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A TRACE CONDITION EQUIVALENT TO 
SIMULTANEOUS TRIANGULARIZABILITY 

HEYDAR RADJAVI 

0. Introduction. A collection y of matrices over a field F is said to be 
triangularizable if there is an invertible matrix T over F such that the 
matrices T~lST, S e ^ are all upper triangular. It is a well-known and 
easy fact that any commutative set y is triangularizable if F is al
gebraically closed, or if F contains the spectrum of every member of ff. 
Many sufficient conditions are known for triangularizability of matrix 
collections. Levitzki [7] proved that a (multiplicative) semigroup of 
nilpotent matrices is triangularizable. (His result is valid even over a 
division ring.) Kolchin [5] showed the triangularizability of a semigroup of 
unipotent matrices, i.e., matrices of the form I + N with N nilpotent. 
Kaplansky [3, 4] unified and generalized these results. 

One of Kaplansky's theorems [4] is that if F has characteristic zero, then 
a semigroup with constant trace is triangularizable. (As shown in [4], the 
spectrum of every member of such a semigroup is contained in {0,1}.) 
Watters [17] showed that the theorem is also true if the characteristic of F 
is larger than n/2, where n is the size of the matrices. The analogue of 
Kaplansky's result for trace-class operators on Hilbert space is given in 
[12]. Other related results are proved in [10] and [12]. In Section 1 of this 
paper we give an extension of these theorems to a necessary and sufficient 
condition in terms of trace, from which several corollaries are deduced. 
These include a strengthening of a theorem of McCoy on triangularizing 
pairs of matrices [9] as well as the result that a semigroup of idempotents 
is triangularizable. In Section 2 we prove similar results for trace-class 
operators on a Hilbert space. 

In what follows Sf will always denote a semigroup of matrices or of 
linear operators on a vector space y over F. We say that trace is 
permutable on Sf if for every k, every word A}A2 . . . Ak in ^ and every 
permutation s of {1, 2, . . . , k) the equation 

ir(As(\)As(2) • • • As(k)) = K(A\A2 ..-Ak) 

holds. It is easy to see that this is the case if and only if 

tr(ABC) = tr(CBA) for all A, B, C in ST. 
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A collection of linear operators on ^ i s called transitive (= irreducible) if 
there is no nontrivial subspace Ji (i.e., 0 ¥= Jt ^ ir) invariant under 
(every member of) the collection. The corresponding collection of matrices 
relative to a fixed basis is also called irreducible or transitive. The 
spectrum of A will be denoted by o(A ). 

1. The finite-dimensional case. In this section we prove that, in the case 
of an algebraically closed field of characteristic zero, a semigroup y is 
triangularizable if and only if trace is permutable on Sf. As in [17], a 
suitably large characteristic would also do. In order to obtain certain 
corollaries we state and prove a somewhat more general theorem. 

The well-known Burnside's theorem [2] will be used more than once in 
the sequel: An irreducible algebra of n X n matrices over an algebraically 
closed field contains all n X n matrices. Equivalently, an irreducible 
semigroup over such a field contains a basis for the linear space of all 
n X n matrices [3]. 

THEOREM 1. Let Sf be a semigroup of n X n matrices over a field that 
contains all the eigenvalues of the members of 'Sf and whose characteristic is 
either zero or greater than nil. Let S be a generating subset ofSf. Then the 
following assertions are mutually equivalent. 

(i) Sf is triangularizable. 
(ii) trace is permutable on Sf. 

(iii) trace is permutable on <o. 
(iv) tv(ABC) = tr(CBA)for all A, B, C in ¥. 
(v) tr(ABC) = tv(CBA)for all A, B in Sand C e Sf. 

Proof. With no loss of generality we can assume that the field is 
algebraically closed. Since every assertion in the sequence clearly implies 
the next, we must only prove the implication (v) =̂> (i). Assume (v) holds, 
and rewrite it as 

tr C(AB - BA) = 0. 

