+i r\right)\right|}\left(1+|r|^{2}\right)^{-\frac{5}{4}}
$$

and is valid only for $|r| \geqslant \frac{1}{3}$, say. From (11) one obtains directly the following statement for $|r| \leqslant \frac{1}{3}, r$ real

$$
h_{X}(r)-\frac{4}{3} X^{\frac{1}{2}}\left(X^{i r}-X^{-i r}\right) / i r=O\left(X^{\frac{1}{2}}\right)
$$

and, consequently,

$$
h_{X}(0)=\left(\frac{8}{3}\right) X^{\frac{1}{2}} \log X+O\left(X^{\frac{1}{2}}\right)
$$

This gives now

$$
\begin{aligned}
& \sum_{g \in G} k_{X}\left(L\left(z_{1}, g z_{2}\right)-4\right)=\sum_{\lambda_{\mu} \leqslant t} h_{X}\left(r_{\mu}\right) \phi_{\mu}\left(z_{1}\right) \phi_{\mu}\left(z_{2}\right) \\
& \quad+\int_{-\frac{\xi}{3}}^{+\frac{1}{3}} \psi\left(z_{1}, z_{2}, r\right) \frac{X^{i r}-X^{-i r}}{i r} d r X^{\frac{1}{2}}+O\left(X^{\frac{1}{2}}\right)
\end{aligned}
$$

where

$$
\psi\left(z_{1}, z_{2}, r\right)=(\pi / 3) \sum_{p \in P} E_{p}\left(z_{1}, \frac{1}{2}+i r\right) E_{p}\left(z_{2}, \frac{1}{2}-i r\right)
$$

As $\left(z_{1}, z_{2}, r\right)$ is analytic on $\operatorname{Im}(r)=0$

$$
\int_{-\frac{1}{5}}^{\frac{7}{t}} \frac{X^{i r}-X^{-i r}}{i r}\left(\psi\left(z_{1}, z_{2}, r\right)-\psi\left(z_{1}, z_{2}, 0\right)\right) d r=O(1)
$$

But

$$
\int_{-\frac{1}{3}}^{\frac{1}{2}} \frac{X^{i r}-X^{-i r}}{i r} d r=4 \int_{0}^{(\log X) / 3} \sin x d x / x=O(1)
$$

Thus the right-hand side of Theorem 1 should contain the additional term

$$
2 \frac{2}{3} \sum_{s_{\mu}=\frac{1}{2}} \phi_{\mu}\left(z_{1}\right) \phi_{\mu}\left(z_{2}\right) X^{\frac{1}{2}} \log X,
$$

the error term remaining as before. This term makes no difference to the Tauberian argument and Theorems 2, 3 are unaffected.

Reference

1. S. J. Patterson. " A lattice-point problem in hyperbolic space ", Mathematika, 22 (1975), 81-88.

The Department of Pure Mathematics and Mathematical Statistics, 16 Mill Lane, Cambridge CB2 1SB.

10C30: NUMBER THEORY; Forms; Arithmetical properties of classical groups.

20H10: GROUP THEORY; Other groups of matrices, Fuchsian groups.
Received on the 5th of November, 1976.

