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Abstract

We prove that the direct image complex for the D-twisted SLn Hitchin fibration is
determined by its restriction to the elliptic locus, where the spectral curves are integral.
The analogous result for GLn is due to Chaudouard and Laumon. Along the way, we
prove that the Tate module of the relative Prym group scheme is polarizable, and we
also prove δ-regularity results for some auxiliary weak abelian fibrations.
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1. Introduction

Let C be a nonsingular projective and integral curve of genus g over an algebraically closed field
of characteristic zero. Let D be a line bundle on C, with d := deg (D) > 2g − 2.

Fix a pair of coprime positive integers (n, e). The GLn moduli space we consider is the moduli
space [Nit91] of stable, rank n, degree e, D-twisted Higgs bundles (E, φ : E→ E(D)) on C; it is
an integral, quasi projective and nonsingular variety. There is the projective Hitchin morphism
hn : Mn→ An =

⊕n
i=1H

0(C, iD) onto the affine space of the possible characteristic polynomials
of φ.

The decomposition theorem [BBD81] predicts that the direct image complex Rhn∗Q` splits
into a finite direct sum of shifted simple perverse sheaves, each supported on an integral closed
subvariety S ⊆ An. These subvarieties are called the supports of Rhn∗Q`. The socle of Rhn∗Q`,
denoted by Socle(Rhn∗Q`), is the finite subset of An of generic points ηS of the supports S of
Rhn∗Q`.

One of the main geometric ingredients of Ngô’s proof [Ngô10] of the Langlands–Shelstad
fundamental lemma for reductive Lie groups G, is his support theorem [Ngô10, Theorem 7.2.1].

Received 26 February 2016, accepted in final form 17 January 2017, published online 26 April 2017.
2010 Mathematics Subject Classification 14D20, 14H60 (primary).
Keywords: Hitchin morphism, special linear group, decomposition theorem, supports.

The research of M.A. de Cataldo was partially supported by NSF grants DMS-1301761 and DMS-1600515,
and by a grant from the Simons Foundation (#296737 to Mark Andrea de Cataldo).
This journal is c© Foundation Compositio Mathematica 2017.

https://doi.org/10.1112/S0010437X17007096 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X17007096


A support theorem for the Hitchin fibration: the case of SLn

This is a statement concerning the socle of the direct image complex via the Hitchin morphism
MG→ AG associated with (G,C,D), after restriction to a certain large open subset of the target
AG. In the special case G = GLn, one considers the elliptic locus, i.e. the dense open subvariety
Aell
n ⊆ An corresponding to those points a ∈ An for which the associated spectral curve is

geometrically integral. Then the Ngô support theorem implies that Socle(Rhn,∗Q`) ∩ Aell
n =

{ηAn}, the generic point of the target An. In other words, over the elliptic locus, the simple
summands appearing in the decomposition theorem are the intermediate extensions to Aell

n of
the direct image lisse sheaves over the locus Asmooth

n of regular values of hn. This has striking
consequences for the handling of orbital integrals over the elliptic locus (for every G), which thus
become more tractable: the ones corresponding to points in Aell

n \Asmooth can be related to the
ones over Asmooth

n by a principle of continuity on Aell
n ; this is precisely because there are no new

supports on the boundary Aell
n \Asmooth

n (cf. [Ngô11, § 1]).
Support-type theorems have been appearing in the related geometric contexts of relative

Hilbert schemes and of relative compactified Jacobians of families of reduced planar curves in
[MY14, MS13, MS13, MSV15, She12], also in connection with Bogomol’nyi–Prasad–Sommerfield
(BPS) states.

It is thus interesting, important, and seemingly nontrivial, to ‘go beyond the elliptic locus’.
Chaudouard and Laumon have extended [CL12] Ngô’s result on Aell

n (which holds for every G),
by proving that (and here we specialize their result to G = GLn) Socle(Rhn,∗Q`) ∩ A

grss
n = {ηAn},

where Aell
n ⊆ A

grss
n is the larger open locus for which the associated spectral curves are reduced.

They have also subsequently extended this result to the whole base An of the D-twisted GLn
Hitchin fibration in [CL16], where they prove the following.

Theorem 1.0.1 (GLn socle [CL16]). Socle(Rhn∗Q`) = {ηAn}.

In particular, there are no new supports as one passes from the regular locus Asmooth
n , to the

elliptic locus Aell
n , to Agrss

n and, finally, to the whole of An. The decomposition theorem then takes
the form of an isomorphism Rhn∗Q`

∼=
⊕

q>0 ICAn(Rq)[−q], where Rq is the lisse restriction of

the Q`-constructible sheaf Rhn∗Q` to Asmooth
n , and where IC denotes the intermediate extension

functor shifted so as to ‘start’ in cohomological degree zero. Since the general fibers of hn are
(connected) abelian varieties, we even have Rq ∼=

∧q R1 for every 0 6 q 6 2dhn , where dhn is the
relative dimension of hn.

When G = SLn, we have the following picture, which goes back, at least implicitly, to [Nit91];
see § 2.2. Our SLn moduli space M̌n ⊆ Mn consists of those stable pairs with fixed ε = det(E)
and trivial trace tr(φ) = 0. Then M̌n is an integral, quasi projective and nonsingular variety.
The restriction of the Hitchin morphism hn, yields the Hitchin morphism ȟn : M̌n → Ǎn :=⊕n

i=2H
0(X, iD), whose socle is the object of study of this paper.

This socle is known over the elliptic locus Ǎell
n = Ǎn ∩ Aell

n : by work of Ngô [Ngô06, Ngô10],
we have that socle(Rȟn∗Q`) ∩ Ǎell

n is given by the generic point ηǍn , union a finite set of points
(66), directly related to the endoscopy theory of SLn.

The purpose of this paper is to prove the following theorem, to the effect that there are no
new supports in Ǎn\Ǎell

n , beyond the ones (66) already known to dwell in Ǎell
n .

Theorem 1.0.2 (SLn socle). Socle(Rȟn∗Q`) ⊆ Ǎelln .

At first sight, the proof of our main Theorem 1.0.2 for the SLn socle runs in parallel with
the one of Theorem 1.0.1 for the GLn socle in [CL16, § 9], where the authors use: Ngô support
inequality over the whole base An; a multi-variable δ-regularity inequality for the Jacobi group
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scheme acting on the Hitchin fibers over the elliptic locus; the identity between the abelian variety

parts of the Jacobian of an arbitrary spectral curve, and the Jacobian of the normalization of

its reduction.

The situation over SLn presents some substantial differences, which we now summarize.

(1) We need to prove the support inequality Theorem 3.4.1(1) over the whole SLn base Ǎn.

This had been known [Ngô10] over Ǎell
n only.

(2) In order to achieve the SLn support inequality, we need to establish the polarizability

Theorem 4.7.2 of the Tate module of the Prym group scheme over Ǎn.

(3) In turn, this required that: we determine the explicit form (38) of a natural polarization

of the Tate module of the Jacobian of an arbitrary spectral curve (see the GLn polarizability

Theorem 3.3.1); we combine the explicit (38) with the identification (47) of the affine parts of

the fibers of the Jacobi and Prym groups schemes. At this juncture, the SLn polarizability result

follows by first exhibiting the Prym Tate module as a natural direct summand of the Jacobi

Tate module, and then by using that pull-back and push-forward (norm) are adjoint for the cup

product.

(4) The δ-regularity inequality over Ǎell
n afforded by (58) is not useful towards proving our

main result Theorem 1.0.2. However, the method of proof is: we use a product formula for the

Hitchin fibration, and the identification (47) of the affine parts of the Jacobi and Prym varieties,

to show that the codimensions of the δ-loci are preserved when passing from the elliptic locus

Aell
n , to the traceless elliptic locus Ǎell

n , so that (58) holds.

(5) We pursue the same line of argument to reach the correct SLn replacement (76) of the

GLn multi-variable δ-regularity inequality used in [CL16, § 9]. This is done by first considering

a multi-variable Hitchin base, then by slicing it using linear weighted conditions on the traces,

and finally by verifying that the codimensions of the δ-loci are un-effected by the slicing.

(6) We fix a minor inaccuracy in [CL16]. See Remark 5.4.3.

As to the structure of the paper, we refer the reader to the summaries at the beginning of

each of the five sections.

2. Preliminaries

This section is a collection of preliminary constructions, results and definitions. Sections 2.1, 2.2

introduce the D-twisted SLn Hitchin morphism ȟn : M̌n→ Ǎn which is the focus of this paper.

The GLn case plays an important role, and is thus discussed as well. Section 2.3 discusses

spectral curves and covers: diagram (2) plays a recurrent role in the paper. Spectral curves

afford an important alternative interpretation of the fibers of the Hitchin morphism via the

Hitchin, Beauville–Narasimhan–Ramanan, Schaub correspondence, which is discussed in § 2.4,

together with some essential properties of the Hitchin morphism and of its fibers: connectivity,

action of the Prym variety (8), irreducible components over the elliptic locus. This leads to a

discussion in § 2.5 of the endoscopic locus for SLn, which can be described with the aid of the

n-torsion in Pic0(C). Section 2.6 discusses Ngô’s notion of δ-regular weak abelian fibration, which

is a very important tool in the study of Hitchin systems, and an essential one for this paper; two

highlights are Ngô support inequality, and its ‘opposite’, the δ-regularity inequality.

Unless otherwise mentioned, we work with varieties, separated schemes of finite type, over

a field of characteristic zero. Let C be an integral and nonsingular curve of genus g and let

D ∈ Picd(C) be a fixed line bundle on C of degree d > 2g− 2. We fix two coprime integers (n, e)
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and a degree e line bundle ε ∈ Pice(C). Recall that the coprimality condition ensures that the
two notions of stability and of semistability coincide, so that the (coarse = fine) moduli spaces
of Higgs bundles we consider are nonsingular.

2.1 GLn and SLn Hitchin fibrations
A standard reference for what follows is [Nit91].

The GLn case. Let M be the moduli space of stable, D-twisted, GLn Higgs bundles of rank
n and degree e on the curve C. Then M is a nonsingular and quasi-projective variety of pure
dimension n2d+ 1. It parameterizes stable pairs (E, φ), where: E is a rank n and degree e vector
bundle on the curve C, and φ : E→ E(D) is a morphism of OC-modules. The notion of stability
is the usual one: for every φ-invariant proper sub-bundle F ⊆ E, the slopes µ := deg /rk satisfy
the inequality µ(F ) < µ(E). There is the projective characteristic morphism

h : M → A :=

n⊕
i=1

H0(C, iD),

sending (E, φ) to the coefficients (−tr(φ),+tr(∧2φ), . . . , (−1)n det(φ)) of the characteristic
polynomial of φ. The elements of A are called characteristics.

The pure-dimensional nonsingular variety M is connected, hence irreducible. One way to see
this, is to couple the fact that the proper characteristic morphism is of pure relative dimension
[CL16, Corollaire 8.2] with the fact (Remark 2.4.4) that the general fiber, being the Jacobian
of a nonsingular and connected spectral curve, is connected. I thank the anonymous referee for
bringing this to my attention.

The moduli space N of rank n and degree e vector bundles on C sits naturally in M (take
φ := 0). It is well known that N is integral, nonsingular, projective and of dimension n2(g−1)+1.
We have inclusions M = T ⊇ T ⊇ N , where T is the total space of the vector bundle of rank
n2[d− (g − 1)] over N with fiber at E given by H0(C,End(E)(D)); see [Nit91, Proposition 7.1
and the formula above it]. Then T is integral, nonsingular, of dimension n2d + 1, and it is a
Zariski-dense open subvariety of M ; see [Nit91, pp. 297–298].

The GLn traceless case. We need the following simple traceless variant of the D-twisted GLn
moduli space: geometrically, it is the pre-image via the morphism h : M → A of the locus
A (0) ⊆ A of traceless characteristics. Let M (0) ⊆M be the moduli space of stable pairs (E, φ)
as above, subject to the additional traceless constraint tr(φ) = 0. By repeating the arguments
in [Nit91] concerning M , but with the traceless constraint, we see that M (0) is a nonsingular
and quasi-projective variety, of pure dimension nd2 + 1 − h0(D). Moreover, we have a natural
isomorphism M ∼= H0(C,D) ×M (0) (see § 4.3, (51)), implying that the nonsingular M (0) is
connected and irreducible.

As above, we have inclusions M (0) = T (0) ⊇ T (0) ⊇ N , with the same properties listed
above, except that we take traceless endomorphisms, and the rank of the corresponding vector
bundle on N equals h0(C,End0(E)(D)) = n2[d − (g − 1)] − h0(D). We have the projective
characteristic morphism

h(0) : M (0)→ A (0) :=

n⊕
i=2

H0(C, iD).