Since the algebra % generated by ^coincides with the linear span of ^ the 
equation 

tr C(AB - BA) = 0 

holds for all C in 31. Now 3Ï admits a block triangularization with 
irreducible diagonal blocks, whose number k we shall show to be n 
(but could a priori be any integer from 1 to «). For each A in 
the block-triangularized 31, let A- denote the / diagonal block of A, 
1 ^ j ^ k, and let 31- be the irreducible algebra consisting of all the 
matrices A-. By [17], we can assume that the 31, satisfy the following 
property. For each 7, there exists a subset R- of { 1 , . , . , / c } and a 
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subalgebra E of 21 whose/ diagonal block is 2Ï and such that a member A 
of 2Ï belongs to E if and only iî At = A: for all i in R and Al• = 0 for all / 
out of Rj. 

We must show that Aj is 1 X 1 for every A. Consider 2ly for a fixedy, and 
assume it is a subset of m X m matrices with m â 2. Then 91- is an 
irreducible algebra and, in particular, it is not commutative, which implies 
that the set {Ay. A e S} is not commutative. Pick A and B in <f with 
4̂ -5- — 57v47 T̂  0. Then, denoting the number of elements in Rj by r, we 
obtain the following equalities for every C in 21. 

r tr C y ( ^ y - J?^.) = tr C(AB - BA) = 0. 

Thus tr Cj(AjB: — B-A-) = 0 for every Cy in 2ly. (The inequality r ^ «/2 is 
used in the case of nonzero characteristic.) Since 21 is a full algebra 
of matrices by Burnside's theorem, we arrive at the contradiction 
AR — B A = 0. Thus m = 1 and the proof is complete. 

The above theorem yields, at least in the case of zero characteristic, the 
results of Kolchin, Levitzki, their unification by Kaplansky, and, in 
the nonzero characteristic case, their extension by Watters [17]: constant 
trace on a semigroup is sufficient for triangularizability. We give other 
corollaries below. 

COROLLARY 1. A semigroup of idempotent matrices over afield of zero (or 
sufficiently large) characteristic is triangularizable. 

Proof. Let r(A) denote the rank of A, and observe that tr(/l) = r(A) for 
idempotent A. Now for A and B in the semigroup, 

r(BAB) = tv(BAB) = tv(B2A) = tr(BA) = r(BA). 

Since the (column) range of BAB is clearly contained in the range of BA, 
the above equation shows that BAB and BA have the same range. This 
implies that 

r(CBAB) = r(CBA) 

for A, B, C in Sf. Similarly, 

r(ABC) = r(ABCB). 

Hence, for arbitrary A, B, C in Sf 

tr(ABC) = r(ABC) = r(ABCB) = tr(ABCB) 

= tv(CBAB) = r(CBAB) = r(CBA) 

= tr(CBA). 

In the following let F stand for a field of zero or suitably large 
characteristic that is algebraically closed, or merely contains o(A) for 
every A in the semigroup. 
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The next corollary extends a result of McCoy [9] stating that a necessary 
and sufficient condition for the simultaneous triangularization of a pair 
{A,B} is that 

p(A,B)(AB - BA) 

be nilpotent for every (noncommutative) polynomial p. It should be 
mentioned that McCoy assumes only algebraic closure for the underlying 
field. 

COROLLARY 2. Matrices A and B are simultaneously triangularizable over 
F if and only if 

tr W(AB - BA) = 0 

for every word W in A and B. 

Here is another immediate corollary that extends the well-known result 
on the triangularizability of commutative semigroups. 

COROLLARY 3. A semigroup ^f over F is triangularizable if for all A, B, C 
in y we have either ABC = ACB or ABC = CBA. 

COROLLARY 4. If trace is multiplicative on a semigroup Sf over F, then Sf 
is triangularizable. 

