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An Upper Bound on the Least Inert Prime
in a Real Quadratic Field
Andrew Granville, R. A. Mollin and H. C. Williams

Abstract. It is shown by a combination of analytic and computational techniques that for any positive funda-
mental discriminant D > 3705, there is always at least one prime p <

√
D/2 such that the Kronecker symbol(

D/p
)
= −1.

1 Introduction

Let D be the fundamental discriminant of a real quadratic field and let

S = {5, 8, 12, 13, 17, 24, 28, 33, 40, 57, 60, 73, 76, 88, 97, 105, 124, 129,
136, 145, 156, 184, 204, 249, 280, 316, 345, 364, 385, 424, 456, 520,
609, 616, 924, 940, 984, 1065, 1596, 2044, 2244, 3705}.

At the end of Chapter 6 of [5], the second author made the following conjecture.

Conjecture If D is a positive fundamental discriminant for which the Kronecker symbol
(D/p) = 0 or 1 for every p ≤

√
D/2 then D ∈ S.

He also verified the truth of this conjecture for all D < 107 and suggested that a combi-
nation of analytic and computational techniques might suffice to establish the truth of the
conjecture. In this paper we justify this optimism by so proving the conjecture.

One can easily prove the conjecture under the assumption of the Extended Riemann
Hypothesis (ERH), as follows. Theorem 3 of Bach [1] states that if G is a nontrivial sub-
group of (Z/m)∗ such that n ∈ G for all positive n < x relatively prime to m, then
x < 3 log2 m. For a fundamental discriminant D we let G = {g ∈ (Z/D)∗ : (D/g) = 1}
and y = �3 log2 D�+ 1 > 3 log2 D. By Bach’s result there must exist some n ∈ (Z/D)∗ such
that 0 < n ≤ y and (D/n) = −1. It follows that there must exist some prime p (dividing
n) for which (D/p) = −1 and p ≤ n ≤ 3 log2 D + 1. Since 3 log2 D + 1 <

√
D/2 when

D > 107, we see that the conjecture must hold under the ERH.
Our unconditional proof of the conjecture comes in two parts. First we verify the truth

of the conjecture up to quite large values of D (up to 1018) by making use of a numerical
sieving device. Second we prove the conjecture for all D beyond where the computations
left off, via certain explicit estimates in analytic number theory.
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p L p L
3 33 127 13461106065

5, 7 105 131 30741261145
11 345 137 40527839121
13 1065 139 275130569065
17 1785 149 275592648265

19, 23, 29, 31 3705 151 474533053553
37 106401 157 974494345825
41 108969 163 3613629418305
43 287049 167 5980467148705

47, 53, 59 369105 173, 179 16279597994529
61, 67 7401849 181, 191 90437661760345

71 11128425 193, 197 143685718819185
73 33692785 199, 211 723969210943185
79 34242945 223 1179371456358865
83 158402409 227, 229 4061838728897569

89, 97, 101 472585905 233, 239 50557062201005305
103 1426585329 241, 251 73018770354975481

107, 109 5296689489 257 > 2.6 · 1017

Table 1: Least L ≡ 1 (mod 8) with (L/q) = 0 or 1 for all odd q ≤ p.

Since D is a fundamental discriminant, we have either D ≡ 1 (mod 4) or 4|D with
D/4 ≡ 2, 3 (mod 4). Since (D/2) = −1 for D ≡ 5 (mod 8), we need only consider values
of D such that D = L ≡ 1 (mod 8) or D = 4L, where L ≡ 2, 3 (mod 4).

To deal with the small discriminants we computed the three tables below (corresponding
to L ≡ 1 (mod 8), 2 and 3 (mod 4), respectively). We used the Manitoba Scalable Sieving
Unit (see Lukes et al. [4]) over a period of four or five months to produce Tables 1, 2 and 3
below.

From Table 1 we see that if D = L ≡ 1 (mod 8) and D ≤ 2.6 × 1017 then there exists
q ≤ 257 <

√
D/2 (since D > 107) for which (D/q) = −1, so verifying the conjecture in

this range for odd discriminants D.
From Tables 2 and 3 we see that if D = 4L where L ≡ 2 or 3 (mod 4), and D ≤ 4×2.6×

1017 = 1.04 × 1018, then there exists odd q ≤ 283 <
√

D/2 (since D > 107) for which
(D/q) = (L/q) = −1, so verifying the conjecture in this range for even discriminants D.