The SLn case. Finally, we introduce the moduli space to which this paper is devoted. Fix a
line bundle ε ∈ Pice(C) on C, of degree e. Let M (0, ε) ⊆ M (0) ⊆ M be the moduli space of

1319

https://doi.org/10.1112/S0010437X17007096 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007096


M. A. de Cataldo

stable pairs (E, φ) as above, subject to tr(φ) = 0 and to det(E) = ε. By repeating the arguments
in [Nit91], but with the traceless and fixed-determinant constraints, we see that the variety
M (0, ε) is nonsingular and quasi-projective, of pure dimension n2d+ 1−h0(D)− g. We have the
projective characteristic map

h(0, ε) : M (0, ε)→ A (0) :=

n⊕
i=2

H0(C, iD).

Let M (0, ε)o be the irreducible (also a connected) component containing the moduli space N(ε)
of stable rank n and degree e bundles on C with fixed determinant ε ∈ Pice(C). It is well known
that the variety N(ε) is integral, nonsingular, projective, and of dimension (n2 − 1)(g − 1). As
above, we have inclusions M (0, ε)o = T (0, ε) ⊇ T (0, ε) ⊇ N(ε), with the same properties listed
above (again, we take traceless endomorphisms).

Note that M (0, ε) = M (0, ε)o and that the isomorphism class of M (0, ε)o is independent of
ε ∈ Pice(C). This can be seen as in the proof of the following simple lemma.

Lemma 2.1.1. The variety M (0, ε) is connected, i.e. M (0, ε) = M (0, ε)o. The variety M (0, ε) is
the fiber over ε ∈ Pice(C) of the determinant map det : M (0)→ Pice(C), as well as the fiber over
(0, ε) ∈ H0(C,D)× Pice(C) of the trace-determinant map tr× det : M → H0(C,D)× Pice(C).

Proof. The map det is equivariant with respect to the action of Pic0(C) given by
L · (E, φ) := (E ⊗L, φ⊗ IdL) on the domain, and by L ·M := M ⊗L⊗n on the target. It follows
that det is smooth of relative dimension dim (M (0, ε)), and that all of its fibers are mutually
isomorphic to each other. The same is true of the restriction of det to the Pic0(C)-invariant
open subvariety T (0) ⊆ M (0). Let Z := M (0)\T (0) be the closed complement. The resulting
map Z → Pic0(C) is also Pic0(C)-invariant, so that all of its fibers have the same dimension,
which must be strictly smaller than dim (M (0, ε)). It is clear that M (0, ε)o is contained in
det−1(ε) = M (0 e) and that, by the smoothness of det, it must constitute a connected component
of such fiber. Since the fiber det−1(ε) is of pure dimension dim (M (0, ε)), the variety Z cannot
contain any other connected component of the smooth fiber det−1(ε). We have thus proved that
det−1(ε) = M (0, ε) = M (0, ε)o, which are thus all connected, for the third one is by construction.
The assertion concerning tr× det is proved in a similar way. 2

2.2 Simplified notation for Hitchin fibrations
We want to simplify our notation, while emphasizing the role of the rank n.

Fix (n, e, ε,D). Denote the characteristic Hitchin morphisms

h : M → A , h(0) : M (0)→ A (0), h(0, e) : M (0, ε)→ A (0)

as follows:

hn : Mn→ An, hn(0) : Mn(0)→ An(0), ȟn : M̌n→ Ǎn := An(0). (1)

We are denoting the same object Ǎn = An(0) in two different ways: we prefer to use the notation
An(0) when dealing with Mn(0), and to use Ǎn when dealing with M̌n.

The projective morphisms hn and ȟn are known as the D-twisted, Hitchin GLn and SLn
fibrations. The morphism hn(0) plays an important auxiliary role in this paper.

We shall also need to consider two several-variable-variants of these Hitchin fibrations, namely
hn• : Mn• → A•, and hn•m•(0) : Mn•m•(0)→ An•m•(0) (cf. §§ 5.1 and 5.3).

An important locus inside the base of the Hitchin fibration is the elliptic locus. In the case
of GLn and SLn we define it as follows.
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Definition 2.2.1 (Elliptic locus). The elliptic loci Aell
n ⊆ An and Ǎell

n ⊆ Ǎn are the respective
Zariski-dense open subvarieties of points such that the associated spectral curves are
geometrically integral.

Clearly, Ǎell
n = Aell

n ∩ Ǎn.

2.3 Spectral covers and the norm map
Let π : V (D)→ C be the surface total space of the line bundle D on C. Let t be the universal
section of π∗D, with zero set on V (D) given by C, viewed as the zero section on V (D). Let
C = Cn ⊆ V (D) × An be the universal spectral curve, that is the relative curve over An with
fiber Ca over a closed point a = (a(1), . . . , a(n)) ∈ An, given by the zero set in V (D) × {a} of
the section Pa(t) := tn + π∗a(1)tn−1 + π∗a(2)tn−2 + · · · + π∗a(n) of the line bundle π∗(nD) on
V (D)×{a}. Note that An is an affine space inside the projective space given by the linear system
|nC| on the standard projective completion PC(OC ⊕ OC(−D)) of V (D), where C sits as the
zero section. Let p : C → An be the natural ensuing morphism. For a ∈ An, the spectral curve
Ca is geometrically connected and maps n : 1 onto Ca := C ⊗ k(a) via the flat finite morphism
pa := p|Ca : Ca→ Ca. The total space of the family C is integral and nonsingular, and the natural
morphism C → C ×An is finite, flat and of degree n.

When we view each spectral curve Ca over a geometric point a of An, as an effective Cartier
divisor on V (D) ⊗ k(a), we may write Ca =

∑s
k=1mk,aCk,a, where each Ck,a is geometrically

integral, each integer mk,a > 0, and the expression is unique. Each curve Ck,a maps finitely
onto Ca; denote the corresponding degree by nk,a. Clearly, n =

∑
kmk,ank,a. By considering the

coefficients a(i) above as the ith symmetric functions of the D-valued roots of the polynomial
equation Pa(t), we obtain the unique factorization Pa(t) =

∏
k P

mk,a
ak (t), where each ak(i) ∈H0(C,

iD), 1 6 i 6 nk, is the ith symmetric function of the D-valued roots of Pa(t) that lie on Ck,a.
In particular, we have that ak is a geometric point of Ank (base of the Hitchin fibration for
(nk, e,D)), and that Ck,a is a spectral curve for the D-twisted GLnk Hitchin fibration.

Let a ∈ An. We need to list the various covers of the curve Ca = C⊗k(a) that arise from the
given spectral cover pa : Ca → Ca. In doing so, we also simplify and abuse the notation a little
bit. We do not assume the point a ∈ An to be a geometric one, so that the intervening integral
curves may not be geometrically integral.

We denote the curve Ca =
∑

kmkΓk, where: each Γk is a spectral curve, zero-set of a section
sk of the line bundle π∗(nkD) on the surface V (D)⊗ k(a); the nk > 0 are uniquely-determined
positive integers, and we have n =

∑
nkmk. Scheme-theoretically, mkΓk is the zero set of the

mkth power smk , and Ca =
∑

kmkΓk is the zero set of the product
∏
k s

mk
k . We denote by

ξ3,k : Γ̃k → Γk the normalization morphism.
We have the following commutative diagram of finite surjective morphisms of curves.∑

k Γk = Ca,red

ρ

((
C̃a,red =

∐
k Γ̃k

ν
33

ξ

--

ξ3
//

p̃

''

∐
k Γk

ξ4
//

88

ξ2

&&
p′′

""

∑
kmkΓk = Ca

p

||

∐
kmkΓk

ξ1
66

p′

��
Ca = C ⊗ k(a)

(2)
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Fact 2.3.1 (The Jacobian of a spectral curve). Let a be a geometric point of An with underlying
Zariski point a ∈ An. Then the identity connected component Pic0(Ca) of the degree zero
component of Pic(Ca) consists of the isomorphism classes of line bundles on the spectral curve
Ca whose restriction to each irreducible component of Ca have degree zero; see [BLR90, § 9.3,
Corollary 13].

Each of the morphisms to Ca in diagram (2) comes with an associated norm morphism
into Pic(Ca), and with an associated pull-back morphism from Pic(Ca). Similarly, if we replace
Pic with Pic0. For the definition and properties of the norm morphism, see [EGAII, § 6.5] and
[EGAIV.4, § 21.5]. For a quick reference for the facts we use in this paper, see also [HP12, § 3].
See also Fact 2.4.5. We have the norm morphism

Np : Pic(Ca) −→ Pic(C), Pic0(Ca) −→ Pic0(Ca). (3)

We also have the norm morphisms Np̃, Np′ and Np′′ , as well as the pull-back morphisms p̃∗, p′∗

and p′′∗; similarly, for each of their kth components.
We end this section with the following consideration that will play a role later.

Fact 2.3.2. Since D has positive degree d > 2g − 2 on C, we have that, on each Γk, the line
bundle (p′′∗nkD)|Γk admits some nontrivial section zk with zero subscheme ζk supported at
a closed finite nonempty subset of Γk. We fix such a section, and we obtain the short exact
sequences of OΓk -modules

0 −→ OΓk(−Γk) −→ OΓk −→ Oζk −→ 0. (4)

2.4 The fibers of the Hitchin fibrations
Let a ∈ An and let p : Ca =: Γ =

∑
kmkΓk → Ca be the corresponding spectral cover, with

n = nΓ = deg (p) =
∑

k nkmk = rkC(p∗OΓ); see (2). Let jk : ηk→ Γ be the finitely many generic
points in Γ, one for each irreducible component mkΓk. A coherent sheaf E on Γ is torsion free if
and only if the natural map E →

∏
k Ek is injective, where Ek = jk∗j

∗
kE ; see [Sch98, Definition 1.1.

and Proposition 1.1]. A torsion-free E is said to have RkΓ(E) = r if its lengths at the generic points
satisfy lk(E) := lOηk (Eηk) = rmk, for every k; such a rank is then a nonnegative rational number,
which is zero if and only if E = 0. A torsion free E may fail to have a well-defined RkΓ(E). When
this rank is well defined, one defines the degree by setting DegΓ(E) := χ(E)− RkΓ(E)χ(OΓ).

Let PΓ =
∏
k P

mk
Γk

be the characteristic equation defining Γ. A torsion-free coherent sheaf E
on Γ corresponds, via p∗, to a pair (E, φ : E → E(D)) on C, where: E = p∗E is locally free of
rank rkC(E) =

∑
k nklk; φ is the twisted endomorphism corresponding to multiplication by t on

E . Then φ has characteristic polynomial Pφ =
∏
k P

lk
Γk

. It follows that Pφ = PΓ if and only if
RkΓ(E) is well defined and equals 1 (this is the content of [Sch98, Proposition 2.1]).

Note that [HP12, § 3.3] introduces, via the Riemann–Roch theorem, a different notion of rank
and degree for every coherent OΓ-module, even for those torsion-free ones for which the notion
of degree given above is not well defined. In this paper, we use the notion of rank and degree
given above [Sch98], not the one in [HP12]. The forthcoming modular description of the fibers of
the Hitchin fibration is given in terms of the notions employed in this paper, and the torsion-free
sheaves on spectral curves that arise are, by necessity, the ones for which the rank is well defined
and it has value one.

Example 2.4.1. Let nC = C0 be the spectral curve for the characteristic polynomial tn, i.e. for
a = 0 ∈ An. See § 2.3 for the notation.
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For 1 6 m 6 n, we consider the curves mC, their structural sheaves OmC and their
ideal sheaves ImC,nC ⊆ OnC . We have χ(OmC) = −

(
m
2

)
d − m(g − 1); see (7). We then have:

RknC(OmC) =m/n; RknC(ImC,nC) = 1−m/n; DegnC(OmC) = (m/2)(n−m)d; DegnC(ImC,nC) =
−(m/2)(n−m)d. We have P (OmC) = PmC , P (ImC,nC) = Pm−nC .

Let E be a stable vector bundle of rank n and degree e on C; let i : C → nC be the natural
map induced by the zero section C → C ⊆ V , followed by the closed embedding C = (nC)red→

nC; we have that RknC(i∗E) = 1 and DegnC(i∗E) = e+
(
n
2

)
d. We have P (i∗E) = PnC = PnC .

