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Maximizing friction in the erosion of
glacial valleys

Valerio Faraoni

Department of Physics & Astronomy, Bishop’s University, Sherbooke, Québec, Canada

Abstract

The cross-sectional profile of a glacial valley can be obtained with a variational principle in which
the friction against the valley walls and the glacier bed is extremized, subject to a Lagrangian con-
straint. We show that the actual valley profile maximizes the friction, thus settling an old debate.

Introduction

Since the early days of geomorphology, it has been known that valleys carved by glaciers are
U-shaped, as opposed to valleys carved by rivers which are V-shaped (Campbell, 1865;
McGee, 1894). Focusing on the former, it is intuitive that following step by step the detailed
erosion process of the valley walls and glacier bed through time requires many assumptions
and details. This process can be modelled numerically (e.g. Harbor, 1995; Seddik and others,
2009; Yang and Shi, 2015). However, it is simpler to describe the final product of the glacier
action, which can be done with an analytical approach first proposed by Hirano and Aniya
(1988). From the phenomenological point of view, crude models of transverse glacial valley
profiles used parabolas (Svensson, 1959) or power-law profiles, but there was no theory behind
this so-called ‘power-flaw’, which amounted to mere data-fitting (Pattyn and Van Huele, 1998).

The Hirano and Aniya (1988) approach (refined by Morgan (2005)) uses a variational prin-
ciple in which the friction of the ice against the valley walls, which is a functional of the trans-
verse profile of the glacial valley, is extremized subject to an appropriate constraint. To fix the
geometry, denote with x € ( — xg, Xo) a coordinate transverse to the glacier flow, while the mar-
gins of the ice have coordinates +x,. Let the ice thickness at x be H(x). Correspondingly, the
profile of the glacial valley is given by the bed elevation B(x) = H; — H(x), where the constant
Hj denotes the maximum ice thickness reached at x=0 (see Fig. 1).

As is clear from Figure 1, the cross-sectional area of the valley is

+xo —+Xo
A = 2x0H; — J dxB(x) = J. Hdx, (1)
—x —Xxp
and the friction force is modelled by Coulomb’s law,
f = uN = uPAcontact = MPiceSHA contacts (2

where N = p;..gHA contact 1S the normal force caused by the cryostatic pressure, u is the friction
coefficient, p;.. is the ice density, g is the acceleration of gravity, and A nac is the area of con-
tact between the ice and the wall.

A word of caution about the assumptions of the Hirano-Aniya-Morgan theory is manda-
tory. The friction model may not be entirely appropriate, since friction could depend on the
velocity and the Coulomb law adopted in this theory could be an oversimplification. Indeed,
friction is taken to depend on the velocity in the numerical simulations of the dynamical devel-
opment of glacial valley profiles of Seddik and others (2009).

Moreover, because normal stress should be used in the calculation of friction, the assump-
tion of hydrostatic pressure may fail outside of the shallow ice approximation. It is possible
that the model stretches the validity of its assumptions, but since the shallow ice approxima-
tion holds well for so many valley glaciers and is required extensively in glacier modelling
anyway, perhaps this is not a big issue.

A second potential problem is that glacier hydrology is neglected in the Hirano-Aniya-
Morgan scenario. Hirano and Aniya (1988, 1990, 2005) mention that the effective pressure
may not be entirely cryostatic but proceeds by assuming that it is, citing older work in support.
The issue was discussed in a debate (Harbor, 1990; Hirano and Aniya, 1988, 1990). Arguments
supporting the model point out that water pressure is not significant along the entire length of
the glacier, quoting similar results for a landslide block model, but the issue was not settled.
Here we work in the context of the Hirano—Aniya-Morgan model, but the basic assumptions
should be questioned further and the potential problems studied by dedicated work.

The a priori expectation that friction should be maximized invoking the second law of ther-
modynamics is too naive. In fact, the second law of thermodynamics says that the entropy of a
closed system (or of the universe consisting of an open system plus its surroundings) never
decreases. Apart from the fact that entropy and friction do not coincide, the frictional system
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Fig. 1. The glacial valley is contained between —x, and X, the ice thickness (blue,
dashed curve) is H(x) and is maximum at x=0, where H=H,. The bed elevation
(red, solid curve) over the deepest point in the ice (valley profile) is B(x) = Hs — H(x).

considered here is not closed: it is clearly driven by climate forcing
from the atmosphere, and energy is exchanged as heat within the
glacier and the valley walls, through subglacial hydrology, etc.
Driven systems have an energy source that allows the entropy to
decrease. Moreover, although only the final state is considered
here through a variational principle, the dissipative process itself
involves non-equilibrium thermodynamics.

