Using Quantum Dots to Demonstrate Kiss-and-Run

Stephen W. Carmichael
Mayo Clinic, Rochester, MN 55905
carmichael.stephen@mayo.edu

Secretion is a basic biologic phenomenon. Although most mammalian cells are capable of secreting, neurons are of particular importance because the exchange of information throughout the nervous system usually involves secretion of transmitters from synaptic vesicles. Two mechanisms have been proposed, but the prevalence of one over the other has not been clear. One is called full-collapse fusion (FCF) whereby the membrane of the synaptic vesicle fuses with the plasma membrane by exocytosis, all of the contents of the vesicle are unloaded into the synaptic cleft, and a new vesicle is generated de novo. The other mechanism is often referred to as kiss-and-run (K&R) and is characterized by the transient fusion and retrieval of the vesicle membrane with a subtotal release of vesicular content. Recently, Qi Zhang, Yulong Li and Richard Tsien have developed an ingenious technique to clearly distinguish between these two mechanisms [2].

The key is the use of single quantum dots (Qdots). Zhang et al. found that Qdots with a peak emission at 605 nm and a diameter of about 15 nm were most suitable for their purposes. A single Qdot is small enough to fit inside the lumen of a synaptic vesicle (about 24 nm in diameter) yet too large to move through a putative K&R fusion pore (1 to 5 nm). They mildly stimulated neurons in the presence of these Qdots and determined that the dots were taken up in almost half of the synapses. Further tests determined that many of the nerve terminals contained a single Qdot. Probably the big step forward in this study was to demonstrate that they could select terminals with only one Qdot and thereby track only one vesicle. The pH-dependence of the Qdot photoluminescence indicated that the dots were in an environment of about pH 5.5, which is thought to be the acidity of synaptic vesicles.

The pH dependence of Qdot photoluminescence predicted that K&R would allow protons to escape the vesicle (and pH to rise) but retain the Qdot, which would get brighter, whereas FCF would show the same brightening but then lose signal as the Qdot departs (see Figure 1). By examining Qdot-loaded synapses during stimulation and manipulation of the vesicular pH with a proton blocker, Zhang et al. found they could reliably distinguish between K&R and FCF mechanisms. Additional experiments where the external pH was manipulated and studies tracking the motion of single Qdots confirmed this.

Interestingly, Zhang et al. found that K&R was predominant during early phases of stimulation but became less prevalent as stimulation continued. Through a series of

Figure 1: Cartoon of the basic mechanisms of K&R and FCF release during secretion. The red circle represents a Qdot.
Get the correct answer up to 100x faster. Really.

Precision and Speed The Thermo Scientific NORAN System 7 speeds you to answers with blazing fast processing at more than 1,000,000 counts per second. Our new integrated Wavelength Dispersive Spectroscopy (WDS) offers automatic confirmation of Energy Dispersive Spectroscopy (EDS) peak identification.

Seamless EDS & WDS In one system you get the ultimate in automation using both EDS and WDS. You gain the time saving convenience of automatic quantitative mapping and Point & Shoot analysis without sacrificing control.

A Pleasure to Use Included with the powerful spectral and imaging hardware is a suite of software unparalleled in the industry. Just one click to create a report or analyze samples outside the lab with network ready data analysis.

www.thermo.com/microanalysis

Thermo Scientific EDS & WDS The optimum combination of detectors, analyzer and software for all X-ray microanalysis needs.
experiments, they found that K&R was common for vesicles in the “readily releasable pool,” whereas vesicles that had fused at least once or vesicles from the “reserve pool” were less likely to undergo K&R. Also, the rapidity of stimulation favored K&R. But apparently, although K&R is common, vesicles eventually proceeded to FCF.

How soon after K&R can a vesicle again undergo K&R or proceed to FCF? Through a series of clever experiments, Zhang et al. determined that a vesicle can go to another K&R in about 5 seconds, whereas it takes about 27 seconds to proceed to FCF. Also, prompt pore closure and vesicle re-acidification are important during closely spaced K&R events to avoid “shooting blanks.” Studies showed that re-acidification appeared to be a rate-limiting step, but this was observed to be rapid, even at different stimulation frequencies. Other results indicated that fusion pore gating was under physiological control.

This novel technique developed by Zhang et al. allows for study of secretory mechanisms in unprecedented detail. Some vesicles from the readily releasable pool could fuse up to four times, and the rate of vesicle reuse is much faster than previously estimated. Future studies could employ Qdots of different sizes, colors, and pH sensitivities to manipulate the system in even more detail.

References
[1] The author gratefully acknowledges Drs. Richard Tsien and Qi Zhang for reviewing this article.
OmniGIS™
Advanced Gas Injection

Industry Leading Gas Injector
- Single needle - single port - multi-source
- Widest variety of solid, liquid and gas sources
- 100nm closed-loop positioning

Intuitive Graphical Software
- “Drag & Drop” recipe builds - discrete steps
- Individual or mixed source delivery
- Local or remote control from SEM, FIB, and lithography systems
- Advanced software features for research

Multi-Function Controller
- Stand-alone ethernet link to SEM / FIB computer
- Precision flow control
- Smarter control of 4 existing gas injectors