It is easy to show that in the context of torsion-free and RkΓ(−) = r coherent sheaves on Γ,
the notion of slope in [Sim94, p. 55] and [Sim95, Corollary 6.9] and the notion of slope DegΓ/RkΓ

yield coinciding notions of slope stability. In turn, this coincides with the notion of slope-stable
Higgs pair (p∗E , φ), with slopes defined by taking degC /rkC . By working with quotients, instead
of with subobjects, the stability condition takes the form (6) below. Define

e′ := e+

(
n

2

)
d. (5)

Remark 2.4.2. As pointed out in [CL16, Remark 4.2], the statement of [Sch98, Theorem 3.1],
which characterizes stability, needs to be slightly modified (cf. (6)).

Remark 2.4.3. Let us point out that one has also to correct some minor inaccuracies at the end
of the proof of [Sch98, Proposition 2.1, p. 303, from the top, to the end of the proof]: the degrees
on the finite maps from the reduced irreducible components of the spectral curve are omitted
from the first two displayed equalities; the inequality on the lengths implying that the rank
should be 1 is not justified. One remedies this minor inaccuracies by means of the discussion at
the beginning of this section involving the role of the characteristic polynomials.

Modular description of the Hitchin fiber Mn,a := h−1
n (a), a ∈ An. The discussion that follows does

not require that one first proves that Mn is irreducible; in particular, it can be used in order
to establish this fact, as it has been done in § 2.1. The Hitchin fiber Mn,a := h−1

n (a), i.e. the
moduli space of stable D-twisted Higgs pairs with rank n and degree e and with characteristic
a ∈ An, is isomorphic to the moduli space of torsion-free sheaves E on the spectral curve Ca with
RkCa(E) = 1 (and hence with associated characteristic polynomial Pφ = PCa) and DegCa(E) = e′,
subject to the following stability condition: for every closed subscheme iZ : Z → Ca of pure
dimension one, for every torsion-free quotient OZ-module i∗ZE

// // EZ with RkZ(EZ) = 1, we

have
DegZ(EZ)

RkC(p∗OZ)
+

1

2
(n− RkC(p∗OZ))d >

e′

n
. (6)

The isomorphism is given by the push-forward morphism pa∗ on coherent sheaves under the
finite, flat, degree n, spectral cover morphism pa : Ca→ Ca = C ⊗ k(a).

Remark 2.4.4. If the spectral curve Ca is smooth, i.e. for a ∈ An general, then the fiber Mn,a is

geometrically connected, for, in view of its modular description, it coincides with Pice
′
(Ca).

Let us record the properties of the norm map that we need.

Fact 2.4.5. Let pa : Ca→ Ca be a spectral cover (of degree n) with norm map Npa : Pic0(Ca)→
Pic0(Ca) and pull-back map p∗a : Pic0(Ca)→ Pic0(Ca). For what follows, see [HP12, Corollary 1.3
and § 3].
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(1) For every L ∈ Pic(Ca), we have Npa(p∗aL) = L⊗n; in particular, Npa is surjective.

(2) Let E be a torsion-free OCa-module of some integral rank RkCa(E) =: r and let L ∈ Pic(Ca);
then det(pa∗(E ⊗ L)) = det(pa∗E)⊗Npa(L)⊗r.

(3) If a ∈ An is general, then Ker(Npa) is a (connected) abelian variety (see § 2.5).

Proposition 2.4.6. The projective, D-twisted, GLn Hitchin morphism hn : Mn → An is
surjective, with geometrically connected fibers, flat of pure relative dimension

dhn =

(
n

2

)
d+ n(g − 1) + 1. (7)

Let a ∈ An. Then Pic0(Ca) acts on the Hitchin fiber Mn,a. If the spectral curve Ca is smooth,

then the corresponding Hitchin fiber Mn,a
∼= Pice

′
(Ca) is smooth, and a Pic0(Ca)-torsor via tensor

product.

Proof. In view of the modular description of Mn,a, it is clear that Fact 2.4.5(2) implies that,
for every a ∈ An, Pic0(Ca) acts on Mn,a via tensor product (degree and stability are preserved),

and that, when Ca is smooth, this action turns Mn,a into the Pic0(Ca)-torsor Pice
′
(Ca). Since

the locus of characteristics in An yielding a smooth spectral curve is open and dense in An,
we conclude that hn is dominant. Since hn is projective, it is also surjective. The same line of
argument implies that the general fiber of hn is geometrically connected. On the other hand,
since An is nonsingular, hence normal, Zariski’s main theorem implies that hn has geometrically
connected fibers. In view of [CL16, § 8, Corollary], the morphism hn : Mn→ An is of pure relative
dimension equal to the arithmetic genus of the spectral curves, which can be easily shown to be
(7). Since Mn and An are nonsingular, the pure-relative-dimension morphism hn is flat. 2

Remark 2.4.7 (No line bundles in the nilpotent cone when (e, n) = 1). The fiber Mn,0 over the
origin does not contain line bundles. In fact, the spectral curve is of the form nC (given by tn = 0
on the surface V (D)), a nonreduced curve with multiple structure of multiplicity n, and with
reduced curve C; it follows that every line bundle on it has degree DegnC a multiple of n; since
the required degree is e′ = e+

(
n
2

)
d and (e, n) = 1, in general, there is no such line bundle (e.g. if

n is odd or if d is even). By way of contrast, if the spectral curve Ca is geometrically integral,
then Pice

′
(Ca) ⊆ Mn,a is an integral, Zariski-dense, open subvariety. Finally, if we arrange for

e′ = 0 (in which case, we may not have the coprimality of the pair (e, n)), one sees that, for every
a ∈ An, the variety Pic0(Ca) is open in Mn,a; see [Sch98, Corollary 5.2].

Modular description of the Hitchin fiber ȟ−1
n (a), a ∈ Ǎn. The description in question is the same

as the modular description given above, except for the added constraint on the determinant
det(pa∗E) = ε, where ε ∈ Pice(C) is the fixed line bundle involved in the definition (1) of M̌n.

Definition 2.4.8 (The Prym variety of a spectral cover). Let a ∈ An and set

Pryma := Ker{Npa : Pic0(Ca)→ Pic0(Ca)}. (8)

In general, the Prym variety Pryma is a disconnected group scheme with finitely many
components; see [HP12] for a description of these components at geometric points of An. We
also call Prym variety the corresponding identity connected component. In a given context, we
shall make it clear which Prym variety we are using.

If a ∈ An is general, then Pryma is geometrically connected (Fact 2.4.5(3)).
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Proposition 2.4.9. The projective, D-twisted, SLn Hitchin morphism ȟn : M̌n → Ǎn is
surjective, with geometrically connected fibers, flat of pure relative dimension

dȟn = dhn − g =

(
n

2

)
d+ (n− 1)(g − 1). (9)

Let a ∈ Ǎn. Then Pryma acts on the Hitchin fiber M̌n,a. If the spectral curve Ca is smooth, then
Pryma is connected, the corresponding SLn Hitchin fiber M̌n,a is smooth, and a Pryma-torsor
via tensor product.

Proof. By Proposition 2.4.6, for every a ∈ Ǎn, the GLn Hitchin fiber Mn,a 6= ∅. There is the
natural morphism

pa := det ◦pa∗ : Mn,a −→ Pice(C). (10)

In view of the modular description of the SLn Hitchin fiber M̌n,a, we have that M̌n,a = p−1
a (ε).

The morphism pa is equivariant for the Pic0(C)-actions given by L ·E := E⊗L on the domain
and by L ·M := M · L⊗n on the target (Fact 2.4.5(2),(1)). It follows that pa is surjective. In
particular, for every a ∈ Ǎn, M̌n,a 6= ∅, so that ȟn is surjective.

By Zariski’s main theorem, in order to check that ȟn has geometrically connected fibers, it
is enough to do so at a general point. We do this next.

Since M̌n,a = p−1
a (ε), Fact 2.4.5(2) implies that Pryma ⊆ Pic0(Ca) is the largest subgroup

acting on M̌n,a. More precisely, if E ∈ M̌n,a and L ∈ Pic0(Ca), then E ⊗ L ∈ M̌n,a if and only if
L ∈ Pryma.

Let a ∈ Ǎn be a traceless characteristic yielding a nonsingular spectral curve Ca. Since Mn,a

is a Pic0(Ca)-torsor by Proposition 2.4.6, we deduce that M̌n,a is s a Pryma-torsor. For a ∈ Ǎn
general, Pryma is geometrically connected by Fact 2.4.5(3), so that so is the general fiber M̌n,a,
and, as anticipated, ȟn has thus geometrically connected fibers.

Since all fibers of ȟn are now known to be geometrically connected, so is the fiber M̌n,a

corresponding to a smooth spectral curve. Since such a fiber is a Pryma-torsor, the Prym variety
Pryma is also geometrically connected.

Finally, since the morphism pa is flat, and the morphism hn is of pure dimension (7), all the
fibers of ȟn are of pure dimension (7) minus g, and hence (9) holds. The flatness of ȟn follows
by this and by the smoothness of M̌n and of Ǎn. 2

2.5 Endoscopy loci of the Hitchin SLn fibration
Let a be a geometric point of Aell

n , so that the spectral curve Ca is (geometrically) integral. The
D-twisted, GLn Hitchin fiber Mn,a is also integral: it is isomorphic to the compactified Jacobian
of the integral locally planar spectral curve, parameterizing rank one and degree e′ torsion-free
coherent sheaves on it. In particular, the regular part Pice

′
(Ca) ∼= M reg

n,a ⊆ Mn,a of this fiber is
integral, Zariski open and dense in the whole fiber, and it is a Pic0(Ca)-torsor.

Let a be a geometric point of Ǎn. Then the D-twisted, SLn Hitchin fiber M̌n,a = p−1
a (ε)

(cf. (10)), and it is (geometrically) connected. Since the morphism ȟn is flat and Ǎn is nonsingular,
every fiber of ȟn is a local complete intersection (l.c.i).

Assume, in addition, that a is a geometric point of Ǎell
n . By the Pic0(C)-equivariance of pa,

the regular part of M̌n,a satisfies M̌ reg
n,a = M reg

n,a ∩ M̌n,a, and it is Zariski open and dense. Since
the fiber M̌n,a is a l.c.i., we have that, being smooth on a Zariski-dense open subset, it is also
reduced. The regular part M̌ reg

n,a is made of line bundles E on the spectral curve with pa(E) = ε.
It is clear that M̌ reg

n,a is then a Pryma-torsor.
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Fact 2.5.1. Let a ∈ Ǎell
n . The discussion above implies that the number of irreducible components

of the pure dimensional and reduced M̌n,a coincides with the number of connected components

of Pryma.

For every a ∈ An, the group of connected components π0(Prima) is described in [HP12,

Theorem 1.1]. The locus Ǎn,endo ⊆ Ǎn over which Pryma is disconnected is called the endoscopic

locus of the SLn Hitchin fibration and it is described in [HP12, § 5, especially Lemmas 5.1; 7.1]:

Ǎn,endo =
⋃
Γ

Ǎn,Γ, (11)

where Γ ranges over the finite set of cyclic subgroups of Pic0(C)[n] of prime number order. Each

Ǎn,Γ ⊆ Ǎn is a geometrically integral subvariety. The codimension of each Ǎn,Γ can be computed

in the same way as in the proof of [HP12, Lemma 7.1], whose proof in the case D = KC , remains

valid for D: we need the knowledge of dǍn (78), obtained by the Riemann–Roch theorem, and

the formula directly above [HP12, Lemma 5.1]. The resulting value

codimǍn
(Ǎn,Γ) = 1

2(n− ν){(n+ ν)d+ [d− 2(g − 1)]}, (ν := n/#(Γ)), (12)

is strictly positive in view, for example, of our assumption d > 2(g − 1).

The subvarieties Ǎell
n,Γ := Ǎn,Γ ∩ Ǎell

n ⊆ Ǎell
n are nonsingular and mutually disjoint [Ngô06,

Proposition 10.3]. By construction, the number

o(Γ) := #(π0(Pryma)) (13)

of connected components of Pryma is independent of a ∈ Ǎell
n,Γ.

A point a ∈ Ǎell
n,Γ if and only if the spectral cover pa : Ca → C has the property that the

induced morphism from the normalization of the integral spectral curve p̃a = C̃a → C factors

through the étale cyclic cover of C associated with Γ (cf. [HP12, Proof of Theorem 5.3]).

The locus

Ǎell
n,endo =

∐
Γ

Ǎell
n,Γ (14)

is the G = SLn endoscopic locus introduced by Ngô in [Ngô06, § 10] for D-twisted, G Hitchin

fibrations (G reductive). It determines the socle Socle(Rȟn∗Q`) ∩ Ǎell
n over the elliptic locus; see

§ 4.9.

