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Abstract . Motions near the 3:1, 4:1 and 5:2 resonances with Jupiter are studied by means of 
numerical integrations of a semi-analytically averaged Sun-Jupiter-asteroid planar problem. In or-
der to have a model including the very-high-eccentricity regions of the phase space, we adopted a 
set of local expansions of the disturbing potential, adequate to perform the numerical exploration 
of regions in the phase space with eccentricities higher than 0.9 (Ferraz-Mello and Klafke, 1991). 
Individual solutions and qualitative results thus obtained are completely reproduced by numer-
ical integration of the complete equations by filtering off the short-period components of these 
solutions. 

1. I N T R O D U C T I O N 

Most of the studies in asteroidal motion employs the classical expansion of the dis-

turbing forces introduced almost two hundred years ago, by Laplace. This expansion 

is a power series in the eccentricities and inclinations and its convergence, thorough-

ly discussed by several authors in the beginning of this century (see Sundman, 1916, 

Hagihara, 1971), has not been often taken into account. A recent réévaluation of 

the criteria of Sundman and Silva by the authors, strictly confirm the results of 

Sundman for planar expansion. The convergence of the series is, generally, limited 

to small values of eccentricities. In fact, recent works (e.g. Lemaitre and Henrard, 

1988) have shown that high-eccentricity librations can not be studied with the 

classical symmetric approaches. 

To avoid the difficulties concerning the poor convergence of the classical expan-

sion of the disturbing function, we must use local expansions, providing a better 

representation of that function in the vicinity of any point in the phase space, 

including in the very-high-eccentricity regions. 

2. T H E M O D E L 

In this paper we use a model developed by Ferraz-Mello and Klafke(1991) based 

on the Ferraz-Mello and Sato(1989) asymmetrical expansion. We consider a planar 

elliptic restricted three body problem and adopt a set of non-singular variables 

related to the usual equinoxial Keplerian elements a, e, Λ and w, as follows, 

k — e cos σ 

h — esma 

σ — φ — w 

σ\ — φ — w\ 

The angles φ = \ 1 — £λ, σ and Q are, respectively, the longitude of con-

junction associated with the qth-oidei resonance (p + q) : p, the critical angle and 

153 

(1) 

5. Ferraz-Mello (ed.), Chaos, Resonance and Collective Dynamical Phenomena in the Solar System, 153-158. 
© 19921AU. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900091063 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900091063


1 5 4 

the short period angle. The averaging is done with respect to Q. The subscript 1 

refers to Jupiter's elements. 

The averaged variational equations in there elements are 

— - —\h— -k— - — 1 (2) 
dt ~ no" ~dk ~ Jh ~~ ovj ' ' 
aVi , 2rdF rß _f 8F dF 
_ i = (r + 1 m -V71+—- * _ + h—-] 3 
dt na da na2(l + ß) dk dh 

dk _ β dF hdat kß da 

~dt ~ na^~dh ~ ~dt ~ 2a(l + ß)dt * ' 

dh _ β dF kdax hß da 

dt ~ ~n~aJ~dk + ~dt ~ 2a(l + ß)dt 

where r = η = μ^/α^ is the osculating mean motion of the minor planet, μ 

is the gravitational constant in astronomical units and β = v i — e 2 . The orbital 

elements of Jupiter are assumed to be constant. 

The system has the energy integral 

£ = _ ü _ P ± i n i n a 2 _ F . (6) 
2α ρ 

The function F is the averaged disturbing function. It is expanded about a 

generic center (ko>ho), up to the second power of the differences 8k = k — ko and 

b h - h - /i0(Ferraz-Mello and Sato, 1989). 

F = ^-[Ao + AxSk + A28h + iUŝ 2 + iU4<ta2
 + A5<5fc<5Ji 

αχ 2 2 

+(u4e + 4̂β<$& + AioSh)e\ cos σι + (Αγ + 9̂<5fc -h u4n6/i)ei sin σ\ (7) 

+ ^Ai2el + ^ι3€^θ8 2σι + i j 4 1 4 e * sin 2σι], 

The coefficients Aj are obtained numerically and depend on the semi-major axis 

a and on the center (ko, ho). 

The averaged equations (2-5) are integrated numerically and, to prevent any 

convergence problem, our model consider a set of local expansions in the ζ = 

e · exp ισ plane, suitable to perform the numerical exploration of regions in the 

phase space with eccentricity higher than 0.9. 

The coefficients Aj and its derivatives with respect to α were calculated in a 

net of 41x41 values of ζ (\z\ < 1), for a fixed value of the semi-major axis and are 

stored in a double precision matrix to be used later in the numerical integrations. 

The dependence of the coefficients with a is given by a linear approximation. 

At every moment, in the numerical integration, we choose in the 41x41 net, 

the expansion center which is closest of the solution, and use the correponding 

coefficients. 
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Fig. ] . Surfaces of sections of the 3:1 resonance in the Z-plane at some relevant energy 

levels. Every trajectory has been integrated in a time interval of 5 x 10 4 — 3 x 10 5 years. 