Both the growth rate of the L values in Tables 1, 2, 3, and the truth of the conjecture
under the ERH strongly suggest that the conjecture must be true unconditionally. In the
remainder of the paper we furnish a proof of the following theorem.

Theorem 1.1 Suppose that D is a fundamental discriminant. If D ≥ 1018, or if D is odd
and D ≥ 1016, then there exists a prime p ≤

√
D/2 for which (D/p) = −1.

In view of the results mentioned above, this means that the conjecture is true uncondi-
tionally.
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p L p L
3, 5 6 127, 131 6941299170

7 30 137, 139, 149 13803374706
11 70 151 95257780930
13 114 157 461441566546
17 246 163, 167, 173 614275135530
19 1050 179 1323134476426
23 1290 181, 191 2716216673394

29, 31 3094 193 47007322131630
37 16930 197, 199 160631220621466
41 30430 211 238205916998674
43 48174 223 611465805367330
47 62934 227, 229 1873686407687494

53, 59 214230 233, 239 5644324196384910
61 569130 241, 251 18038239971912966

67, 71, 73 860574 263 20425607181761226
79 9361374 257, 269, 271 43208475923671906

83, 89, 97, 101 11993466 277, 281 95444433358852510
103 287638530 283 > 2.6 · 1017

107, 109 697126530

Table 2: Least L ≡ 2 (mod 4) with (L/q) = 0 or 1 for all odd q ≤ p.

There is an elementary and clever proof in Western and Miller ([9, pp. xi–xii]) that if
q is any odd prime and p is the least odd prime such that (p/q) = −1, then p <

√
q +

1. However, it is not obvious how this argument could be modified to prove that p <
C
√

q with constant C < 1. Norton [6] has shown by much deeper arguments that p <

1.1q1/4(log q + 4), thereby establishing the truth of Theorem 1.1 when D is a prime.
By the method developed in this paper it is possible to prove a result like: “For any C > 0

there exists a calculable constant DC , such that if D ≥ DC is a fundamental discriminant
then there exists a prime p ≤ C

√
D for which (D/p) = −1.” However if C is much smaller

than 1/2 then the value of DC we obtain is so large that we will not be able to determine
whether the result holds for a large range of smaller D. In fact the function C

√
D can be

replaced by any function of the form Dλ for any given λ > 1/2
√

e.
In our proof we will prove a version of the Polya-Vinogradov inequality (Theorem 2.2

below) suitable for us to obtain small bounds. We could replace the use of the Polya-
Vinogradov inequality by Burgess’s character sum estimates [2]. Noting that the con-
ductors of the characters we are investigating are squarefree, one can prove: “For any
λ > 1/4

√
e there exists a calculable constant Dλ, such that if D ≥ Dλ is a fundamental

discriminant, then there exists a prime p ≤ Dλ for which (D/p) = −1.” However, “back
of the envelope” calculations suggest that Dλ will be enormous, well beyond the range of
computation.
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p L p L
3 3 131, 137 25856763139

5, 7, 11 15 139, 149 147774098679
13 91 151 156883882611

17, 19, 23, 29 399 157 268065962395
31, 37 14611 163 1088511866311

41 21099 167 1680435020859
43 41155 173 5947699157079
47 43059 179, 181, 191, 193 9551743094859

53, 59, 61, 67 182919 197, 199 126316077604831
71 2190279 211 444079813923295
73 3777855 223, 227, 229, 233 1062483479555355

79, 83 8042479 239, 241, 251 4833899440864935
89, 97, 101 12129315 257, 263, 269, 271 40801368051299571

103, 107, 109 78278655 277 > 2.6 · 1017

127 6091232455

Table 3: Least L ≡ 3 (mod 4) with (L/q) = 0 or 1 for all odd q ≤ p.