For an element of contact length ds between ice and rock and
unit length downstream, the elementary friction force is

df = ”‘picegH ds= /‘LpicegH 1+ (H/)Z dx 4 (3)

where a prime denotes differentiation with respect to x. The total
friction is

+x0
”“picegj Hy/1 + (H/)zd‘x’ (4)

—X

a functional of the ice thickness H(x) (or, alternatively, of the gla-
cial valley profile B(x)). A Lagrangian constraint must be imposed
to keep the area of the cross-section constant (Morgan, 2005);
considering a unit length downstream, this means that the volume
of the ice is kept constant. This requirement amounts to impos-
ing | J_riz dx H(x) = const. Extremizing the total friction subject to
this constraint then yields

+xo +x0
8] = 5] dx|:H\/1+ (H)? — AH] = aj dxL(H, H')

—Xo —Xo

=0, ©)

where A is a Lagrange multiplier, J[H(x)] is a functional of the ice
thickness H(x), and the constants u, p;.. and g have been sub-
sumed into A.

' A previous incorrect implementation of the Lagrangian constraint produced unphys-
ical catenary profiles (Hirano and Aniya, 1988).
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The Lagrangian L does not depend explicitly on x and the cor-
responding Hamiltonian is conserved:

—H
/1 + ( H/)Z
where C is an integration constant. We will refer to Eqn (6) as the

Morgan equation (Morgan, 2005). The existence of smooth solu-
tions H(x) in (— xo, Xo) with the properties

H= +AH =C, (6)

H(ixo)=0> H(X)ZH(_x)r H/(O):0> (7)
requires H”(x) <0, A>0 and C>0 (Morgan, 2005). Analytical
solutions of the Morgan equation (6) have been found in
Harbor (1990); Morgan (2005); further formal solutions can be
found in Chen and others (2015a) using the fact that the
Morgan equation is analogous to the Friedmann equation of cos-
mology (Faraoni and Cardini, 2017). Moreover, all solutions of
(6) are roulettes (Chen and others, 2015b) (a roulette is the trajec-
tory described by a given point lying on a curve that rolls without
slipping along another given curve).

In their original paper, Hirano and Aniya (1988) argued that
friction should be minimized during the erosion process. Their
method and conclusions were criticized in Harbor (1990) (see
also Hirano and Aniya (1990); Morgan (2005); Hirano and
Aniya (2005)). In particular, Harbor (1990) argued that friction
should be maximized, not minimized. Although (after imposing
the correct Lagrangian constraint) this change of perspective
does not affect the first-order variational principle §J[H(x)] =0,
it would seem intuitive that friction should be maximized instead
of minimized (perhaps entropy production rate is maximized, but
the previous authors do not provide sound arguments to support
a maximum or a minimum). However, in problems involving
geophysical flows in the earth sciences, sometimes the opposite
point of view is supported, based on the argument that minimiz-
ing friction optimizes the flow. This is the case, for example, of
equilibrium beach profiles in oceanography (see Jenkins and
Inman, 2006; Faraoni, 2019; Maldonado and Uchasara, 2019;
Maldonado, 2020). The issue of whether the final profile for a gla-
cial valley corresponds to a minimum or a maximum of the fric-
tion (subject to the constraint above), which could help
understanding better the physics behind the model, has never
been settled in the literature on glacial valley transverse profiles.
Here we show that the final configuration indeed corresponds
to a maximum of the friction by considering the second variation
of the functional J[H(x)] of the valley profile and establishing its
sign.

Maximizing friction

As seen in the previous section, the action functional is (Morgan,
2005)

—+xo —+xo
J= j dx(H 1+ H? - )\H) = J dxL(H, H'). (8)
—Xo —Xo
Let us consider variations 7(x) around the path that extremizes
the action ], which vanish at the endpoints, 17( — xq) =n(x) =0
and are parametrized by a parameter . More precisely, the varied
paths are given by (Weber and Arfken, 2004)

H(x, @) = H(x, 0) + @ n(x) , )
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where H(x, 0) is the path extremizing J[H(x, a)]. Using

d
H(x,0) = H(x 0 +a 7, (10)
dx
OH _  OH _dn PH _®H_ an
da " Ba dx’ 92 0
one obtains (Weber and Arfken, 2004)
R] (T | 0L [dn\’ PL  dn  °L
o & )42 Sl )
902 j OH" (dx) 2 oma "ax e | (12
Substituting the derivatives
oL
= JI+HR -\, (13)
oH
L
9> 9, 14
2 (14)
L H (15)
OHOH/ 1+ HZ '
oL HH/
e =N (16)
oH/  /1+ HP?
#L _ H[H"(1+ H?) — H/] a7
aH/Z - (1 + H/2)3/2 >
one obtains
d(n?)