When trace is multiplicative, every member of the triangularized Sf 
will have at most one nonzero entry on its diagonal. This follows from 
tr Ak = (tr A)k for each A e </> and every integer k: Let ax,. . . , an be 
the diagonal entries of A. If 2^- = 0, we have 2#f = 0 for all k\ if 
*2at — t T̂  0, we have 

2(^-/0* = 1-

It follows from [4] that in the first case at = 0 for all /, and in the second 
only one at is nonzero and equals t. 

COROLLARY 5. If Sf is a group of matrices over F, then y is 
triangularizable if and only if trace is constant on each coset of £f relative to 
the commutator subgroup. 

Proof. Let # be the commutator subgroup of Zf. First assume that each 
coset has constant trace. Then, for A, B, C in S? 

\x(ABC) = tr(ABA~]B~]BAC) 

= tv(BAC) = tr(CBA% 

and S? is triangularizable by Theorem 1. Conversely, assume that trace is 
permutable on Sf. Then, for every A G &> and B G % 

\x(AB) = \x(AI) = tr A, 
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which shows the constancy of trace on the coset A <€. 

If F is the field of complex numbers, then triangularization can be 
effected by a unitary similarity. A semigroup over this field is said to 
be self-adjoint if A G Sf implies A * G Sf. 

COROLLARY 6. A self-adjoint semigroup ^ of matrices over the field of 
complex numbers is commutative if and only if trace is permutable on Sf 

Proof. A self-adjoint set of matrices is triangularizable if and only if it is 
(unitarily) diagonalizable. 

Before presenting further corollaries we make a few remarks. 
(1) If y is any semigroup of matrices over F, and if trace is permutable 

on S^ then any block triangularization of £f has the following property: 
The semigroup 9j consisting of t h e / h diagonal blocks of the members of y 
has permutable trace for each j . This follows easily from the proof of 
Theorem 1. 

(2) Let £^ be a semigroup of matrices over an arbitrary field. If & is 
triangularizable, then every diagonal block in any block triangularization 
of ^is also triangularizable. In the language of linear transformations: if # 
is any chain of invariant subspaces for a triangularizable semigroup of 
operators on an «-dimensional space if then ^ i s contained in a subspace 
chain 

^ = 0 c ^ c . . . c ^ = ^ 

where each ^ i s invariant under (every member of) Sf and has codimension 
1 in if+x. This is implicit in the result of [17]. 

(3) Let Sfbe a semigroup of operators on ^(over an arbitrary field), and 
l e t / b e an ideal in ^ i.e., JS G Sf and SJ G ^ f o r every/ G / a n d S G ^ 
A s s u m e / ¥= {0}. It is well known that the irreducibility of ^implies that 
oîfi. (Short proof: Let Jt be a nontrivial subspace invariant under fi Then 
the linear span of {JJi'J ^fi} is invariant under Sf\ so is the intersection 
of the null spaces of all / G fi. At least one of these two spaces is 
nontrivial.) We observe that the corresponding assertion for triangulariza-
bility is false. Simply, consider the semigroup Sf of all operators on if 
leaving a fixed nontrivial subspace Jt of if invariant. Let fi be the set of 
all operators on if such that JJt = {0} and J1 = 0. Then / i s a 
triangularizable ideal in<5^ b u t a i s not triangularizable if the dimension of 
if'xs larger than 2. 

In what follows we use the symbol yk to denote the ideal of Sf 
consisting of all words of length k or more. 

COROLLARY 7. Let ^ be a semigroup of matrices over any field. IfSf is 
triangularizable for some k, then Sf is triangularizable. 

Proof. Assume «5̂  is block-triangularized with irreducible diagonal 
blocks. Let «9̂  be the semigroup of a l l / diagonal blocks. It follows from 
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Remark (2) above that ^ is triangularizable. Now if ^ = {0}, then 
every member of &*• is nilpotent; hence ¥• is triangularizable. If 
&) ^ {0}, since it is an ideal of S^9 its irreducibility follows from that 
of St, by Remark (3). Thus, in both cases, we deduce that the members of 
Sfj are 1 X 1, for every j , and y is triangularized. 