2 Preliminary Results

For a given D we define B =
√

D/2 and we will assume in the sequel that (D/p) = 0, 1
for every prime p ≤ B. Thus, if (D/n) = −1, then n must be divisible by a prime which
exceeds B. Indeed, if n ≤ N ≤ B2 = D/4, then there must be a unique prime divisor p of
n such that (D/p) = −1. It follows that

∑
n≤N

(
D

n

)
=
∑
n<N

(n,D)=1

1− 2
∑

B<p≤N
(D/p)=−1

∑
n=mp≤N
(m,D)=1

1.(2.1)

Our goal is to show that (2.1) cannot hold. To do this we will need to find explicit
inequalities for the three main terms here. We begin with the easiest, the first term on the
right side of (2.1):

Let ν(s) denote the number of distinct primes that divide s ∈ Z. If prime p does not
divide r then ∑

m≤x
(m,rp)=1

1 =
∑
m≤x

(m,r)=1

1−
∑

pm≤x
(m,r)=1

1.

Therefore by induction on ν(R) one can establish the following elementary sieve lemma.

Lemma 2.1 Let R and X be positive integers; then
∣∣∣∣
∑
m≤X

(m,R)=1

1−
φ(R)

R
X

∣∣∣∣ < 2ν(R)−1,
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where φ(m) is Euler’s phi function.

Therefore

∑
n≤N

(n,D)=1

1 ≥
φ(D)

D
N − 2ν(D)−1.(2.2)

Next we develop an upper bound for the character sum in (2.1). To do this we will derive
a version of the Polya-Vinogradov inequality

∣∣∣∣
∑
n≤N

(
D

n

)∣∣∣∣ <
√

D log D

in which the upper bound depends more explicitly on the prime divisors of D.

Theorem 2.2 For any real numbers M and N and for any primitive character modulo q, we
have

∣∣∣ ∑
M<n≤M+N

χ(n)
∣∣∣ ≤ 2

√
q

π

φ(q)

q

(
log q + c1 +

∑
p|q

log p

p − 1

)
+

2ν(q)+2

π
√

q
,(2.3)

where c1 := γ − log 2 + π/2− 1 = .454864811 . . . .

Putting χ(n) = (D/n) and M = 0 in (2.3), we deduce that

∣∣∣∣
∑
n≤N

(
D

n

)∣∣∣∣ ≤ 2
√

D

π

φ(D)

D

(
log D + c1 +

∑
p|D

log p

p − 1

)
+

2ν(D)+2

π
√

D
,(2.4)

which is what we shall use to bound the left side of (2.1).
Obtaining bounds on the double sum in (2.1) is a somewhat delicate process which will

require different techniques when D ≥ 1032 and D < 1032. We postpone this investi-
gation until the next section. We dedicate the remainder of this section to the proof of
Theorem 2.2:

In order to do this we first modify slightly the proof in Chapter 23 of Davenport [3] to
derive for any primitive character χ (mod q) the inequality

∣∣∣ ∑
M<n≤M+N

χ(n)
∣∣∣ ≤ 2
√

q

∑
1≤a≤q/2

(a,q)=1

1

sin(πa/q)
.

Now for 0 < x ≤ π/2, the function 1/ sin x − 1/x is increasing; consequently, 1/ sin x ≤
1/x + (1− 2/π). It follows from the inequality above that

∣∣∣ ∑
M<n≤M+N

χ(n)
∣∣∣ ≤ 2

√
q

π

∑
1≤a≤q/2

(a,q)=1

1

a
+

(
1−

2

π

)
φ(q)
√

q
.(2.5)
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Also,

∑
1≤a≤x
(a,q)=1

1

a
=
∑
d|q

µ(d)
∑

1≤db≤x

1

db
=
∑
d|q

µ(d)

d

∑
1≤b≤x/d

1

b
,(2.6)

For any real positive x, let f (x) =
∑

m≤x
1
m − log x − γ, where γ = .5772156649 . . . is

Euler’s constant. It is well known that f (x)→ 0 as x→∞. Moreover

0 < f (x)− f (x + 1) = log

(
1 +

1

x

)
−

1

x + 1
<

1

x
−

1

(x + 1)
.