Fr2 1+H>" dx Ny pg? dx

where the integral is now computed along the trajectories extremiz-
ing J, i.e. those that realize the condition dJ/dor=0. We know that
H(x) > 0 Vx € [—x¢, Xo] and H=0 only at the boundaries x=
+xp, and that H”(x) < 0 Vx (see Fig. 1), therefore HH (1+H?<
0 for x € (— xg, xo). Using also —H(x)H/*(x) < 0 Vx, one obtains

—X

2 —+xo 171 AN 2 2] 2 /
a]_J dx{H[H (L+H*) —H ]<dn>+ H

H[H"((1+ H?) — H"] (dn
(&

2
. H,2)3/2 —) <0 Vx €& (—xp, x0). (19)

Therefore, the first integral in Eqn (18) is non-positive,

) 17 12y _ g2 2
j dxH[H (l1+H")—H ](dn) <o, 20)

—x (1 —+ H/2)3/2 dx

Let us evaluate now the sign of the second integral

d(n*) _ ' H' [+
dx  J14+HZ™®

+x9 H/
j dx
_x, ~1+H?

+x9 d H/
e am)
“x dx \V1+ Hr?

21
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where we have integrated by parts. The first term on the right-
hand side vanishes because the variation 7(x) vanishes at the end-
points x = £x,. To proceed, use the equation of motion (6) satisfied
by the trajectories H(x) that extremize ], where the constant C is
positive (Morgan, 2005; Faraoni and Cardini, 2017). Substituting
into the integral (21) yields

e

r+Xo H/
dxnp? i -
—Xo d'x A% 1 + H/2

r+xXo d C
_ 2 - _ /
)]

—Xo

X 12 —+Xxi
0 CH 0 C
=— dxn? D +j dx(ﬁ—)\>H” =0 +5.

(22)

<

—Xo —Xo

Since the integrand appearing in the first integral is manifestly
non-negative, it is I; <0. Then,

0 +X
C 0 C
L :j dx(——)\)H”—}—j dx(——x\)H”;
—x H 0 H

since C/H — +oo as the valley boundaries + x, are approached and
H(x) — 07, both integrals on the right-hand side of Eqn (22) (and,
therefore, their signs) are dominated by the regions around +x,
where  &—A~E&  and A is  bounded.  Since
H"(x) < 0 Vx € (—xo, x9), both integrals are negative and it is
I, <O0.

Putting everything together, we finally have

(23)

32] +x0 H[H//(l 4 H/2) _ H/Z] d”l 2
902 dx 2.3/2 ™
da? ), (14 H"?) dx
<0
+Xo )
CH
_ j dx G
—Xo H2

—_——
<0

—+xo C
— H//
o)

<0

(24)

<0.

This is our main result: 0°J/da® <0 and the path extremizing J
corresponds to a maximum of the friction functional/.

Conclusions

The final profile of a glacial valley due to the erosion by a glacier
over periods of time of the order of 10000 years can be obtained
through a variational principle that extremizes the friction of the
ice against the valley walls and bed, subject to the constraint of
fixed ice volume (Hirano and Aniya, 1988). The correct variational
principle leading to the Morgan equation (6) and its analytical
solutions were obtained only after a few attempts (Harbor, 1990;
Hirano and Aniya, 1990, 2005; Morgan, 2005; Chen and others,
2015a; Faraoni and Cardini, 2017). A problem debated in Harbor
(1990); Hirano and Aniya (1990); Morgan (2005); Hirano and
Aniya (2005) and still open after all these years is whether the
friction is maximized or minimized. This issue, which appears in
similar situations involving geophysical flows, generates conflicting
intuitive answers and can only be settled once and for all by calcu-
lation. By studying the second variation of the relevant action
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functional (8), we have established that the glacial valley profile
indeed corresponds to a maximum of the friction.
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