2.6 Weak abelian fibrations and δ-regularity

The notion of δ-regular weak abelian fibration has been introduced in [Ngô10] as an encapsulation

of some important features of the Hitchin fibration over the elliptic locus: presence of the action

of a commutative smooth group scheme with affine stabilizers, polarizability of the associated

Tate module, and δ-regularity of the group scheme. See also [Ngô11] for an introduction to this

circle of ideas.

In this section, let g : J → A be a smooth commutative group scheme over an irreducible

variety A such that g has geometrically connected fibers.

Chevalley devissage. References for what follows are, for example, [Mil, Theorem 10.25,

Propositions 10.24, 10.5 (and its proof), Proposition 10.3] and [Con02].
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Let a be a geometric point on A with underlying point a Zariski point a ∈ A. Let Ja be
the fiber of J at a. There is a canonical short exact sequence of commutative connected group
schemes over the residue field of a:

0→ Jaff
a → Ja→ Jab

a → 0, (15)

where Jaff
a ⊆ Ja is the maximal connected affine linear subgroup of Ja, and Jab

a is an abelian
variety. The dimensions of these varieties depend only on the Zariski point a ∈ A, and are denoted
by daff

a (J) and dab
a (J), respectively. Clearly,

da(J) = daff
a (J) + dab

a (J). (16)

The notion of δ-regularity. The function

δ : A −→ Z>0, a 7→ δa := daff
a (17)

is upper semicontinuous (jumps up on closed subsets); see [SGA3.II, X, Remark 8.7]. We have
the disjoint union decomposition

A =
∐
δ>0

Sδ, Sδ = Sδ(J/A) := {a ∈ A | δa = δ} (18)

of A into locally closed subvarieties of A. We call Sδ the δ-locus of J/A.

Definition 2.6.1 (δ-regularity). We say that g : J → A is δ-regular if

codimA(Sδ) > δ, ∀δ > 0, (19)

where one requires the inequality to hold for every irreducible component of Sδ.

The following lemma is an immediate consequence of the upper-semicontinuity of the function
δ and of the identity (16).

Lemma 2.6.2. A group scheme g : J → A as above is δ-regular if and only if either of the two
following equivalent conditions hold.

(1) For every closed irreducible subvariety Z ⊆ A, let δZ be the minimum value of δ on Z (it is
attained at general points of Z, as well as at the generic point of Z); then codimA(Z) > δZ .

(2) For every point a ∈ A, let da := dim {a} and let dA := dim(A); then

dab
a (J) > da(J)− dA + da. (20)

The Tate module TQ`(J) and the notion of its polarizability. Let g : J → A be as above and let

dg := dim (J)−dim (A) be the pure relative dimension of g. The Tate module of J is the Q`-adic
sheaf [Ngô10, § 4.12]

TQ`(J) := R2dg−1g!Q`(dg). (21)

Its stalk at any geometric point a of A is given by the Tate module TQ`(Ja), i.e. the inverse limit,

with respect to i ∈ N, of the `i-torsion points on Ja, tensored with Q` over Z`. The Chevalley
devissage at the stalks yields the natural short exact sequence

0→ TQ`(J
aff
a )→ TQ`(Ja)→ TQ`(J

ab
a )→ 0. (22)
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The Tate module TQ`(J) is said to be polarizable if it admits a polarization, i.e. an alternating
bilinear pairing

ψ : TQ`(J)⊗Q`
TQ`(J) −→ Q`(1), (23)

such that, for every geometric point a of A, we have that the kernel of ψa is exactly TQ`(J
aff
a ). In

this case, the pairings ψa descend to nondegenerate, alternating, bilinear parings on the TQ`(J
ab
a ).

Note that by general principles (cf. [SGA7.I, VIII, Corollary 4.10]), the alternating bilinear
pairings we consider in this paper are automatically trivial on the ‘affine’ part, and do descend
to the ‘abelian’ part. We do verify this fact along the way to proving the key fact that, in the
cases we deal with, they in fact descend to nondegenerate pairings.

Affine stabilizers. Let h : M → A be a morphism of varieties and let J → A be a group scheme
acting on M/A. We say that the action has affine stabilizers if for every geometric point m of
M , we have that the stabilizer subgroup Stm ⊆ Jh(m) is affine.

δ-regular weak abelian fibrations. See [Ngô10, Ngô11]. Let h : M → A ← J : g be a pair of
morphisms of varieties, where g is as in the beginning of this section (smooth commutative
group scheme, with geometrically connected fibers over an irreducible A), h is proper, and J/A
acts on M/A. We denote this situation simply by (M,A, J); the context will make it clear which
morphisms h, g are being used.

Definition 2.6.3 (Weak abelian fibration). We say that (M,A, J) is a weak abelian fibration if
g and h have the same pure relative dimension, the Tate module TQ`(J) is polarizable and

the action has affine stabilizers. (δ-regular weak abelian fibration) A weak abelian fibration
(M,A, J) is said to be δ-regular if g : J → A is δ-regular as in Definition 2.6.1 (equation (19)),
or equivalently as in Lemma 2.6.2 (equation (20)).

Ngô support inequality. The following is a remarkable, and remarkably useful, topological
restriction on the dimensions of the supports appearing in the context of weak abelian fibrations.
If a ∈ A, then da := dim {a} is the dimension of the closed subvariety of A with generic point
a. For the notion of socle, see § 1. The celebrated Ngô support theorem [Ngô10, Theorem 7.2.1]
is a more refined restriction on the geometry of the supports, and it is proved also by using the
support inequality.

Theorem 2.6.4 (Nĝo’s support inequality [Ngô10, Theorem 7.2.2]). Let (M,A, J) be a weak
abelian fibration with M and A nonsingular and with h projective of pure relative dimension dh.
If a ∈ Socle(Rh∗Q`), then

dh − dA + da > dab
a (J). (24)

Given that we are assuming dh = dg, we may re-formulate (24) as follows via (16):

daff
a (J) > codim({a}). (25)

3. The GLn weak abelian fibration

This section is devoted to a detailed study of the δ-regular weak abelian fibration (Mn, An, Jn),
arising from the action of the Jacobi group scheme Jn/An, associated with the family of spectral
curves of the GLn Hitchin fibration Mn/An. Section 3.1 introduces the Jacobi group scheme
Jn/An and its action on Mn/An: its fibers are the Jacobians of the spectral curves. Section 3.2
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shows that the stabilizers for this action are affine. I am not aware of an explicit reference in
the literature for this result over the whole base An; [Ngô10, 4.15.2] deals with a suitable open
proper subset of An, and for every G reductive. Section 3.3 is devoted to the lengthy proof that
the Tate module associated with Jn/An is polarizable over the whole base An. Again, I am not
aware of an explicit reference in the literature for this result over the whole base An; the standard
reference for this important-for-us technical fact is [Ngô10, § 4.12], which deals with the situation
over the elliptic locus Aell

n ⊆ An. Following this preparation, § 3.4 contains the main result of this
section, namely Theorem 3.4.1, to the effect that (Mn, An, Jn) is a weak abelian fibration that is
δ-regular over the elliptic locus Aell

n ; this affords the support inequality over the whole An, and
the δ-regularity inequality over the elliptic locus Aell

n . We need some of these explicit details of
this GLn, especially in connection with nonreduced spectral curves, in view of our main Theorem
1.0.2 on the SLn socle.

3.1 The action of the Jacobi group scheme Jn
For what follows, see [CL16, § 5]. Let Jn→ An be the identity connected component of the degree
zero component of the relative Picard stack PicC/An . This is a connected, smooth, commutative

group scheme over An, whose fiber Jn,a over a point a ∈ An is Pic0(Ca); see Fact 2.3.1 for a
description of this group. In particular, the structural morphism gn : Jn→ An is of pure relative
dimension, call it dgn , the arithmetic genus of the spectral curves, which coincides with the pure
relative dimension dhn (7) of hn : Mn→ An, i.e. we have

dgn = dhn . (26)

The group scheme Jn/An acts on the Hitchin fibration Mn/An; see Proposition 2.4.9.

3.2 Affine stabilizers for the action of the Jacobi group scheme
Proposition 3.2.1. The action of Jn/A on Mn/An has affine stabilizers.

Proof. Let a be a geometric point of An and let E ∈Mn,a. Recall that RkCa(E) = 1 means that,
with the notation of § 2.3, if Ca =

∑
kmkΓk, with mk > 1 for every k, then the length of E at the

stalk of the generic point of Γk is mk, for every k. Let ξ : C̃a,red =
∐
k Γ̃k → Ca be the morphism

from the normalization of Ca,red (cf. (2)). Let 0→ Tors(ξ∗E)→ ξ∗E → ξ∗E/Tors(ξ∗E) =: E → 0

be the canonical devissage of the torsion of ξ∗E on the nonsingular projective curve
∐
k Γ̃k.

Let L ∈ Pic0(Ca). Assume that L stabilizes E . Then ξ∗L stabilizes every term in the canonical
torsion devissage of ξ∗(E) ⊗ ξ∗L. In particular, ξ∗L stabilizes the vector bundle E , which has

rank mk on each Γ̃k. By considerations of determinants, we see that ξ∗L ∈
∏
k Pic0(Γ̃k)[mk], a

finite group. The natural morphism ξ∗ : Pic0(Ca,red)→ Pic0(C̃a) =
∏
k Pic0(Γ̃k) is surjective, with

affine (connected) kernel (cf. [BLR90, § 9]). It follows that the stabilizer of E is an extension of
a finite group by an affine subgroup, so that it is affine. 2

3.3 The Tate module of the Jacobi group scheme is polarizable
We refer to § 2.6 for the terminology. Let gn : Jn → An be the structural morphism for Picard.
The Tate module is the Q`-adic sheaf (22) TQ`(Jn) := R2dhn−1gn!Q`(dhn). If a is a geometric
point of An, then the Chevalley devissage yields the natural short exact sequences

0→ TQ`(J
aff
n,a)→ TQ`(Jn,a)→ TQ`(J

ab
n,a)→ 0. (27)

Note that: (i) dimQ`
TQ`(J

ab
n,a) = 2 dim Jab

n,a; (ii) dimQ`
TQ`(J

aff
n,a) 6 dim Jaff

n,a, and that the strict

inequality can occur: this is due to the fact that the affine part Jaff
n,a is an iterated extension of the
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additive and of the multiplicative group Ga and Gm [BLR90, § 9], and only the latter contribute
to the Tate module.

The goal of this section is to prove the following polarizability result, which has been proved
over the elliptic locus Aell

n in [Ngô10], and is stated implicitly over the whole base An and then
used in [CL16, § 9].

Theorem 3.3.1. The Tate module TQ`(Jn) on An is polarizable.

Proof. Let p : C → An be the family of spectral curves: it is proper, flat, with geometrically
connected fibers, with nonsingular total space, and with nonsingular general fiber. As in [Ngô10,
§ 4.12], the pairing is defined by constructing it over the strict henselianization of the local ring of
any Zariski point a ∈ An, for the construction yields a canonical outcome. We denote these new
shrunken families by p : C→ A, g : J → A. For a coherent sheaf F on C, set ∆(F ) := det(Rp∗F ),
where we are taking the determinant of cohomology [Del87, Sou92, especially, § 1.4] and the
result is a graded line bundle on A. If F is OA-flat, then the degree of this graded line bundle is
the Euler characteristic of F along the fibers Ca. The Weil pairing construction associates with
L,M ∈ Pic0(C/A) the graded line bundle on A given by the formula

〈L,M〉C/A := P (L,M) := ∆(L⊗M)⊗∆(OA)⊗∆(L)∨ ⊗∆(M)∨. (28)

Note that both of the terms defined by (28) make sense for any pair of coherent sheaves on C.
However, we shall use 〈−,−〉 when dealing with line bundles, whereas we shall use P (−,−) also
for other coherent sheaves, and hence the two distinct pieces of notation.

