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ABSTRACT. We describe exact solutions to the thermomechanically coupled shallow-ice approximation
in three spatial dimensions. Although artificially constructed, these solutions are very useful for testing
numerical methods. In fact, they allow us to verify a finite-difference scheme, that is, to show that the
results of our numerical scheme converge to the correct continuum values as the grid is refined in three
dimensions. Comparison of numerical results with exact solutions has helped us to precisely quantify
and understand some of the numerical errors we are making. Our verified numerical scheme shows
the basal temperature spokes which arose in the EISMINT (European Ice Sheet Modelling INiTiative) II
intercomparison (Payne and others, 2000). A careful analysis describes these warm spokes as numerical
errors which occur when the derivative of the strain-heating term with respect to the temperature is
large. On the other hand, the appearance of basal temperature spokes in a verified numerical scheme
strongly suggests that they are a feature of the EISMINT II experiment F continuum problem. In fact, they
are clear evidence of an unstable equilibrium point of the continuum problem. This paper is a sequel
to Bueler and others (2005), which addresses exact solutions and verification in the isothermal case.

INTRODUCTION

Surprising asymmetries referred to as ‘spokes’ are known
to arise in the numerical solutions of thermomechanically
coupled ice-sheet flow (Payne and Baldwin, 2000; Payne
and others, 2000; Hindmarsh, 2004, 2006; Saito and others,
2006). In this paper we clarify some of the numerical diffi-
culties in shallow ice-sheet modelling which make the inter-
pretation of these spokes difficult.
While wishing to clarify the spokes problem in a pragmatic

manner, we are also intrinsically interested in demonstrat-
ing agreement between the results of a standard numerical
scheme and the predictions of the continuum model. In-
deed, such verification of numerical schemes (Roache, 1998;
Bueler and others, 2005) is a desirable step for ice-sheet mod-
elling because validation (comparison of numerical results
with observed ice flow) is relatively difficult. Glaciologists
cannot completely observe the actual flow, temperature and
basal fields required to validate numerical ice-sheet models.
(Compare this situation with that of shallow-water modellers
using wave tanks, for example.)
At issue are the numerical solutions of a partial differ-

ential equation (PDE) free boundary problem, namely the
thermomechanically coupled, cold (not polythermal; cf.
Greve, 1997) shallow-ice approximation (SIA) (Hutter, 1983).
In this continuum model, detailed in the following section,
all stresses are neglected with the exception of shear stresses
in planes parallel to the geoid. This model is the same con-
tinuum model used in the important intercomparison experi-
ments described by Payne and others (2000), referred to here
as EISMINT (European Ice Sheet Modelling INiTiative) II.
Our tools for assessing numerical results are exact solu-

tions of the whole problem, which includes all equations,
all coupling terms and all boundary conditions. The exact
solutions are described and illustrated in the Exact Solutions

section. A complete derivation of the exact solutions deriva-
tion is given in a separate technical report (Bueler and Brown,
2006), as are computer codes to compute the exact solutions.
It is envisaged that they can be incorporated into ice-sheet
codes for routine verification purposes, as they have been for
our group.
In Results we use these solutions to verify, for the first time,

a numerical scheme for fully thermomechanically coupled
ice sheets. We have chosen to verify a particular finite-
difference scheme, described in Appendix A, but many other
numerical schemes are likely to perform equally well (or
better) and can be verified by the same means. We satisfy
the usual standard for verification by comparing numerical
results with exact solutions in situations which exercise all
terms (Roache, 1998) and, in particular, all thermocoupling
mechanisms. For verification, we use both a steady-state and
a time-dependent exact solution. Clear evidence of conver-
gence of the numerical solutions to the exact continuum
values under grid refinement is found.
The application of our code to EISMINT II experiment F is

also described in Results. Spokes are observed in the basal
temperature field even though the continuum problem has
angular symmetry. In other words, although verification is
accomplished for the numerical scheme, there remain ini-
tial/boundary value problems for which the numerical re-
sults are significantly far from the continuum solution. This
situation is interpreted in Analysis and Discussion.
The continuum ice-sheet model used here consists of two