Telescoping gives

0 < f (x)− f (x + k) <
1

x
−

1

x + k
,

and letting k→∞, we find that

0 < f (x) <
1

x
.(2.7)

From (2.6) and (2.7) we therefore deduce

∣∣∣∣
∑

1≤a≤x
(a,q)=1

1

a
−
∑
d|q

µ(d)

d

(
log(x/d) + γ

)∣∣∣∣ ≤
∑
d|q

µ2(d)

d
| f (x/d)| ≤

2ν(q)

x
.(2.8)

It is well known that ∑
d|q

µ(d)/d = φ(q)/q

and it is easy to establish by induction on ν(q) that

−
∑
d|q

µ(d) log d

d
=
φ(q)

q

∑
p|q

log p

p − 1
,

where the latter sum is over all the distinct prime divisors of q. Thus, from (2.8) we deduce
that

∣∣∣∣
∑

1≤a≤x
(a,q)=1

1

a
−
φ(q)

q

(
log x + γ +

∑
p|q

log p

p − 1

)∣∣∣∣ ≤ 2ν(q)

x
.(2.9)

By referring back to (2.5) and using (2.9) with x = q/2, we get Theorem 2.2.
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3 Two Inequalities

We first prove a somewhat technical sifting lemma.

Lemma 3.1 If x ≥ 4.7× 1015 and s is the product of all the primes ≤ 14 log x, then

π(x) ≤
1

3
#{n ≤ x : (n, s) = 1},

where, as usual, π(x) is the prime counting function.

Proof Set y := 14 log x. Let R denote the product of the primes ≤ Y (< y); clearly R|s. By
repeated applications of Lemma 2.1, it is easy to deduce that

∑
n≤x

(n,s)=1

1 ≥
∑
n≤x

(n,R)=1

1−
∑

Y<p≤y

∑
pm≤x

(m,R)=1

1 ≥
φ(R)

R

{
x −

∑
Y<p≤y

x

p

}
− 2ν(R)−1π(y).(3.1)

Put Y =
√

y > 22.47. By (3.17) and (3.20) of Rosser and Shoenfeld [7], we get

∑
Y<p≤y

1

p
≤ log 2 +

3

4(log Y )2
.(3.2)

By (3.30) of [7] we find that

φ(R)/R > e−γ/(log Y + 1/ log Y ).(3.3)

Furthermore, by Theorem 2 of [7] we get

2ν(R)−1π(y) = 2π(Y )−1π(y) ≤ 2Y/(log Y−3/2)−1 y/(log y − 3/2) < x/3 log2 x.(3.4)

Also, since π(x) < x/(log x−3/2) (Theorem 2 of [7]), we see by (3.1), (3.2), (3.3) and (3.4)
that if the lemma is false, then

3
3

(log x − 3/2)
+

x

3 log2 x
>

e−γx

(log Y + 1/ log Y )

(
1− log 2−

3

4 log2 Y

)
,

which does not hold for x ≥ 1036, by computation.
We now consider the case of x < 1036. We note from (3.1) that if the lemma is false then

3
x

(log x − 3/2)
+ π(y)2π(Y )−1 > x

∏
p≤Y

(
1−

1

p

){
1−

∑
Y<p≤y

1

p

}
.(3.5)

Since x < 1036, we have y < 1161 and π(y) ≤ π(1160) = 191. If we put Y = 186, we
find that (3.5) is false for x ≥ 1.16 × 1018. For x < 1.16 × 1018, we have y < 583 and
π(y) ≤ π(582) = 106. If we put Y = 160, we find that (3.5) is false for x ≥ 1.06 × 1016.
Continuing in this fashion, we have y < 517 and π(y) ≤ 97 and (3.5) is false for Y = 144
and x ≥ 5.3 × 1015. Thus, we may assume y < 507 and π(y) ≤ 96. Taking Y = 150, we
get that (3.5) is false for x ≥ 4.7× 1015.

We will also require an explicit prime number theorem.
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Lemma 3.2 If x ≥ B ≥ 1.2× 106, then

π(x)− π(B) ≤ .0024
B

log B
+ 1.0011

(
Li(x)− Li(B)

)
.

Proof We note that Schoenfeld [8] has shown that for x > 1.16× 106, we have

.9987x < θ(x) < 1.0011x.