Let L,M ∈ Pic0(C/A)[`i] be `i-torsion line bundles. The formalism of the determinant of

cohomology yields two distinguished isomorphisms iL, iM : 〈L,M〉⊗`iC/A −→ OS whose difference

εL,M is an `ith root of unity in the ground field and which depends only on the isomorphism
classes of L and of M . By taking inverse limits with respect to i, and then by tensoring with Q`,
we obtain a pairing, let us call it the Tate–Weil pairing

TW : TQ`(J)⊗Q`
TQ`(J) −→ TQ`(Gm) = Q`(1), {Li,Mi}i∈N 7→ {εLi,Mi}i∈N ∈ Z`(1). (29)

The Weil and the Tate–Weil pairing are compatible with base change.
Let a be a geometric point of A. Consider the diagram (2) of maps of curves, and extract

the following morphisms:

ξ =
∐
k ξk :

∐
k Γ̃k

ξ3=
∐
k ξ3,k //

∐
k Γk

ξ4=
∐
k ξ4,k //

∑
kmkΓk, (30)

ξ : C̃a,red
ν−→ Ca,red

ρ−→ Ca, ξ =
∐
k

ξk :
∐
k

Γ̃k
ν=

∐
k νk−→

∑
k

Γk
ρ−→
∑
k

mkΓk. (31)

Claim. Let L,M ∈ Ja = Pic(
∑

kmkΓk). Then

〈L,M〉∑
kmkΓk =

⊗
k

〈ξ∗4,kL, ξ∗4,kM〉
⊗mk
Γk

=
⊗
k

〈ξ∗kL, ξ∗kM〉
⊗mk
Γ̃k

. (32)

In order to prove this claim, we first list the three short exact sequences below.
The ideal sheaf of Ca in OV (D)⊗k(a) is locally generated by the product

∏s
k=1 s

mk
k (cf. § 2.3) of

powers of sections of the line bundle π∗D on the surface V (D)⊗ k(a). Fix any index 1 6 ko 6 s;
fix any sequence {µk}sk=1, with 0 6 µk 6 mk for every k, with 1 6 µko , and with

∑
k µk > 2
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(these conditions are simply to ensure that (33) below is meaningful as written). We have the
following system of short exact sequences on the curve

∑
k µkΓk (see [Rei97, Lemma 3.10], for

example)

0 −→ OΓko
(−Γko) −→ O∑

k µkΓk −→ O(µko−1)Γko+
∑
k 6=ko µkΓk −→ 0. (33)

We have the short exact sequences (4) on the curves Γk

0 −→ OΓk(−Γk) −→ OΓk −→ Oζk −→ 0. (34)

We have a natural short exact sequence on
∐
k Γk arising from the normalization map ξ3

0 −→ O∐
k Γk −→ O∐

k Γ̃k
−→ Σ −→ 0, (35)

where Σ is supported at finitely many points on
∑

k Γk.
Since Σ is supported at finitely many points, it follows from the definition that, for every

pair of line bundles L,M on the curve
∑

k Γk, we have that P (Σ ⊗ L,Σ ⊗M) is canonically
isomorphic to the trivially trivialized, trivial line bundle on the spectrum of the residue field of
a; see [Ngô10, proof of Lemma 4.12.2]. We call this circumstance the P -triviality property of Σ.
The same holds true for P (Oζk ⊗ L,Oζk ⊗M), i.e. we have the P -triviality property of ζk.

By what we have said above, and by using the multiplicativity property of the determinant
of cohomology with respect to short exact sequences, and hence of the operation P (−,−), we see
that the second equality of the claim (32) follows from the short exact sequence (35) on

∐
k Γk,

by using the P -triviality property of Σ, and the fact that ξ∗k = ξ∗3,k ◦ ξ∗4,k; in fact, we get, the
identity

P (ξ∗3,kξ
∗
4,k, ξ

∗
3,kξ

∗
4.kM) = P (ξ∗4,kL, ξ

∗
4,kM)⊗ P (Σ⊗ ξ∗4,kL,Σ⊗ ξ∗4,kM) = P (ξ∗4,kL, ξ

∗
4,kM).

(N.B. there is no need for the exponents mk, for this second equality in (32).)
The first equality of the claim (32), and here the exponents mk are essential, follows in the

same way (by using the P -triviality property for ζk) from (33) and (34) by means of a simple
descending induction on the multiplicities µk 6 mk, based on the following equalities (where
we denote line bundles and their restrictions in the same way, and we instead add a subfix to
P (−,−))

P∑
k µkΓk(L,M) = P(µko−1)Γko+

∑
k 6=koµkΓk(L,M)⊗ PΓko

(L− Γko ,M − Γko),

PΓko
(L− Γko ,M − Γko) = PΓko

(L,M)⊗ Pζko (L,M) = PΓko
(L,M).

We now use the just-proved claim (32) to verify that the Tate–Weil pairing TW (29) has, at
every geometric point a of An, kernel given precisely by the ‘affine part’ TQ`(J

aff
n,a), so that it

descends to a nondegenerate pairing on TQ`(J
ab
n,a).

By [BLR90, § 9.3, Corollary 11], we have the canonical short exact sequence

0 −→ Ker ξ∗ −→ Jn,a = Pic0

(
Ca =

∑
k

mkΓk

)
−→ Pic0(C̃a,red) =

∏
k

Pic0(Γ̃k) −→ 0, (36)

with quotient an abelian variety and with affine and connected Ker ξ∗, an iterated extension of
groups of type Ga and Gm. It follows that the above short exact sequence is the ‘abelian-by-affine’
Chevalley devissage (§ 2.6) of Jn,a. By passing to Tate modules, we get the short exact sequence

0 −→ TQ`(Ker ξ∗) = TQ`(J
aff
n,a) −→ TQ`(Jn,a) −→ TQ`(J

ab
n,a) =

⊕
k

TQ`(Pic0(Γ̃k)) −→ 0. (37)
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In view of (32), and of the definition of the Tate–Weil pairing via the Weil pairing, we see
that the kernel of the Tate–Weil pairing contains TQ`(Ker ξ∗), so that the Tate–Weil pairing

TW := TW ∑
kmkΓk descends to a paring TW ab on the abelian part TQ`(J

ab
n,a) where, again in

view of (32), it is the direct sum of the Tate–Weil pairing TW
Γ̃k

on the individual nonsingular

projective curves Γ̃k, multiplied by the integer mk

TW ab =
∑
k

mkTW
Γ̃k
. (38)

Each TW
Γ̃k

is nondegenerate: in fact, it is the Tate–Weil pairing on the Tate module of the
Jacobian of a nonsingular projective curve over an algebraically closed field, which, in turn, can
be identified with the cup product on the first étale Q`-adic cohomology group of the curve; see
[Mil80, ch. V, Remark 2.4(f), and references therein]. It follows that their mk-weighted direct
sum TW ab is nondegenerate as well. 2

Remark 3.3.2. [BLR90, § 9.2, Theorem 11] gives a precise structure theorem for the Jacobians
of curves which immediately yields the following description of their abelian variety parts. Let
a be a geometric point of An and let Ca =

∑
kmkΓk be corresponding spectral curve. Then we

have natural isomorphisms of abelian varieties

Pic0(Ca)ab = Pic0(Ca,red)ab =
∏
k

Pic0(Γk)
ab =

∏
k

Pic0(Γ̃k). (39)

3.4 δ-regularity of the action of the Jacobi group scheme over the elliptic locus
Theorem 3.4.1. The triple (Mn, An, Jn) is a weak abelian fibration and its restriction over Aell

n

is a δ-regular weak abelian fibration. In particular, we have the following.

(i) If a ∈ Socle(Rhn∗Q`), then

dhn − dAn + da > dab
a (Jn) (Ngô support inequality). (40)

(ii) If a ∈ Aell
n , then

dab
a (Jn) > dhn − dAn + da (GLn δ-regularity inequality). (41)

Proof. The two morphisms hn and gn have the same pure relative dimension (26). The stabilizers
of the action are affine by Proposition 3.2.1. The Tate module is polarizable by Theorem 3.3.1.
It follows that the triple is indeed a weak abelian fibration. Since hn is projective and Mn

is nonsingular, (40) follows from Ngô support inequality Theorem 2.6.4. The inequality (41)
is known as ‘Severi’s inequality’; see [CL16, Theorem 7.3] for references; see also [FGvS99, the
paragraph following Theorem 2 on p. 3]. The δ-regularity assertion (41) then follows from Lemma
2.6.2, equation (20). 2

4. The SLn weak abelian fibration

Section 4 is devoted to proving Theorem 4.8.1, i.e. the SLn counterpart to Theorem 3.4.1 for GLn.
Section 4.1 introduces the group scheme J̌n/Ǎn of identity components of the Prym group scheme,
which, in turn, has fibers (8) that become disconnected precisely over the endoscopic locus (11).
Section 4.2 establishes the precise relation between the abelian-variety-parts of the fibers of the
Jacobi group scheme Jn/An, and the ones of the Prym-like group scheme J̌n/Ǎn; this is a key step
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in establishing the δ-regularity of J̌n over the elliptic locus. Section 4.3 establishes the expected
product structure of Mn, with factors Mn(0) (traceless Higgs bundles) and H0(C,D) (space of
possible traces); this is another key step towards the δ-regularity above. These factorizations
are further pursued in § 4.4, where one factors Jn in the same way. Section 4.5 establishes the
δ-regularity of J̌n/Ǎn over the elliptic locus Ǎell

n . Section 4.6 studies in detail the norm morphism
associated with arbitrary (not necessarily irreducible, nor reduced) spectral curves. Section 4.7
establishes the key polarizability of the Tate module of J̌n over the whole base Ǎn by using:
the explicit form (38) of the polarization of the Tate module of Jn; the explicit form (61) of
the norm map; a formal reduction of the SLn polarizability result to the classical fact that, at
the level of Tate modules of Jacobians, the maps induced by the pull-back and by the norm are
adjoint for the Tate–Weil pairing. Section 4.8 is devoted to binding-up the results of this section
by establishing Theorem 4.8.1, i.e. the SLn counterpart to Theorem 3.4.1 for GLn, to the effect
that (M̌n, Ǎn, J̌n) is a weak abelian fibration which is δ-regular over the elliptic locus; this yields
the support inequality over the whole base Ǎn, and the δ-regularity inequality over the elliptic
locus Ǎell

n . Section 4.9 is devoted to spelling-out the supports for the SLn Hitchin fibration over
the elliptic locus Ǎell

n ; the results over the elliptic locus in § 4.9, and for every G, are due to Ngô
[Ngô10].

4.1 The action of the Prym group scheme J̌n
Let p : C → An be the family of spectral curves as in § 2.3. The norm morphism (3) defines a
morphism of group schemes over An (cf. [HP12, Corollary 3.12], for example)

Np : Jn −→ Pic0(C)×An, L 7→ det(p∗L)⊗ [det(p∗(OC))]−1. (42)

The An-morphism p : C→ An induces the morphism p∗ : Pic(C)×A→ Jn of group schemes
over An. One verifies that Np(p

∗(−)) = (−)⊗n; see Fact 2.4.5(1). In particular, the morphism Np

is surjective. The differential of the composition Np◦p∗ along the identity section is multiplication
by n, so that the morphism Np is smooth. The kernel Ker(Np) of Np is a closed subgroup scheme
that is smooth over An. We call it the Prym group scheme. Its fibers are precisely the Prym
varieties (8). Then, by [SGA3.I, Exp VI-B, Theorem 3.10], there is the open subgroup scheme
over An

J ′n := (Ker(Np))
0 (43)

of the kernel, which (set-theoretically) is the union of the identity connected components of the
fibers of this kernel group scheme over An. Since this whole construction is compatible with
arbitrary base change, the fiber J ′n,a over a ∈ An is precisely the identity connected component
of the kernel of the norm morphism associated with the spectral cover Ca→ Ca = C ⊗ k(a).

We restrict this whole picture to the SLn Hitchin base Ǎn = An(0) ⊆ An and set

J̌n := J ′n|Ǎn , (44)

which we also call the Prym group scheme.
Then J̌n/Ǎn is a smooth connected group scheme with connected fibers over Ǎn that acts

on Mn(0)/An(0) (trace zero) preserving M̌n/Ǎn (trace zero and fixed determinant ε); see Fact
2.4.5(3) and the proof of Proposition 2.4.9. It follows that J̌n/Ǎn acts on M̌n/Ǎn.

According to Proposition 2.4.9, on each fiber M̌n,a, this action is free on the open part
given by those rank one torsion-free sheaves which are locally free. The Hitchin fibers M̌n,a

corresponding to nonsingular spectral curves are J̌n,a-torsors via this action.
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4.2 The abelian variety parts
Let a be a geometric point of An (Ǎn, respectively). Recalling the Chevalley devissage § 2.6 for
Jn,a (J̌n,a, respectively), we set, by taking dimensions as varieties over the algebraically closed
residue field of a,

dab
a (Jn) := dim(Jab

n,a), ďab
a (J̌n) := dim(J̌ab

n,a);

these dimensions depend only on the Zariski point underlying a.