The shadded area represent a region where has no real root in the energy equation. 

3. R E S U L T S 

In this section, we present some results of the numerical integrations with the 
proposed model for the 3:1, 4:1 and 5:2 mean-motion resonances with Jupiter. 

The surfaces of sections of these resonances show, at high eccentricities, regions 
of regular motion around stable periodic orbits, characterized by librations of the 
perihelion (secular resonance) and of the critical angle σ (period resonance), as 
well as chaotic regions emanating from unstable periodic orbits. These periodic 
orbits belongs to families starting from the high-eccentricity corotation solutions 
(see Ferraz-Mello, Tsuchida and Klafke, in these proceedings). All these centers 
correspond to maxima of the energy. 

3.1. T H E 3:1 R E S O N A N C E 

In the 3:1 resonance, librations of the critical angle σ occurs about either ~ or 

Figures l(a-f) show surfaces of section in the plane Ζ — e · expi(tc7 — w\) defined 

by σο = γ and & < 0 for several energy levels in this resonance. 

The energy integral has a global maximum at E7nax — —23.69038, which cor-

responds to a stable corotation center at e = 0.812, and there is no motion above 

this limit. For values slightly below this maximum the motions are regular invariant 

curves around the equilibrium solution. Figure la shows such solutions for a level 

Δ £ — E — Emax — —7 χ 1 0 - 5 below the global maximum. The shaded area repre-
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Fig. 2. Surfaces of section of the 4:1 resonance. The axes are the same as in the previous 

figures. 

sents the region where equation (6) has no real root. Figure lb corresponds to the 

energy level AS = —4.2 χ 10~ 4 , which lies in the vicinity of an unstable corotation 

center at e = 0.788 and w — w\ = 0 . The next two figures (lc-ld) correspond to 

the levels AS = - 1 . 0 2 χ 1 0 - 3 and AS = -1 .12 χ 10" 3 . The inner parts of these 

figures present a large chaotic region confined by invariant curves as first pointed 

out by Wisdom(1985) (see also Henrard and Caranicolas, 1990). 

Our model shows that for values of the energy lower than AS — —1.02 χ 1 0 ~ 3 

the invariant tori shown in figures (lc-ld) disappear allowing the stable and un-

stable manifold starting from saddles at low and high eccentricities to entangle 

(heteroclinic points) and the chaotic regions emanating from different saddles mix 

(figure le). In this situation, orbits starting at relative low eccentricities (e « 0.25) 

may reach very high eccentricities (e « 0.9), after 10 5 — 10 e years. 

3.2. T H E 4:1 R E S O N A N C E 

In the 4:1 resonance, the energy integral has a global maximum at Srnax — —28.69797 

which corresponds to a stable corotation center at e = 0.8067. The librations of σ 

occurs about either 0, ~ - or ~ . Surfaces of section, with σο = 0 and σ < 0, are 

displayed in figures (2a-2f) starting from a level AS = — 1 χ 1 0 ~ 5 below Srnax. 

As in figures 1 the shaded area correspond to regions where equation (6) has no 

real roots. In such regions, the critical angle never crosses the selected value of σο· 

As a consequence, there are open curves in the surface of section starting from the 
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Fig. 3. Surfaces of sections to 5:2 resonance. Because of the singularity in the disturbing 

potential at e « 0.8, the phase spaces showed in these figures are smaller than in the 

preceding cases. The axes are the same as in figures 1 and 2. 

boundary of this region. 

A very interesting feature occurs for AE = —2.7 χ 1 0 ~ 4 (figure 2c). Very close 

to the origin there is a stable corotation center. Immediately afterwards there is a 

chaotic zone associated with a saddle near e « 0.15 and w — w\ — π. A trajectory 

starting from this zone may reach very high eccentricities (e « 0.999) after 3 χ 10 5 

years. 

The next three figures (2d-2f) show the structure in the subsequent levels. The 

structure changes continuously until to exhibit the same aspect of the figure If. 

3.3. T H E 5:2 R E S O N A N C E 

The evolutionary structure of the phase space in the 5:2 resonance is quite similar 

to the previous ones. Figures (3a-3e) show this structure, σο and σ are the same of 

the 4:1 resonance, but in the present case, the energy limit is Emax = —20.98052. 

Because of the energy variation associated with some border effect in the cellular 

representation of the asymmetric disturbing function (see Ferraz-Mello and Klafke, 

1991) the investigation was stopped at AE = —4.8 χ 1 0 ~ 4 bellow the energy maxi-

mum. 
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4. C O M M E N T S 

The qualitative results shows in the previous section were fully reproduced by nu-

merical integration of the complete three-body equations. The averaged solutions 

were obtained from filtering off the short period terms of the complete solution, 

using a harmonic filter. Despite of some difficulties related to the energy varia-

tions, which imply that the energy surfaces were not flat, but deformed upwards 

for w — w\ — π and downwards for w — w\ — 0, the qualitative results with our 

model are in good agreement with the full numerical integrations and have the 

advantage of being almost twenty times faster. 
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