Thus, we have

π(x)− π(B) =

∫ x

B

dθ(t)

log t
=

[
θ(t)

log t

]x

B

+

∫ x

B

θ(t)dt

t log2 t

≤ −
θ(B)

log B
+ 1.0011

(
x

log x
+

∫ x

B

dt

log2 t

)

≤

(
1.011

B

log B
−
θ(B)

log B

)
+ 1.0011

(
Li(x)− Li(B)

)

≤ .0024
B

log B
+ 1.0011

(
Li(x)− Li(B)

)
.

4 Proof of the Theorem when D ≥ 1032

In this section we will show that (2.1) cannot hold when D ≥ 1032. We first define for any
positive z and integer m

gm(z) =
∑
x≤z

(m,x)=1

1

and note that if s is any prime divisor of m, then

gm(z) = gm/s(z)− #{sn : n ≤ z/s, (n,m/s) = 1}.(4.1)

We next set y1 := (12/π)(log D + log log D + .3664215), y2 = 14 log B, N = By1.
Since B ≥ 5× 1015, it is not difficult to show that

y2 >

(
y1

(
1 +

1

2 log y1

)
+ log D

)/(
1−

1

log y1

)
.

Since y2 > y1 > 41, we see from (3.15) and (3.16) of[7] that

θ(y2) ≥ y2(1− 1/ log y2) > y1(1 + 1/2 log y1) + log D ≥ θ(y1) + log D.(4.2)

It follows that the product of the primes in the interval (y1, y2] is greater than the product
of the primes in D. Now let R denote the product of all the distinct primes ≤ y2 and let r
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denote the (squarefree) product of all the distinct primes ≤ N/B = y1 and those (> y1)
which divide D. Next, let q be the largest prime that divides r.

If r|R, then gr(z) ≥ gR(z). If r � R, then there must exist a least prime p that divides R
but does not divide r. There must also exist a prime s such that s|r and s � R; hence, s > y2.
Since q ≥ s, we get q > y2 ≥ p. It follows that

#{qn : n < z/q, (n, r/q) = 1} ≤ #{pn : n ≤ z/p, (n, r/q) = 1}.

By applying (4.1) twice, we find that

grp/q(z) ≤ gr/q(z)− #{qn : n ≤ z/q, (n, r/q) = 1} = gr(z).

By iterating this procedure, we finally get

gtR(z) ≤ gr(z)

for some t ; hence, we always have

gr(z) ≥ gR(z).(4.3)

We now examine the double sum term in (2.1). By Lemma 3.1 with x = N/m ≥ B >
4.7× 1015 and s = R and (4.3) we get

2
∑

B<p≤N
(D/p)=−1

∑
n=mp≤N
(m,D)=1

1 ≤ 2
∑

m≤N/B
(m,D)=1

π

(
N

m

)
≤

2

3

∑
m≤N/B
(m,D)=1

∑
k≤N/m
(k,R)=1

1

≤
2

3

∑
m≤N/B
(m,D)=1

∑
k≤N/m
(k,r)=1

1 ≤
2

3

∑
n≤N

(n,r)=1

1.

(4.4)

The last inequality follows from taking n = mk ≤ m(N/m) = N and noting that any
n ≤ N has at most one such representation. This is because m will be the product of
powers of primes≤ N/B = y1 which divide n, and all such primes divide r.

Since the squarefree kernel of D divides r, we have gD(z) ≥ gr(z); hence, by (2.1) and
(4.4) we get

∑
n≤N

(n,D)=1

1 ≤ 3

∣∣∣∣
∑
n≤N

(
D

n

)∣∣∣∣.(4.5)

Substituting (2.2) and (2.4) into (4.5) and multiplying through by D/φ(D), we obtain the
inequality

N ≤
6
√

D

π

(
log D + c1 +

∑
p|D

log p

p − 1

)
+ 2ν(D) D

φ(D)

(
1

2
+

12

π
√

D

)
.(4.6)
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Define

γD :=
∑
p|D

log p

p − 1
.

Note that if Dk+1 > D ≥ Dk, where Dk is the product of the first k primes, then γD −
log log D ≤ γDk − log log Dk, since D must have≤ k distinct prime factors.