Lemma 4.2.1. For every point a ∈ Ǎn, we have

dab
a (J̌n) > dab

a (Jn)− g. (45)

Proof. Since Jaff
n,a is the biggest affine normal connected group subscheme inside Jn,a, we must

have daff
a (J̌n) 6 daff

a (Jn). Since dim (Jn,a) = dim (J̌n,a) + g, the conclusion follows. 2

In fact, as Proposition 4.2.2 below shows, the inequality of Lemma 4.2.1 is an equality.

Proposition 4.2.2. For every geometric point a of Ǎn, we have that:

dab
a (J̌n) = dab

a (Jn)− g. (46)

More precisely, we have

J̌aff
n,a = Jaff

n,a ⊆ Jn,a, (47)

Jn,a/J̌n,a ∼= Jab
n,a/J̌

ab
n,a, (48)

and a natural isogeny
Jab
n,a/J̌

ab
n,a −→ Pic0(Ca). (49)

Proof. Recall that we have the surjective norm morphism Np : Jn,a = Pic0(Ca)→ Pic0(Ca) and

that J̌n,a := (Ker(Np))
0. We thus obtain the natural isogeny Jn,a/J̌n,a→ Pic0(Ca). In particular,

Jn,a/J̌n,a is an abelian variety of dimension g.
In view of the Chevalley devissage construction, we have the commutative diagram of short

exact sequences of morphisms

0 // J̌aff
n,a

//

u

��

J̌n,a //

v

��

J̌ab
n,a

//

w

��

0

0 // Jaff
n,a

// Jn,a // Jab
n,a

// 0,

(50)

where: v is the natural inclusion; u, also an inclusion, arises from the fact that in the Chevalley
devissage, Jaff

n,a is the biggest connected affine subgroup of Jn,a, so that it contains all other

connected affine subgroups of Jn,a, so that it contains J̌aff
n,a; w is the natural map induced by the

commutativity of the left-hand square.
The snake lemma yields a natural exact sequence:

0→ Keru→ Ker v→ Kerw→ Cokeru→ Coker v→ Cokerw→ 0,

which, in view of the fact that u, v are injective, reduces to

0→ Cokeru/Kerw→ Jn,a/J̌n,a→ Jab
n,a/(J̌

ab
n,a/Kerw)→ 0.

Since Kerw sits inside the abelian variety J̌ab and inside the affine Cokeru, it is a finite group.
Since Cokeru/Kerw is affine, connected, and sits inside the abelian variety Jn,a/J̌n,a, it is

trivial. It follows that Cokeru = Kerw, and since Cokeru is connected, so is the finite Kerw
which is thus trivial. In particular, Cokeru is also trivial and J̌aff

n,a = Jaff
n,a.

It follows that Jn,a/J̌n,a = Jab
n,a/J̌

ab
n,a, and we are done. 2

1334

https://doi.org/10.1112/S0010437X17007096 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007096


A support theorem for the Hitchin fibration: the case of SLn

4.3 Product structures
Lemma 4.3.1. There is the following cartesian diagram with q, q′ isomorphisms.

H0(C,D)×Mn(0)

Id×hn(0)
��

q′

∼
//Mn

hn
��

H0(C,D)×An(0)
q

∼
// An

(51)

Proof. The map q′ is defined by the assignment (σ, (E, φ)) 7→ (E, φ + σIdE). Since φ preserves
a subsheaf of E if and only if φ + σIdE does the same, we have that q′ preserves stability. The
inverse assignment to q′ is (E, φ) 7→ (tr(φ)/n, (E, φ− (tr(φ)/n)IdE)).

Let p(M)(t) = det(tId−M) =
∑n

i=0(−1)imit
n−i be the characteristic polynomial of an n×n

matrix M . Let s be a scalar. Then a simple calculation shows that

p(M + sId)(t) =

n∑
i=0

(−1)i
[
mi +

i−1∑
j=1

(
n− i+ j

j

)
mi−js

j +

(
n

i

)
si
]
tn−i, (52)

where we have broken up the summation in square bracket to emphasize that the coefficients of
tn−i is linear in mi, and to identify the coefficient of si.

The shape of q is dictated by the desire to have (51) commutative and by the relation (52)
between the characteristic polynomial of φ and the one of φ + σIdE . We thus define q by the
assignment (N.B. there is no u1, so j 6= i− 1, hence the upper bound j = i− 2 in the summation
below)

(σ, u2, . . . un) 7−→
(
nσ,

{
ui +

i−2∑
j=1

(
n− i+ j

j

)
σjui−j +

(
n

i

)
σi
}n
i=2

)
. (53)

For example, q : (σ, u2, u3) 7→ (3σ, u2 + 3σ2, u3 + u2σ + σ3). A simple recursion, based on the
fact that ui appears linearly in the component labelled by i, shows that the assignment above
can be inverted and that q is an isomorphism.

It is immediate to verify that the square diagram is commutative. Since the morphisms q
and q′ are isomorphisms, the diagram is cartesian. 2

Lemma 4.3.2. There is a natural commutative diagram of proper morphisms with cartesian
square

Pic0(C)× M̌n

pr1

��

r //

ȟn◦ pr2 ''

Mn(0)

det

��

hn(0)xx
Ǎn = A(0)

Pic0(C)
r′ // Pice(C)

(54)

with r and r′ proper Galois étale covers with Galois group the finite subgroup Pic0[n] ⊆ Pic0(C)
of line bundles of order n.

Proof. The map r is defined by the assignment (L, (E, φ)) 7→ (E ⊗ L, φ⊗ IdL). Since M̌n is the
closure of the loci of stable Higgs pairs with stable underlying vector bundle, it is clear that,
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as indicated in (54), r maps into the closure Mn(0) of the loci of stable Higgs pairs with stable
underlying vector bundle.

The map r′ is defined by the assignment (L 7→ ε ⊗ L⊗n) (rem: ε ∈ Pice(C) is the fixed line
bundle used to define M̌n). The map r′ is finite, étale and Galois, with Galois group the subgroup
Pic0(C)[n] ⊆ Pic(C) of n-torsion points.

By construction, (54) is commutative. We need to show that the square is cartesian.
Let F be the fiber product of r′ and det. Since r′ is étale and Mn(0) is nonsingular, F is

nonsingular. Since, by virtue of Lemma 2.1.1, det is smooth with integral fibers, then so is the
natural projection F → Pic0(C), and F is integral. By the universal property of fibre products, we
have a natural map u : Pic0(C)× M̌n→ F making the evident diagram commutative. This map
is bijective on closed points, where the inverse is given by (L, (E, φ)) 7→ (L, (E⊗L−1, φ⊗ IdL−1)).
Since the domain and range of u are nonsingular and u is bijective, we conclude that u is an
isomorphism: factor u = f ◦ j, with j an open immersion and f finite and birational, so that f
is necessarily an isomorphism, and j is bijective, hence an isomorphism as well. 2

4.4 Product structures, re-mixed
In analogy with Lemma 4.3.1, and keeping in mind the construction of spectral curves § 2.3
as the universal divisor inside of V (D) × An, we have the cartesian square diagram with q, q′′

isomorphisms

H0(C,D)×An(0)× V (D)

pr1×pr2

��

q′′

∼
// An × V (D)

pr1

��

(σ, u•, (x, v)) 7→ (q(σ, u•), (x, v + σ))

H0(C,D)×An(0)
q

∼
// An

(55)

where (σ, u• = (u2, . . . , un)) ∈H0(C,D)×A(0) and (x, v) ∈ V (D)x is the line fiber of V (D) over a
point x ∈ C. For every fixed (σ, u•), the resulting morphism q′′ : V (D)

∼
→ V (D) is, fiber-by-fiber,

the translation in the line direction by the amount σ (linear change of coordinates t 7→ t + σ)
(cf. [HP12, Remark 2.5]).

Consider the spectral curve family C ⊆ An × V (D) and the pre-image C(0) of An(0). Then,
by restricting q′′ to C, we obtain a cartesian square diagram

H0(C,D)× C(0)

Id×p(0)
��

q′′′

∼
// C

p

��
H0(C,D)×A(0)

q

∼
// A

(56)

with q, q′′′ isomorphisms. For every fixed (σ, u•) ∈ H0(C,D)×An(0), we have the spectral curve
(Id × p(0))−1(σ, u•) = p(0)−1(u•) = C0,u• . The morphism q′′ maps C0,u• isomorphically onto
Cq(σ,u•), via the fiber-by-fiber translation by the amount σ.

By recalling that Jn(0) = Jn|An(0), and by setting qiv := ((q′′′)−1)∗, we obtain a cartesian
square diagram with q, qiv isomorphisms.

H0(C,D)× Jn(0)

Id×gn(0)
��

qiv

∼
// Jn

gn

��
H0(C,D)×An(0)

q

∼
// An

(57)
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4.5 δ-regularity of Prym over the elliptic locus
Recall that the elliptic locus Aell

n ⊆ An is the locus of characteristics a ∈ An yielding geometrically
integral spectral curves Ca. We denote by Aell

n (0) and by Ǎell
n the restriction of the elliptic locus

to An(0) = Ǎn. Recall Definition 2.6.1 (δ-regularity).

Proposition 4.5.1. The group scheme Jn(0)/An(0) is δ-regular over Aell
n (0). The group scheme

J̌n/Ǎn is δ-regular over Ǎell
n , i.e. if a ∈ Ǎell

n , then

dab
a (J̌n) > dȟn − dǍn + da (SLn δ-regularity inequality). (58)

Proof. Consider the locally closed ‘strata’ with invariant daff
a (−) = δ:

Sδ := Sδ(Jn/An) ⊆ An, Sδ(0) := Sδ(Jn(0)/An(0)) ⊆ An(0) Šδ := Sδ(J̌n/Ǎn) ⊆ Ǎn.

By Proposition 4.2.2(47), we have that Šδ = Sδ ∩ An(0) = Sδ(0). It follows that the two
conclusions of the proposition are equivalent to each other, and that it is enough to prove the
codimension assertion for Sδ(0).

By Lemma 2.6.2, since we already know that codimAn(Sδ) > δ, for every δ > 0 (see Lemma
2.6.2(20) and the Severi inequality in the proof of Theorem 3.4.1), we need to make sure that
intersecting with An(0) does not spoil codimensions. This follows from (57), for it implies that

q−1(Sδ) = H0(C,D)× Sδ(0), (59)

so that the codimensions of Sδ in An = H0(C,D)×An(0), and of Sδ(0) in An(0), coincide. 2

4.6 The norm morphism Nab
p

Fix a geometric point a of Ǎn. Recall the diagram (2) of finite morphisms of curves and let us focus

on ξ, p, p̃. We have the surjection (36) ξ∗ : Jn,a = Pic0(Ca =:
∑

kmkΓk)→ Pic0(C̃a,red =
∐
k Γ̃k).

Keeping in mind the Chevalley devissage, we have the following commutative diagram of short
exact sequences completing the right-hand square in (50) (recall that Ca := C ⊗ k(a))

0 // J̌n,a //

����

Jn,a //

ξ∗

����

Np

��

Jn,a/J̌n,a //

=

����

))

0

Pic0(Ca)

p∗

ii

p̃∗

uu
0 // J̌ab

n,a
// Jab
n,a

//

Nab
p

FF

Jab
n,a/J̌

ab
n,a

//

55

0

(60)

where Nab
p is the arrow induced by Np, in view of the fact that, since Np has target an abelian

variety, it must be trivial when restricted to the connected and affine Ker ξ∗ = Jaff
n,a ⊆ Jn,a.

The arrow Nab
p is not the norm Np̃ associated with the morphism p̃. In fact, we have the

following lemma.

Lemma 4.6.1. For every L ∈ Jn,a, we have

Nab
p (ξ∗L) =

⊗
k

Np̃k(ξ∗kL)⊗mk , (61)

Np̃(ξ
∗L) =

⊗
k

Np̃k(ξ∗kL). (62)
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Proof. Again, recall diagram (2). We have the following chain of identities:

Nab
p (ξ∗L) = Np(L) =

⊗
k

Np′k
(ξ∗1,kL) =

⊗
k

Np′′k
(ξ∗2,kξ

∗
1,kL)⊗mk =

⊗
k

Np̃k(ξ∗L)⊗mk ,

where: the first identity is by the definition of Nab
p , for Np has descended via the surjective

ξ∗ : Jn,a → Jab
n,a, which has Ker ξ∗ = Jaff

n,a; the second identity follows from [HP12, Lemma 3.5],
applied to the morphisms ξ1,k, by keeping in mind that the norm from a disjoint union is the
tensor product of the norms from the individual connected components; the third identity follows
from [HP12, Lemma 3.6], applied to the morphisms ξ2,k; the fourth identity follows from [HP12,
Lemma 3.4], applied to the morphisms ξ3,k. This proves (61).