evolution-in-time PDEs: one for mass conservation and one
for conservation of energy (see following section). Approxi-
mations of the decoupled versions of these equations are,
naturally, better understood. For instance, numerical schemes
for solving the isothermal shallow problem can be verified
by the methods described by Bueler and others (2005). The
stability of several numerical schemes for the isothermal
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problem has been studied by Hindmarsh and Payne (1996)
and Hindmarsh (2001). On the other hand, the numerical
analysis of linear advection–conduction equations such as
the decoupled temperature equation is relatively well under-
stood. In particular, a finite-element method for the decou-
pled temperature equation for ice sheets, with a non-linear
source term corresponding to strain heating, is carefully de-
scribed and, to a limited extent, verified by Calvo and others
(1999). A semi-coupled finite-element approximation, with
moving upper surface, is carefully analyzed by Calvo and
others (2002a).
One benefit of our verification is the ability to clearly iden-

tify and separate the numerical issues affecting the ice-sheet
modeller. Since these issues have not been sufficiently iden-
tified in the literature, we list them below and expand upon
them in the Analysis.

1. The equilibrium grounded margin of an ice sheet always
has infinite gradient. In the isothermal case, the inevitable
numerical consequences of this fact are explored by
Bueler and others (2005), and those consequences also
apply to the thermomechanically coupled case. We be-
lieve, for reasons which remain poorly understood, that
the geometry of thermomechanically coupled margins is
intrinsically more difficult to approximate than the geom-
etry of isothermal margins. Purely numerical techniques,
ones not used to produce the results in this paper, may
significantly improve numerical approximation of mar-
gins in the thermomechanically coupled case (Saito and
others, 2007).

2. A ‘diffusivity’ can be assigned to the mass conservation
equation, in both the thermomechanically coupled and
isothermal cases. (See Analysis for a precise definition.)
Its magnitude controls stability and maximum time-step
for an explicit numerical scheme (Hindmarsh, 2001). In
particular, the longest allowed time-step for an explicit
scheme to maintain stability is one inversely proportional
to the maximum of this diffusivity. The time-step is also
proportional to the square of the spatial step. Inclusion of
implicitness in the numerical treatment of the equation
largely resolves this problem, but explicit methods are
also effective, especially when adaptive time-stepping is
used. Here, we verify an explicit scheme.

3. Large numerically computed velocities, especially large
vertical velocities arising through incompressibility from
rapidly varying (in space) horizontal velocities, can cause
the temperature equation to be overly dominated by verti-
cal advection. The primary numerical consequence is that
the temperature time-step must be reduced to maintain
a good approximation of advection; this is the Courant–
Friedrichs–Lewy (CFL) condition for advection (Morton
and Mayers, 2005).

4. Themass conservation and temperature equation are non-
linearly coupled. This is due to the temperature depend-
ence in the flow law for ice and the strong dependence
of the strain-heating term in the temperature equation on
the geometrically determined effective shear stress. This
feedback drives an instability which can create spokes in
near-basal temperatures. They are seen in angularly sym-
metric (Payne and others, 2000) and rectangular (Payne
and Dongelmans, 1997) cases. In terms of numerical
analysis, these spokes are diagnosed as errors caused by

large derivatives, with respect to the temperature, of the
strain-heating term. A precise error analysis of our finite-
difference scheme supports this conclusion (Appendix B).
On the other hand, and without any contradiction, these
spokes are also a property of the continuum dynamical
system itself. In particular, as described in the Discussion,
the continuum problem experienced by the EISMINT II
experiment F set-up is believed to have an unstable (re-
pelling) equilibrium solution.