COROLLARY 8. Let S'be an arbitrary set of n X n matrices over afield of 
characteristic zero {or larger than n/2). If there exists an integer k such that 
trace is permutable on all words in S of length ^ k, then it is permutable on 
all words in S. 

Proof. Let ^ b e the semigroup generated by S. Then every member of £fk 

is a word of length ^ kiviS. Thus Zf is triangularizable over the algebraic 
closure of the field at hand, by Theorem 1. So is S? by Corollary 7. The 
desired permutability on Sf follows by Theorem 1. 

2. The case of trace-class operators. In this section we assume Sf is a 
semigroup of trace-class operators on the complex Hilbert space 3rif. 
Certain properties of the Banach algebra ^ of all trace-class operators on 
J^will be used. (See, e.g., [1].) The trace norm of an operator A in ^ will 
be denoted by \A\. 

By a subspace of JF we shall mean a closed subspace. A collection ê of 
bounded (linear) operators onJ^is triangularizable if there exists a chain A 
of subspaces of 3? such that (a) A is maximal, i.e., not properly contained 
in any chain of subspaces of J0f and (b) every member of A is invariant 
under every member of ê. The maximality of A implies that if Jt e A, and 
if Jt'\s the (closed linear) span of { / " G A . V T Ç Jt}, then the orthogonal 
complement M 0 Jt_ of Jt_ in Jt has dimension 0 or 1. 

We shall use the fact that an ideal of a transitive algebra of operators is 
transitive. (The proof is the same as in the finite-dimensional case given 
above; just read "closed span" for "span".) 

Our main result in this section parallels that in the preceding one: ^ i s 
triangularizable if and only if 

tr(ABC) = tr(CBA) for all A, B^C'mS?. 

Theorem 2 below is a little more general and enables us to deduce the 
appropriate corollaries as in Section 1. We shall use, among other things, 
Lomonosov's lemma [8, 15] that if 51 is a transitive algebra of bounded 
operators on 3% and if K is a nonzero compact operator, then there is an A 
in % such that AK has an eigenvalue 1. One corollary, among others, is 
that a commutative collection of compact operators is triangularizable. In 
the case of trace-class operators, Theorem 2 below is an extension of this 
result. 

We also need the following lemmas. 
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LEMMA 1. Let St and E be transitive algebras of bounded operators on 
Hilbert spaces 3tf{ and J^ respectively, each containing nonzero finite-rank 
operators, and let <f> be an algebra isomorphism of% onto Ê. Then there is an 
injective, closed linear transformation Tfrom a dense linear manifold 2) of ^ 
into Jfx such that TS) is dense in Jff[9 AW Q T9>, and 

<f>(A) = T~lAT on 2 

for every A in%. 

Proof. This is proved in [11]. 

LEMMA 2. Let A be a trace-class operator on J^ and T an injective, closed 
linear transformation with dense domain 9) in 2^x and dense range in 3fë±. If 
ATS) c TO) and T~XAT is (extendible to) a trace-class operator, then 

ir(T~]AT) = trA. 

Proof Let B = T~lAT, so that TB = AT. We use the polar 
decomposition T = UH, where U is unitary and H is positive, closed, and 
defined on 3). Replacing U~]AU by A, we can assume, with no loss of 
generality, that T = H. Since H is injective, there is a sequence {Pn} 
of spectral projections for H such that lim Pn = I in the strong operator 
topology, and PnHPn is bounded and invertible on Pn3df for every n. 
Since 

(P„HPn)(PnBPn) = PnHBPn = PnAHPn 

= (PnAPn)(PnHPn\ 

the operators PnAPn and PnBPn are similar and 

tr(PnBPn) = tr(PnAP„). 