The identity (62) can be proved in the same way (without recourse to [HP12, Lemma 3.6]).
2

4.7 The Tate module of Prym is polarizable
Lemma 4.7.1. Let a be any geometric point of Ǎn. Let p̃a, etc. be the corresponding morphisms
in (2). Then we have:

(1) TQ`(p̃
∗
a) and TQ`(N

ab
pa ) are adjoint with respect to the bilinear forms TW ab

a and TW Ca ;

(2) Ker (TQ`(N
ab
pa )) = TQ`(J̌

ab
a );

(3) Nab
pa ◦ p̃

∗
a = n IdPic0(Ca).

Proof. Recall that we have the spectral cover Ca =
∑

kmkΓk → Ca = C ⊗ k(a). We start with

part (1). For every γ̃ =
∑

k γ̃k ∈ TQ`(J
ab
n,a) =

⊕
k TQ`(Pic0(Γ̃k)), and for every c ∈ TQ`(Pic0(Ca)),

we have that

TW ab(γ̃, TQ`(p̃
∗)(c)) = TW ab

(∑
k

γ̃k,
∑
k

TQ`(p̃
∗
k)(c)

)
=
∑
k

mk TW
Γ̃k

(γ̃k, TQ`(p̃
∗
k)(c))

=
∑
k

mk TW C(TQ`(Np̃k)(γ̃k), c) = TW C

(∑
k

mk TQ`(Np̃k)(γ̃k), c

)
= TW C(TQ`(N

ab
p )(γ̃), c),

where: the first identity follows simply by consideration of components; the second identity
follows from the fact that TW ab is obtained from TW , which is the direct sum of the individual
TW p̃k , weighted by mk (see the end of the proof of Proposition 3.3.1); the third identity is
the classical adjunction relation (cf. [Mum70, p. 186, equation I] and [LB92, Corollary 11.4.2,
especially p. 331, equation (2)]) between norm and pull-back for the morphism p̃k : Γ̃k → Ca;
the last equality is obtained by applying the functor TQ` to the identity (61), and part (1) is
proved.

We prove part (2). The lower line in (60) yields, in view of the isogeny (49), the short exact
sequence

0 // TQ`(J̌
ab
n,a) // TQ`(J

ab
n,a) // TQ`(J

ab
n,a/J̌

ab
n,a)
∼= TQ`(Pic0(Ca)) // 0

so that the resulting arrow TQ`(J
ab
n,a)→ TQ`(J

ab
n,a/J̌

ab
n,a) gets identified with

TQ`(N
ab
p ) : TQ`(J

ab
n,a) −→ TQ`(Pic0(Ca)).
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We prove part (3). Recall the standard identity Np̃k ◦ p̃∗k = nkId, and that n =
∑

k nkmk. Then
part (3) follows from Lemma 4.6.1: for every L ∈ Pic0(Ca), we have

Nab
p (p̃∗L) = Nab

p (ξ∗p∗L) =
⊗
k

Np̃k(ξ∗kp
∗
kL)⊗mk

=
⊗
k

Np̃k(p̃∗kL)⊗mk =
⊗
k

L⊗nkmk = L⊗n. 2

Theorem 4.7.2 (Polarizability of the Tate module of Prym). The restriction

ˇTW : TQ`(J̌n)⊗ TQ`(J̌n)→ Q`(1)

of the Tate–Weil pairing TW : TQ`(Jn)⊗ TQ`(Jn)→ Q`(1) is a polarization of the Tate module

TQ`(J̌n) on Ǎn.

Proof. We fix an arbitrary geometric point a of Ǎn. By Proposition 4.2.2, we have that J̌aff
n,a =

Jaff
n,a. We have already verified that TW is trivial on the ‘affine part’ Jaff

n,a = J̌aff
n,a (see the proof

of Proposition 3.3.1 and (47)). It follows that TW is trivial on TQ`(J̌
aff
n,a). We need to show that

the descended nondegenerate TW ab (cf. Theorem 3.3.1) on TQ`(J
ab
n,a) stays nondegenerate on

TQ`(J̌
ab
n,a).

By Lemma 4.7.1(3), we have that

TQ`(J
ab
n,a) = Ker (TQ`(N

ab
p ))⊕ Im (p̃∗).

By Lemma 4.7.1(1), the direct sum decomposition is orthogonal with respect to TW ab.
By Lemma 4.7.1(2), we may re-write the orthogonal direct sum decomposition above as

TQ`(J
ab
n,a) = TQ`(J̌

ab
n,a)

⊥
TW ab⊕

Im (p̃∗),

so that the nondegenerate form TW ab restricts to a nondegenerate form on TQ`(J̌
ab
n,a). 2

4.8 Recap for the SLn weak abelian fibration
Theorem 3.4.1 tells us that in the D-twisted, GLn case, the triple (Mn, An, Jn) is a weak abelian
fibration that is δ-regular over the elliptic locus.

Proposition 4.5.1 implies that the analogous conclusion holds for (Mn(0), An(0), Jn(0)). In
fact, the polarizability of the Tate module is automatic when restricting from An to An(0):
because Jn(0) = Jn|An(0), and the Tate module is the restriction of the Tate module. Similarly,
the stabilizers are the same and they are thus affine. Even though the Chevalley devissages are
un-effected when passing from An to An(0), it is not a priori evident that the δ-regularity should
be preserved (intersecting may spoil codimensions), and this is precisely what Proposition 4.5.1
ensures.

The D-twisted SLn case, i.e. (M̌n, Ǎn, J̌n), is slightly trickier because, in addition to the
discussion in the previous paragraph, the polarizability Theorem 4.7.2 for the Tate module
TQ`(J̌n) did not follow immediately from the GLn analogous Theorem 3.3.1.

We record for future use the following result.

Theorem 4.8.1. The triple (M̌n, Ǎn, J̌n) is a weak abelian fibration which is δ-regular over Ǎell
n .

In particular, we have the following.
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(i) If a ∈ Socle(Rȟn∗Q`), then

dȟn − dǍn + dǎ > dab
ǎ (J̌n) (Ngô support inequality). (63)

(ii) If a ∈ Ǎell
n , then

dab
ǎ (J̌n) > dȟn − dǍn + dǎ (δ-regularity inequality). (64)

Proof. The projective morphism ȟn : M̌n → Ǎn is of pure relative dimension dȟn = dhn − g

(Proposition 2.4.9). By (26), the pure relative dimension dgn = dhn . By the very construction

§ 4.1 of J̌n, the pure relative dimension of ǧn : J̌n→ Ǎn is dǧn = dgn−g. It follows that dȟn = dǧn .

The stabilizers of the J̌n-action are affine because they are closed subgroups of the stabilizers

of the Jn-action, which are affine by virtue of Proposition 3.2.1. The Tate module TQ`(J̌n) is

polarizable by virtue of Theorem 4.7.2. We have thus verified that the triple is a weak abelian

fibration. In particular, Ngô support inequality 2.6.4 implies (63). The δ-regularity assertion is

contained in Proposition 4.5.1. 2

4.9 Endoscopy and the SLn socle over the elliptic locus

We employ the notation and results in § 2.5, especially Fact 2.5.1.

According to [Ngô10, Proposition 6.5.1], we have

(R2ȟn ȟn∗Q`)|Ǎell
n

∼= Q`Ǎell
n

⊕⊕
Γ

Q`
⊕oΓ−1

Ǎell
n,Γ

(Γ, oΓ as in (13)). (65)

In view of Theorem 4.8.1, the triple (M̌n, Ǎn, J̌n) is a weak abelian fibration that is δ-regular

over Ǎell
n , so that we may use Ngô support theorem [Ngô10, Theorem 7.2.1], to the effect that

the supports over the elliptic locus must also be the supports appearing in (65), and conclude

that

Socle(Rȟn∗Q`) ∩ Ǎell
n = {ηǍn}

∐∐
Γ

{ηǍn,Γ}. (66)

5. Multi-variable weak abelian fibrations

While the SLn support inequality is used in the proof of our main Theorem 1.0.2 on the SLn
socle, the SLn δ-regularity inequality is of no use in that respect. Section 5 is devoted to establish

the δ-regularity-type inequality that we need instead, i.e. (76). To this end, § 5.1 introduces

the multi-variable GLn weak abelian fibration (Mn• , An• , Jn•). Section 5.3 introduces its m•-

weighted-traceless counterpart (Mn•m•(0), An•m•(0), Jn•(0)), and establishes a series of product-

decomposition-formulae of the form H0(C,D) × (−)n•m•(0) ∼= (−)n• . This construction yields

the group scheme Jn•m•(0)/An•m•(0) with the useful δ-regularity-type inequality that we need.

Extracting it, as it is done in § 5.4, is not a priori completely evident: one has trivially a δ-

regularity-type inequality for the multi-variable Jacobi groups scheme Jn•m•/An•m• , which takes

the form of an inequality for codimensions of δ-loci in An•m• ; however, one needs instead to

control the codimensions of the δ-loci after restriction to the linear subspace An•m•(0), which is

not meeting the δ-loci transversally.

1340

https://doi.org/10.1112/S0010437X17007096 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007096


A support theorem for the Hitchin fibration: the case of SLn

5.1 The weak abelian fibration (Mn•, An•, Jn•)
Let n• = (n1, . . . , ns) be a finite sequence of positive integers. Define

(Mn• , An• , Jn•) :=

(∏
k

Mnk ,
∏
k

Ank ,
∏
k

Jnk

)
(67)

Aell
n• :=

∏
k

Aell
nk
. (68)

A geometric point of Aell
n• correspond to an ordered s-tuple of geometrically integral spectral

curves (Γ1, . . . ,Γs) of respective spectral degrees (n1, . . . , ns).
The requirements of Definition 2.6.3 (same pure relative dimensions, affine stabilizers,

polarizability of Tate modules, δ-regularity on the elliptic locus) are met on each factor separately
by virtue of Theorem 3.4.1. (In verifying δ-regularity, one needs a simple application of Lemma
2.6.2(2) to each factor: let a ∈ Aell

n• ; let x• be a closed general point in {a}; let ak be the projection

of a to the kth factor; then ak ∈ Aell
nk

, xk is a closed general point of {ak}, and
∑

k dak > da

(because {a} ⊆
∏
k {ak}); we have dab

a (Jn•) = dab
x•(Jn•) =

∑
k d

ab
xk

(Jnk) =
∑

k d
ab
ak

(Jnk) >∑
k(dak(Jnk) − dAnk + dak) =

∑
k dak(Jnk) − dAn• +

∑
k dak >

∑
k dak(Jnk) − dAn• + da =∑

k dxk(Jnk) − dAn• + da = da(Jn•) − dAn• + da.) It follows immediately that they are met
on the product, so that (67) is a weak abelian fibration which is δ-regular over Aell

n• .

5.2 Stratification by type of the GLn Hitchin base An

Let n ∈ Z>1 and let s ∈ Z>1 with 1 6 s 6 n. We consider the set NM(s) of pairs (n•,m•)
subject to the following requirements: (1) n1 > . . . > ns; (2) mk > mk+1 whenever nk = nk+1;
(3)

∑s
k=1mknk = n. There is the partition of the integral variety

An =
∐

16s6n

∐
(n•,m•)∈MN(s)

Sn•m• (69)

into the locally closed integral subvarieties

Sn•m• :=

{
a ∈ An | Ca =

s∑
k=1

mkCk,a
}
⊆ An, (70)

where a → a is given by an algebraic closure k(a) ⊆ k(a), and each spectral curve Ck,a is
irreducible of spectral curve degree nk. The closure Sn•,m• ⊆ An is the image of the finite
morphism [CL16, § 9]

λm•n• : An• → An, Im (λn•m•) = Sn•m• ⊆ An, (71)

which on closed points is defined as follows: (a1, . . . , as) 7→ a, where we view ak as a characteristic
polynomial Pak of degree nk, we consider the degree n polynomial

∏s
k=1 P

mk
ak

, and we take a to be
the corresponding closed point on An. The stratum Sn•m• is the image of a suitable Zariski-dense
open subvariety inside the Zariski-dense open subvariety

∏s
k=1A

ell
nk
⊆ An• . Given a point a ∈ An,

we have a ∈ Sn•m• for a unique triple (s, (n•,m•)), with 1 6 s 6 n the number of irreducible
components of Ca, and with (n•,m•) ∈ NM(s), which we call the type of a ∈ An. Since the
spectral curve Ca may have a strictly smaller number of components than Ca, the type of a is
observed on Ca.