We now consider the value of γDk − log log Dk. From (2.8) of [7], a constant E is defined
by

E = −γ +
∑

p

log p

p(p − 1)
;

hence, by (3.16) and (3.23) of [7], we can easily derive

γDk − log log Dk ≤
1

log x
− log

(
1−

1

log x

)
− γ(4.7)

for x = pk (the k-th prime) > 41. For D ≥ 1032, we have pk ≥ 79 and by (4.7)

γDk − log log Dk < −.08846604.

We may therefore assume that

γD < log log D− .08846604.(4.8)

We also notice that 2p/(p − 1) < p1/3 for any p ≥ 11, so that 2ν(D)D/φ(D) ≤ (9.35)D1/3.
Putting this and (4.8) into (4.6) we get

N <
6
√

D

π
(log D + log log D + .3664215) = By1 = N,

a contradiction. Thus, if D ≥ 1032, we see that (2.1) cannot hold. It follows that we have
proved Theorem 1.1 for all values of D ≥ 1032.

5 Proof of the Theorem when D ≤ 1032

We will assume in what follows that D ≤ U for some given U , beginning with U = 1032.
We now rewrite (2.1) as

∑
n≤N

(n,D)=1

1 ≤

∣∣∣∣
∑
n≤N

(
D

n

)∣∣∣∣ + 2
∑

m≤N/B
(m,D)=1

(
π(N/m)− π(B)

)
.(5.1)

Putting y = N/B, we see by Lemma 3.2 that

2
∑

m≤N/B
(m,D)=1

(
π(N/m)− π(B)

)
≤ 2

∑
m≤y

(m,A)=1

{
.0024

B

log B
+ 1.0011

(
Li(N/B)− Li(B)

)}(5.2)
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for any integer A which divides B. By combining (5.1) and (5.2) with (2.2) and (2.4),
dividing through by N and noting that

√
D > 2 and 2B =

√
D, we obtain the inequality

φ(D)

D

(
1−

yD

y

)
≤

2ν(D)

By

(
2

πB
+

1

2

)

+
2

By

∑
m≤y

(m,A)=1

(
.0024

B

log B
+ 1.0011

(
Li(By/m)− Li(B)

))
,

(5.3)

where yD := (4/π)
(
log D + c1 + γD

)
.

Define A to be the product of all prime s ≤ 19 dividing D and define R to be the product
of the primes between 23 and the largest prime q such that∆ := AR ≤ U . We have ν(D) ≤
ν(∆), γD ≤ γ∆ and φ(D)/D ≥ φ(∆)/∆. Putting y∆ := (4/π)

(
2 log(2B) + c1 + γ∆

)
≥ yD,

we see by (5.3) that

φ(∆)

∆

(
1−

y∆
y

)
≤

2ν(∆)

By

(
2

πB
+

1

2

)

+
2

By

∑
m≤y

(m,A)=1

{
.0024

B

log B
+ 1.0011

(
Li(By/m)− Li(B)

)}
.

(5.4)

We can easily test whether (5.4) holds. Our strategy will be the following. For each of the
256 divisors of 2× 3× 5× 7× 11× 13× 17× 19, we can compute R and then take y to be
some convenient value. We then determine a range for B for which (5.4) is false for every
such A, adjust U and iterate.

To begin we took y = 500 and found that (5.4) is false for every possible A value when
B > 1011. This implies, then, that for (2.1) to hold, we must have D < 4× 1022. Using this
bound as our new U -value, we found that (5.4) is false for all possible values of A whenever
B > 2× 109. This means that we need now only consider values of D ≤ 1.6× 1019. Using
this as our new U -value, we discovered that (5.4) is false for every possible value of A when
B > 6×108; hence D ≤ 1.44×1018. After adjusting our U -value to 1.44×1018 and our y-
value to 700 we verified that (5.4) is false for every A when B ≥ 5×108; this implies that we
may assume D ≤ 1018. Unfortunately, our next iteration gives a negligible improvement;
however, if we work with only odd D, we must have A odd. In this case we found that (5.4)
is false for every such A(U = 1018, y = 500) when B ≥ 5× 107; hence D ≤ 1016. Thus, we
have now proved Theorem 1.1 and, as a consequence, the conjecture.
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