The numerical issues described above differ in detail
among numerical schemes, but we believe issues (1), (3)
and (4) are universal among finite-difference and finite-
element schemes, while (2) applies at least to all explicit
time-stepping schemes. The techniques of this paper deal in
practical ways with all of these issues.
From one point of view, the above issues all address nu-

merical errors, that is, numerical results which differ from the
generally unknowable predictions of the differential equa-
tions themselves. It is possible for numerical schemes which
take excessively long time-steps to experience numerical in-
stabilities, numerical errors in which small irregularities of
the gridded values (‘wiggles’) grow exponentially. In the cur-
rent non-linear circumstances it is possible for such wiggles
to grow to bounded maximum magnitude, though they may
grow exponentially at small magnitude. This can happen for
implicit and semi-implicit schemes (Hindmarsh and Payne,
1996) which would be unconditionally stable when applied
to linear differential equations. On the other hand, bad mar-
gin approximation, issue (1) above, is an example of a stable
numerical error of large magnitude.
A deeper issue is whether the thermomechanically

coupled SIA can be regarded as a trustworthy continuum
mathematical problem. This question is an area of active re-
search (Hindmarsh, 2004, 2006; Saito and others, 2006). The
verification results of this paper, as well as the spoke-free re-
sults from many numerical codes for the better-behaved EIS-
MINT II experiments (e.g. experiments A, B, C, D, E and G, in
particular), give strong evidence that for many initial/
boundary value problems and for equations with additional
source terms this continuum model can be effectively ap-
proximated by numerical schemes. In fact, as described in
the Discussion, we find no clear evidence that the time-
dependent thermomechanically coupled SIA is ill-posed.
As noted, we do observe that the spokes of EISMINT II ex-

periment F strongly suggest an unstable equilibrium point of
the continuum dynamical system. Furthermore, as addressed
in the Discussion, it may be the case that the equilibrium
thermomechanically coupled SIA is ill-posed in EISMINT II
experiment F circumstances, but only in the sense that the
solution of the continuum problem is not a continuous func-
tion of the data of the problem (accumulation, bed elevation
and surface temperature).
Clear identification of the sources and nature of numerical

errors is critical to the assessment of increasingly sophisti-
cated codes which approximate the many coupled contin-
uum processes in ice flow. Identification and understanding
of errors can only occur using reasonably precise tools, and
this is one value of exact solutions. An additional practical
benefit is that if a suite of exact solutions are available during
the code development process, then the effect of various nu-
merical choices and changes may be immediately assessed.
One can determine whether a change puts the numerical
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results closer to or further from the continuum solution. This
situation contrasts strongly with the use of the results of inter-
comparison exercises as ‘benchmarks’.

CONTINUUM MODEL
The flat-bed, non-sliding base case of the (cold) SIA is, for
the purposes of this paper, taken to be the following pair of
evolution-in-time PDEs:

mass conservation:
∂H
∂t

= M −∇ ·Q, (1)

temperature:
∂T
∂t

=
k

ρcp
∂2T
∂z2

−U · ∇T −w ∂T
∂z

+ Σ.

(2)

Here H(t , x, y ) is the ice-sheet thickness and T (t , x, y , z) is
the ice temperature. Coordinates x, y , z form a Cartesian sys-
tem with z positive above the flat base at z = 0. Here and
in all of the following, the dot product, gradient and diver-
gence are in the horizontal variables only. Also,

(
a, b

)
will

denote a two-component vector, so ∇f = (
∂f /∂x, ∂f /∂y

)
and ∇ · (a, b) = ∂a/∂x + ∂b/∂y . The remaining notation
in Equations (1) and (2) is listed with values of physical con-
stants in Table 1. Our notation matches that of EISMINT II
when possible.
The first of the above equations enforces mass conservation

in the map plane, and the second is the shallow approxima-
tion of conservation of energy. These two evolution equations
are coupled by the following relations and definitions:

shear stresses:
(
σxz ,σyz

)
= −ρ g(H − z)∇H, (3)

constitutive function: F (T ,σ) = A exp
(−Q
RT

)
σn−1, (4)

horizontal velocity: U = −2ρ g∇H
∫ z

0
F (T ,σ)(H − ζ) dζ,

(5)

map-plane flux: Q =
∫ H

0
U dz, (6)

vertical velocity: w = −
∫ z

0
∇ ·U dζ, (7)

strain heating: Σ =
1

ρ cp

(
σxz , σyz

) · ∂U
∂z

. (8)

The vector
(
σxz ,σyz

)
represents the non-negligible part of

the deviatoric stress tensor in the SIA. The effective shear
stress σ is the length of this vector, so by Equation (3),

σ =
√

σ2xz + σ2yz = ρ g(H − z)|∇H|. (9)

The constitutive relation

ε̇ij = F (T , σ)σij (10)

relates the strain rate tensor ε̇ij = (1/2)
(
∂ui/∂xj + ∂uj/∂xi

)
to the deviatoric stress tensor σij by the scalar factor F (T , σ)
which we specify in Equation (4).
We use Glen’s exponent n = 3 throughout this paper.