But PnBPn and P„APn tend to B and A, respectively, in the % norm; the 
continuity of trace then implies tr B = tr A and completes the proof. 

Let % be any algebra of bounded operators on^f and let A G St. If P is 
any orthogonal projection on ^f then the restriction of PAP to PJF 
is called the compression of A to P^f and the set of compressions of all 
A e % is called the compression of 2t to PJtif. Let A be a maximal chain 
of invariant subspaces for 5t (which could be very far from a triangular-
izing chain). Let Ji e A with Jt 0 Jt__ ¥- 0. Then the compression of % 
to Jf © Jt_, which is easily seen to be an algebra in its own right, is 
transitive by the maximality of A. This compression is an irreducible 
"diagonal block" of St. 

The following technical lemma is similar to a result of [14] used in 
dealing with reductive algebras. In the absence of reductivity, however, the 
transitive "diagonal blocks" of an algebra St that are unboundedly similar 
need not be unitarily similar. 
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LEMMA 3. Let 3ï be a closed subalgebra of ^ and let Lbe a maximal chain 
of invariant subspaces for 31. LetJi e A such that (J(QJ(_ ¥" {0} and) the 
compression of % to J( © Jl_ is nonzero. Then 31 has an ideal S with 
the following property: There exist a finite subset of A, say 

A0 = pr0 = j f , j ^ . . . , j f j 
and injective closed linear transformations T], . . . , Tn such that 

(1) Tt has dense domain Q)i in Jt§ © Jt^_ and dense range in 

(2) denoting the compression of A toJi{ © Jit_ by At we have 

AQT^ Ç Ttty and 

At= TrlA0Tt onfy 

for every A in E and i = 1, . . . , n\ and 
(3) the compression of & to JVQ Jf_ is zero if Jfis in A\A0. 

Proof. The compression of 31 ioJtQJt_ is transitive and hence, by [8], 
contains an operator K0 with an eigenvalue 1. Let AT be a member of 31 
whose compression is K0, and observe that o(K0) Q o(K). Since 3Ï is closed, 
it contains the closed algebra J f generated by the single operator K. Let y 
be a circle centred at 1 that does not meet o(K) and whose interior 
intersects o(K) in {1}. Then, as in [14], the finite-rank projection 

p = — / (z - xy] dz 

is inX. Since (z — K0)~
l is the compression of (z — K)~x \oMQJt_, we 

see that the compression P0 of P satisfies 

The fact that 1 G O(K0) now implies P0 ¥= 0. 
Since P has finite rank and since JtQJt_ is orthogonal \oJfQJf_ for 

distinct M and ^Tin A, it follows that P has only finitely many nonzero 
compressions. Let F be any finite-rank operator in 31 with the following 
property: there exists a finite subset 

A0 = {Jt^ = Jf,Jfl9 . . . ,Jfn] 

such that the compression of F to Jf © Jfx is zero for JV e A\A0, and A0 is 
a minimal such subset containing Jt. For each / let 31, be the algebra of 
compressions A • of A e 31 to Jt{ © Jt{_. 

Let Ê be the (two-sided) ideal of 31 generated by F, so that (3) of the 
lemma is satisfied. The ideal (£z of St, generated by Ft is transitive for every 
/, and consists of finite-rank operators. The existence of 7J satisfying (1) 
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and (2) will be established by Lemma 1 if we show that, for 1? e E, 1?, = 0 
if and only if B0 = 0. 

By the minimality of A0 it is impossible to have B0 ^ 0 and Bt = 0 for 
any 5 E K . Suppose the existence o f^G g with B0 = 0, Bt ¥= 0. Then the 
ideal f of E generated by B has the property that its compression £ is 
transitive a n d ^ = 0. The transitivity of FiJiFi implies, because of finite 
dimensionality, that Ft e ^ . Thus^/contains a finite-rank operator G with 
G0 = 0 and Gt = Ft. Then 

(F - G)t = 0, (F- G)0 * 0, 

which contradicts the minimality of A0. 
In the following by a generating subset of a semigroup y Q ^ w e mean 

a subset d'such that the set of all words in < îs ^-dense in ^ 

THEOREM 2. Let ^ be a semigroup of trace-class operators. Let S be a 
generating subset of ^. Then the conclusions of Theorem 1 hold. 