Geometrically, we may think of the morphism λn•m• as sending an ordered s-tuple of integral
curves (Γ1, . . . ,Γs), to the spectral curve denoted (§ 2.3) by

∑
kmkΓk. As it is already clear in

the case s = 2, with (n1, n2;m1,m2) = (1, 1; 1, 1), in general, the finite morphisms λn•m• are not
birational.
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The morphisms (71) are introduced in [CL16, § 9] in order to exploit the GLn δ-regularity
inequalities for each Jell

nk
/Aell

nk
, k = 1, . . . , s (however, see Remark 5.4.3).

The resulting inequalities are of no use to us for the SLn case: they are too weak. One may
be tempted to replace them by taking the multi-variable counterpart to the SLn δ-regularity
inequality (64). As it turns out, these SLn inequalities are also of no use to us towards the proof
of Theorem 1.0.2 on the SLn socle: they are not relevant in the proof given in § 6.2 of Theorem
1.0.2 (the SLn support inequality (63) plays a crucial role, though).

The multi-variable δ-regularity inequalities that we need for the proof of Theorem 1.0.2 on
the SLn socle are given by Corollary 5.4.4(76), and are to be extracted from the constructions
of § 5.3.

5.3 The weak abelian fibration (Mn•m•(0), An•m•(0), Jn•m•(0))
Define what we may call the subspace of multi-weighted-traceless characteristics by setting (recall
that a(1) is the trace-component of a characteristic)

An•m•(0) :=

{
(a1, . . . , as)

∣∣∣∣ ∑
k

mkak(1) = 0

}
⊆ An• . (72)

This is a vector subspace of codimension h0(C,D) = d − (g − 1). Define Mn•m•(0) :=
h−1
n• (An•m•(0)) ⊆ Mn• (given its reduced structure; we are about to verify the statement

associated with (73), so that, a posteriori, this pre-image is indeed automatically reduced).
What follows is in direct analogy with the constructions in the proof of Lemma 4.3.1, and in

its re-mixed version in § 4.4. We have the cartesian square diagram

H0(C,D)×Mn•m•(0)

Id×h• (0)
��

q′

∼
//Mn•

h•
��

H0(C,D)×An•m•(0)
q

∼
// An•

(73)

with q, q′ isomorphisms, where we have the following.

(i) In analogy with (53), and by keeping in mind that here the entries uk1 are not necessarily
zero, the map q is given by the assignment sending

(σ, (u11, . . . , u1n1), . . . (us1, . . . , usns)), subject to
∑
k

mkuk1 = 0,

to (having set uk0 := 1, for convenience)({ i∑
j=0

(
n1 − i+ j

j

)
σju1,i−j

}n1

i=1

, . . . ,

{ i∑
j=0

(
ns − i+ j

j

)
σjus,i−j

}ns
i=1

)
.

(ii) The isomorphism q′ is defined by the assignment

(σ, (E1, φ1), . . . , (Es, φs)) 7−→ ((E1, φ1 + σId), . . . , (Es, φs + σId)).

As in the proof Lemma 4.3.1, a simple recursion yields the map inverse to q, whereas the
one inverse to q′ is given by the assignment (remember that n =

∑
kmknk)

{(Ek, ψk)}sk=1 7−→
(∑

jmjtr(ψj)

n
,

{(
Ek, ψk −

∑
j

mj

n
tr(ψj)Id

)}s
k=1

)
.
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Finally, by setting Jn•m•(0) := Jn• |An•m• (0), we have the cartesian square diagram with q′′

and q isomorphisms

H0(C,D)× Jn•m•(0)
q′′ //

Id×gn•m• (0)
��

Jn•

gn•m•

��
H0(C,D)×An•m•(0)

q // An•

(74)

obtained in the same way as (57).

5.4 Multi-variable δ-regularity over the elliptic loci
Recalling the definition of Sδ(J/A) in (19), we have the following identification of δ-loci

Proposition 5.4.1. q−1(Sδ(Jn•/An•)) = H0(C,D)× Sδ(Jn•m•(0)/An•m•(0)).

Proof. Keeping in mind that Sδ(Jn•/An•) is naturally stratified by products of individual
Sδk(Jnk/Ank) with

∑
k δk = δ, the proof runs parallel to the one of Proposition 4.5.1, with

(74) playing the role of (57). 2

Theorem 5.4.2. The weak abelian fibrations

(Mn, An, Jn), (Mn(0), An(0), Jn(0)), (M̌n, Ǎn, J̌n),

(Mn• , An• , Jn•), (Mn•m•(0), An•m•(0), Jn•m•(0))

are δ-regular when restricted to their respective elliptic loci

Aell
n , Aell

n (0) := An(0) ∩Aell
n , Ǎell

n := Ǎn ∩Aell
n ,

Aell
n• :=

∏
k

Aell
nk
, Aell

n•m•(0) := An•m•(0) ∩
∏
k

Aell
nk
.

Proof. We have already proved all the conclusions in the single-variable case: we have displayed
them for emphasis only. We have already observed in § 5.1 that the single-variable case implies
that (Mn• , An• , Jn•) is a weak abelian fibration which is δ-regular over its elliptic locus Aell

n• .
By virtue of (73) and of (74), we see that (Mn•m•(0), An•m•(0), Jn•m•(0)) is a weak abelian

fibration as well, which, by virtue of Proposition 5.4.1, is δ-regular over its elliptic locus Aell
n•m•(0)

(cf. the proof of Proposition 4.5.1). 2

Remark 5.4.3. The following claim does not hold: given a point a ∈ Sn•m• ⊆ An, we can write
a = λn•m•(a1, . . . as) for a suitable s-tuple ak ∈ Ank . This is true if a is a closed point, but it
fails in general. This claim has been used in [CL16, § 9, proof of main theorem].

Corollary 5.4.4, equation (75) below remedies the minor inaccuracy in the proof of [CL16,
§ 9, proof of main theorem] pointed out in Remark 5.4.3. It also establishes the SLn-variant (76)
that we need in the course of the proof of Theorem 1.0.2 in § 6.2.

Corollary 5.4.4 (Multi-variable δ-inequalities). Let a ∈ An and let (n•,m•) ∈ NM(s) be its
type (§ 5.3). Then we have the following multi-variable GLn δ-inequality:

dab
a (Jn) >

∑
k

(dhnk − dAnk ) + da. (75)

If, in addition, a ∈ An(0) = Ǎn, then we have the following multi-variable SLn δ-inequality:

dab
a (Jn) >

∑
k

(dhnk − dAnk ) + [d− (g − 1)] + da. (76)

1343

https://doi.org/10.1112/S0010437X17007096 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007096


M. A. de Cataldo

Proof. Let a ∈ An and let V (a) := {a} ⊆ An be the associated integral closed subvariety. Let
(n•,m•) ∈ NM(s) be the type of a. Let α be any point in the non empty fiber λ−1

n•m•(a). Then

da := dim({a}) = dim({α}) = dα.
We choose an algebraic closure of k(a) that contains the finite field extension k(a) ⊆ k(α).

We can identify the curves Cα = Ca,red, so that the two curves have the same number s of
geometrically irreducible components. It follows that α ∈ Aell

n• . By virtue of (39), it also follows
that dab

a (Jn) = dab
α (Jn•).

The δ-regularity inequality for Jn• over Aell
n• implies that dab

α (Jn•) > dhn• − dAn• + dα, and
(75) follows.

Since a has type (n•,m•), we have that α satisfies the weighted trace constraint (72) that
defines Aell

n•m• , so that α ∈ Aell
n•m•(0). Then (76) is proved in the same way as (75) by using

the δ-regularity of Jn•m•(0) over Aell
n•m•(0), and the facts that dhn• =

∑
k dhnk , and (cf. (72))

dAn•m• (0) = dim(An•)− h0(C,D) =
∑

k dAnk − [d− (g − 1)]. 2

6. Proof of the main Theorem 1.0.2 on the SLn socle

This section is devoted to the proof of our main Theorem 1.0.2 on the SLn socle. Section 6.1
collects some formulae. Section 6.2 contains the proof of Theorem 1.0.2.

6.1 A list of dimension formulae
We first list some dimensional formulae in the GLn case. We set dMn := dimMn, dAn := dimAn,
and dhn := dMn − dAn . The dimension of Mn is given by [Nit91, Proposition 7.1]; the dimension
of An =

⊕n
i=1 h

0(C, iD) is computed via Riemann–Roch; the relative dimension dhn is given by
(7). We thus have

dMn = n2d+ 1, dAn =
n(n+ 1)

2
d− n(g − 1),

dhn =
n(n− 1)

2
d+ n(g − 1) + 1, dhn − dAn = −nd+ 2n(g − 1) + 1. (77)

The corresponding formula for SLn follow easily, for example, from the above, remembering
that, in view of lemmata 4.3.1 and 4.3.2, we have that dim(Mn) = dim(M̌n) + h0(D) + g:

dM̌n
= n2d− d, dǍn =

n(n+ 1)

2
d− d− (n− 1)(g − 1),

dȟn =
n(n− 1)

2
d+ (n− 1)(g − 1), dȟn − dǍn = −(n− 1)d+ 2(n− 1)(g − 1). (78)

Recall that, given a ∈ An, we have been denoting the dimensions of Jn,a, J
aff
n,a and Jab

n,a by

da(Jn), daff
a (Jn) and dab

a (Jn), respectively, and have been doing the same for ǎ ∈ Ǎn ⊆ An,
J̌n,a etc. (Recall that the Chevalley devissage is defined at geometric points, but the indicated
dimensions depend only on the underlying Zariski point; as it is about to become clear, it is
better to keep track of Zariski points.)

6.2 Proof of Theorem 1.0.2
Having done all the necessary preparation, the proof of Theorem 1.0.2 for the SLn socle, can
now proceed parallel to the proof of Theorem 1.0.1 for the GLn socle in [CL16, § 9].

Let a ∈ Ǎn belong to Socle(Rȟn∗Q`). Apply the support inequality (63) for the Zariski points
in the socle:

dȟn − dǍn + da > dab
a (J̌n). (79)
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By Lemma (4.2.1), we have dab
a (J̌n) = dab

a (Jn)− g, so that

dȟn − dǍn + da > dab
a (Jn)− g. (80)

By combining (80) with (76), we get

dȟn − dǍn >
s∑

k=1

(dhnk − dAnk ) + [d− (g − 1)]− g. (81)

By using (78) for the left-hand side, and (77) for each nk for the right-hand side, we re-write
(81) as follows:

−(n− 1)d+ 2(n− 1)(g − 1) >
∑
k

[−nkd+ 2nk(g − 1) + 1] + [d− (g − 1)]− g, (82)

i.e.

0 >

(
n−

∑
k

nk

)
[d− 2(g − 1)] + (s− 1). (83)

Since d > 2(g − 1) (by assumption) and s > 1 (by construction), we must have
∑

kmknk = n =∑
k nk and s = 1.

The first condition forces all mk = 1, so that the corresponding geometric spectral curve Ca
is reduced.

The second condition s = 1 means that in addition to being reduced, the geometric spectral
curve Ca must be integral, i.e. a ∈ Ǎell

n . 2

We conclude with two remarks.

Remark 6.2.1 (Positive characteristic). Chaudouard has informed us that the main Theorem
1.0.1 for the GLn socle in [CL16], should also hold over an algebraically closed field of positive
characteristic bigger than n. This should be the case in view of the fact that one major obstacle
in proving such theorem in positive characteristic had been the lack of the positive-characteristic
analogue of the Severi inequality (41). At least as far as the corresponding inequality at the level
of the semiuniversal (miniversal) deformation for integral (even reduced) locally planar curves,
this obstacle has been removed in [RMV12, Theorem 3.3]. The restriction on the characteristic
seems natural in view of the fact that the spectral covers have order n, and also because of
formulae such as (53). We did not verify whether all of our arguments could be easily modified
to yield the positive characteristic (> n) cases of Theorems 1.0.1 and 1.0.2, on the GLn and SLn
socles.

Remark 6.2.2 (D = KC). The methods of proofs of [CL16] for GLn, and of this paper for SLn,
do not work in the very interesting case when D = KC . There is even more geometry at play in
that symplectic/integrable case. See [CL16, § 11] for a short discussion of the D = KC case.
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cohomologiques, Ann. of Math. (2) 176 (2012), 1647–1781.
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Del87 P. Deligne, Le déterminant de la cohomologie, in Current trends in arithmetical algebraic
geometry, Arcata, CA, 1985, Contemporary Mathematics, vol. 67 (American Mathematical
Society, Providence, RI, 1987), 93–177.
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