Note that the form of the constitutive relation Equation (10)
allows much more general dependence on temperature and
effective shear stress than the chosen Arrhenius–Glen form
in Equation (4). However, we will employ Equation (4) for
the construction of exact solutions.

The physics included in this model is described by Paterson
(1994), among other sources. A derivation from the Stokes
equations for slow fluid flow, including the appropriate small-
aspect-parameter shallowness argument, is provided by
Fowler (1997). This model is referred to as the SIA in this
paper and elsewhere (Hutter, 1983).
Some additional comments on the above equations can

be made. The horizontal ice flux Q = Q(t , x, y ) can be rep-
resented Q = ŪH if Ū = Ū(t , x, y ) is the average horizontal
velocity in each column. Equation (5) can be derived from
the constitutive relation by vertically integrating the non-
negligible components of the strain rate tensor. The vertical
velocity w (t , x, y , z) is found, as described in Equation (7),
by vertically integrating the incompressibility equation

∇ ·U + ∂w
∂z

= 0 (11)

and settingw = 0 at the frozen base of the ice on a stationary
bed. Equations (1), (6) and (7) imply

∂H
∂t

= M −∇H · U|z=H + w |z=H (12)

which is referred to as the surface kinematic equation. In-
deed, Equation (1) is equivalent to Equation (12) in the
coupled system. Finally, note that Equations (2), (3), (5) and (8)
all incorporate shallowness assumptions.
Regarding conservation of energy, Equation (2), we have

assumed that the ice is cold and that no liquid is present in
the ice lattice, so the ice is not polythermal (Greve, 1997).
As is standard in the SIA, we include both advection and
conduction terms in the vertical direction but neglect con-
duction of heat in the horizontal direction (Fowler, 1997).
Quantities σ,U,w ,Q, Σ and F (T , σ) can all be eliminated.

This would reduce the system of equations (1), . . . , (9) to only
two equations for the evolution of H and T . This would not
improve clarity, but one might say that the resulting coupled
system of two scalar evolution equations is the system that we
are actually solving. These two equations would be integro-
differential equations because velocities are built from inte-
grals of the z-dependent temperature function.
It is by no means true that the above system incorporates

all features of existing ice-sheet models. Most existing codes
based upon the SIA include additional continuum processes
(polythermal ice, bedrock heat storage, bed deformation,
coupling to ice shelves, etc.). Evidently, such models exhibit
even more complex dynamics. Verification of a numerical
scheme for the continuum model in this paper is not suffi-
cient to verify numerical schemes for those complex models.
Some ice-sheet models include more elaborate, or simply

different, stress balances than are included in the SIA. These
models, which are based on the full Stokes system or on
other shallow approximations thereof (MacAyeal, 1989; Blat-
ter, 1995), cannot be meaningfully verified using the exact
solutions of this paper. These other continuum models must
evidently be verified using exact solutions of the relevant
equations. For example, Schoof (2006) describes a non-trivial
exact solution to the equations for an isothermal ice stream
with purely plastic till.
Note that a simplification of the continuum model de-

scribed here is the isothermal shallow-ice equation, a single
PDE for thickness H. It is derived from Equation (1) by sup-
posing a constant temperature in Equation (5). The flat-bed
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Table 1. Notation and units for functions and constants used in the construction of exact solutions tests F and G

Symbol Description Unit Value (if constant)