Proof The implication (i) -> (ii), in this case, is a consequence of the 
result of Ringrose [16] that the "diagonal elements" of a compact operator 
K together with 0 form o(K). If A is a triangularizing chain for K, then the 
diagonal elements of K are those scalars occurring as compressions of K to 
1-dimensional spaces JtQJt_ with Jt in A. If K e ^ , it is easily seen that 
tr K is the sum of all such scalars occurring with distinct spaces Jt in A. 

Again, as in the proof of Theorem 1, we must only show the implication 
(v) —» (i). Thus assume 

tr A(BC - CB) = 0 

for all A i n l a n d B, C in ê. Since trace is continuous, we can assume, with 
no loss, that the above equation holds for all A in the closed subalgebra 91 
of tëj generated by ^ Let A be a maximal chain of invariant subspaces for 
91. We shall show that A is triangularizing, i.e., for every Jt G A the space 
Jt'© Jf_ has dimension 0 or 1. 

Let Jt be any member of A WiihJtOJt_ ¥= {0}. If the corresponding 
compression of 91 is zero, then Jt © Jt_ has dimension 1, because 
otherwise any maximal subspace chain inserted in this gap would yield a 
chain properly containing A and consisting of invariant subspaces for 91. 
Thus assume that the compression 9t0 of 91 \oJtQJt_ is nonzero. Now let 
(£, A0, and Tt be as described in Lemma 3. 

Suppose àim(JtQJt_) > 1. Then the transitivity of 9I0 implies that it is 
not commutative. Thus there exist B and C in S whose corresponding 
compressions B0 and C0 do not commute. Using Lemma 2 and the 
notation of Lemma 3 we deduce that for A e (£, 

n 

0 = tr A(BC - CB) = 2 tr Al(BlCl - CtBt) 
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n 

= tr A0(B0C0 - C0B0) + 2 tr 77 U0(fi0C0 - C.B^ 
i = i 

= (n + 1) tr A0(B0C0- C0B0). 

Since B0C0 — C0B0 ^ 0, this contradicts the fact that Ê0 is transitive, 
because, by Lomonov's theorem, a transitive algebra of trace-class 
operators is dense in ^ . (See e.g., [14].) 

One corollary of Theorem 2 is that a semigroup of trace-class operators 
with constant trace is triangularizable [12]. There are other corollaries 
paralleling those of Theorem 1. 

COROLLARY 9. A semigroup of compact idempotents on Jtf is triangu
larizable. 

This is a result of [12], its proof is exactly that of Corollary 1, because 
compact idempotents have finite rank. 

COROLLARY 10. Trace-class operators A and B are simultaneously 
triangularizable if and only if tx W(AB — BA) = 0 for every word W (of 
finite length) in A and B. 

This is an extension of the analogue of McCoy's result given in [6]. 
Analogues of Corollaries 3 and 4 also hold, together with the remark 

following Corollary 4; for a proof that 

( OO \ fc OO 

2 a A = 2 A for all k 
i=\ ' i = i 

implies at most one at is nonzero see [12]. The corresponding version of 
Corollaries 6, 7 and 8 also hold; we omit the proofs, which are not unlike 
those given in the finite dimensional case. It is still true that the 
compression of a triangularizable algebra 21 of compact operators to a 
subspace of the type Jt © Jf, where Jt and ^Tare invariant for 21, is also 
triangularizable [6]. Thus the analogue of Corollary 7 is true for any 
semigroup of compact operators. 
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