A Softness parameter in the thermomechanically coupled case Pa−3 s−1 3.61× 10−13
A0 Softness in isothermal case Pa−3 s−1
Ap Thickness perturbation amplitude (test G) m 200
b Bed elevation m
cp Specific heat capacity for ice J kg−1 K−1 2009
γ Perturbation time profile (test G) m
D Diffusivity of flow (Equation (1)) m2 s−1
ε̇ij Strain rate tensor s−1

F Constitutive function m s kg−1

φ Perturbation spatial profile (test G)
G Geothermal heat flux Wm−2 0.042
g Acceleration of gravity m s−2 9.81
h Surface elevation m
H Thickness (= surface elevation in flat-bed cases) m
H0 Dome thickness for tests F and G m 3000
Hs Thickness for test D (Bueler and others (2005)) m
k Thermal conductivity of ice WK−1 m−1 2.10
L Radius of sheet in tests F,G km 750
M Rate of ice-equivalent accumulation (or ablation if negative) m s−1
n Glen exponent 3
ν Function used in constructing exact T (Equation (23)) m
Q Activation energy for creep Jmol−1 6.0× 104
Q Vertically integrated horizontal flux vector m2 s−1

R Gas constant Jmol−1 K−1 8.314

r Radial coordinate r =
√
x2 + y2 m

ρ Density of ice kgm−3 910
ST Spatial rate of change in temperature K km−1 1.67× 10−2
s Normalized radial coordinate s = r/L
Σ Rate of strain heating K s−1
Σc Compensatory heating (Equation (17)) K s−1
σ (Scalar) effective shear stress Nm−2
σij Deviatoric stress tensor Nm−2
T Temperature K
Tmin Dome surface temperature for tests F and G K 223.15
Ts Surface temperature K
t Time s
tp Period of perturbation (test G) years 2000
U Horizontal velocity vector U = (u, v ) m s−1
Ū Vertically averaged horizontal velocity vector m s−1
Ub Basal horizontal velocity vector m s−1
u, v ,w Components of velocity m s−1
x , y , z Cartesian coordinates; z is measured upward from base seconds per year m 31556926

result, after eliminating σ, U and Q, may be written

∂H
∂t

= M +∇ ·
(
2(ρ g)nA0
n + 2

Hn+2|∇H|n−1∇H
)
, (13)

where A0 is a softness parameter corresponding to a constant
temperature.

Boundary conditions
PDEs (1) and (2) require boundary and initial conditions to
complete a (presumed) well-posed mathematical problem.
Because themargin is allowed to move, the boundary con-

dition for Equation (1) used here (and in Bueler and others,
2005) is

H ≥ 0, (14)

which is really a constraint on the allowed thickness func-
tions. In fact, it is essential to note that Equation (1) is solved
(in general) as a free boundary problem. The map-plane

region covered by ice is not predetermined. This free bound-
ary problem is known to be well posed in the isothermal
case (Calvo and others, 2002b). In particular, it is shown by
Calvo and others (2002b) that at a free margin where H = 0
the flux Q is also zero in the correctly (weakly) formulated
mathematical problem including inequality (14). Finding the
location of the margin is part of the problem. To make up for
the added unknown boundary location, at the boundary both
the thickness and the flux are equal to zero. (These would be
overdetermined boundary conditions if they were regarded
as boundary values for a PDE in the classical sense.)
A numerical approximation of this free boundary prob-

lem is available in an appropriately formulated finite-element
method (Calvo and others, 2002b). A principled approxima-
tion is much less clear for a finite-difference method such as
the one used here. That is, it is harder to know in advance
that a given finite-difference approximation treats the mov-
ing margin boundary condition correctly. We note, however,
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that straightforward enforcement of inequality (14) at each
time-step and at each point of the finite-difference grid gives
verifiably reasonable results in the current paper and in the
isothermal case (Bueler and others, 2005).
The three-dimensional (3-D) region on which Equation (2)

applies varies in time, but the boundary conditions are of the
classic type. On the upper surface of the ice,

T (t , x, y ,H) = Ts(x, y ) = Tmin + ST r , (15)

where r2 = x2 + y2 and (x, y ) = (0, 0) is taken to be the
center of the angularly symmetric ice sheet. In this paper, as
in EISMINT II, the surface temperature is a specified function
of the map-plane position. For construction of exact solu-
tions (below) we take Tmin = 223.15K, the value used in
experiment F of EISMINT II. Note that experiment F has the
strongest basal temperature spokes of the EISMINT II non-
sliding base experiments. (See Table 1 for values of constants
not discussed in the text.) A constant geothermal flux is ap-
plied at the base of the ice, z = 0:

∂T
∂z
(t , x, y , 0) = −G

k
. (16)

There is no bedrock thermal model.

EXACT SOLUTIONS
The differential equations describing ice flow are compli-
cated and highly non-linear. It is generally correct to say that
they do not possess exact solutions that can be computed by
hand. More precisely, for arbitrary initial/boundary values
and arbitrary source functions it is rare to find analytical
solutions. (By ‘source functions’ we mean known functions
which appear additively as terms in the differential equations.
The accumulation M in the ice flow Equation (1) is a source
function.)
If, however, one seeks an exact (analytical) solution only

for the purpose of testing the accuracy of a numerical code,
there is hope for producing such solutions. One idea, imple-
mented in this section, is to choose reasonable solution func-
tions, in this case analytical functions of time and space for
ice thickness and temperature. Source functions are then ad-
justed to accommodate the chosen solution functions. One
thereby makes the chosen functions into actual solutions.
Roache (1998) refers to this general technique as the ‘method
of manufactured solutions’.
For instance, in the isothermal case, Equation (13) can

be used to determine the accumulation function M given a
choice forH; Bueler and others (2005) call suchM ‘compen-
satory’. One can test a code for approximating Equation (13)
by comparing the numerical thickness to the chosen exact
thickness function. In particular, the exact compensatory ac-
cumulationM is used at each time-step during the numerical
run, while the exact thickness is used as the initial condition
and at the end of the run to evaluate the accuracy of the
numerical thickness.
To manufacture solutions in the thermomechanically

coupled case, we must replace Equation (2) with a more gen-
eral form incorporating an additional heat source (denoted
Σc):

∂T
∂t

= −U · ∇T −w ∂T
∂z

+
k

ρcp
∂2T
∂z2

+ Σ + Σc. (17)

By adding a term to Equation (2) we are solving a more gen-
eral version of the conservation of energy. The reader may
interpret Equation (17) as modelling ice in which a chemical
reaction is occurring, either endo- or exothermic according
to the sign of Σc, for instance.
We have already made two other modifications of the stan-

dard SIA model to allow the manufacture of exact solutions.
These modifications, which are less significant than the addi-
tion of a source term in Equation (17), are: (i) the constitutive
relation (4) used for the exact solutions in this paper is of
simple Arrhenius–Glen–Nye form with constant A and Q ;
specifically we use the cold part of the Paterson–Budd rela-
tion (1982); and (ii) the temperature T used in Equation (4)
is the non-homologous (absolute) temperature.
We then adopt the following strategy for manufacturing a

solution to the simultaneous equations (1), (17), (3), . . . , (9):
Once H and T are chosen, the coupling quantities σ,U,w
and Σ are determined by the appropriate equations (3), . . . ,
(9). The compensatory heat source Σc is then calculated as
the quantity necessary to make Equation (17) true. Likewise,
a compensatory accumulation function M is determined,
through the full system, as the quantity which makes Equa-
tion (1) true.
Note that the continuum model has precisely two

evolution-in-time equations: Equations (1) and (17). This
means that we have the flexibility to adjust two source func-
tions,M and Σc, to allow arbitrary chosen functionsH and T
to be a solution of the system. Because the thermo-
mechanically coupled system involves both partial deriva-
tives and integrals, however, our procedure for computingM
and Σc involves both manual differentiation and integration.
The need for exact manual integration, in particular, con-
strains the form of our flow law and our choice of analytical
forms for H and T ; see below.
A universal caveat about manufactured solutions is that

the computed source functions – the accumulation M and
the heat source Σc in our case – are not physical. This caveat
does not strongly affect verification of numerical codes, for-
tunately. Note, furthermore, that if one can find expressions
for H and T close to a physical solution thenM will be close
to physical and Σc will be close to zero. Complicated forms
for H and T will, however, inevitably yield difficult manual
or computer algebra system calculations when one uses the
equations to compute the source functions. The increased
potential for error in these calculations may reduce the utility
of the exact solutions for the purpose of verification.

Chosen thickness and temperature functions
We calculate two angularly symmetric exact solutions, de-
noted tests F and G, which are proposed additions to the
suite of exact solutions in Bueler and others (2005). Test F is
a steady-state solution and test G is a time-dependent per-
turbation of that steady state. The following solution is de-
scribed as time-dependent, that is, we describe test G. The
derivation of test F is a strict simplification.
We also restrict ourselves, in the remainder of this section,

to the angularly symmetric case; cylindrical coordinates r =√
x2 + y2 and z are used. The numerical computations in

Results are all on a Cartesian grid, however.
To be reasonably physical, we choose H = H(t , r ) based

on an angularly symmetric steady-state solution of the
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Fig. 1. Thickness and temperature field (K) in test F.

isothermal Equation (13), namely the test D thickness func-
tion from Bueler and others (2005):

Hs(r ) =
H0

(1− 1/n)n/(2n+2) (18)

·
[
(1 + 1/n)s − 1/n + (1− s)1+1/n − s1+1/n

]n/(2n+2)
,

where s = r/L. Here r = L is the (constant) location of the
margin. This function solves a steady-state version of Equa-
tion (13) as shown in Bueler and others (2005).
The profile given by Equation (18) is a smooth function

of r . The smoothness of Hs(r ) is important because of the
derivative-intensive exact calculations which (eventually)
yield the compensatory accumulationM and heat source Σc.
Next, we define a perturbed thickness function

H(t , r ) = Hs(r ) + φ(r )γ(t ), (19)

where, concretely,

φ(r ) = cos2
(

π(r − 0.6L)
0.6L

)
(20)

if 0.3L < r < 0.9L while φ(r ) = 0 otherwise, and

γ(t ) = Ap sin(2πt/tp). (21)

The term +φ(r )γ(t ) is an annular perturbation with amplitude
Ap and period tp. It also appears in isothermal test D (Bueler
and others, 2005).
For the steady-state solution test F, we will choose Ap = 0

so the perturbation vanishes. For test G we set Ap = 200m
and tp = 2000years. In particular, our choice of Ap in test G
is small enough so that ∂H/∂r is always negative for all r
and t ; a consistent sign for ∂H/∂r is convenient in the com-
putation of compensatory sources.
Next, we define the temperature field for the exact solu-

tions test F and G by

T (t , r , z) = Ts(r )
ν(t , r ) + H(t , r )

ν(t , r ) + z
, (22)

where ν is found from H and Ts by

ν(t , r ) =
kTs(r )
2G

(
1 +

√
1 + 4

H(t , r )G
kTs(r )

)
. (23)

Then T satisfies boundary conditions (15) and (16), that is,
T = Ts at the surface and ∂T/∂z = −G/k at the base.
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Fig. 2. Thickness and temperature field (K) in test G, evaluated at
t = 500 years.

Illustrations and comments
Figure 1 shows a radial section of the test F ice sheet defined
by Equation (19) with temperature field defined by Equa-
tion (22). Figure 2 shows the same quantities for test G at
t = 500 years, that is, at one-quarter of the perturbation
period tp when the perturbation has maximum magnitude.
Equation (22) defines a vertical temperature profile which

(unfortunately) is not very realistic. Note that the ice warms
as one goes from the surface to the bed, but the magnitude of
∂T/∂z is relatively constant in each column of ice and there
is no horizontal advection bulge in the temperature contours.
The compensatory heat source Σc, derived from H and T

via the full thermomechanically coupled system, is non-zero
and thus also non-physical. In fact, Σc is larger in magnitude
than Σ, though the maximum magnitudes of these functions
are within a factor of five.
Because our particular continuum model has a simple

Arrhenius term in the constitutive relation (4), and because
we do not impose T ≤ Tpmp, where Tpmp is the pressure-
melting temperature, we restrict ourselves to cold ice. This
is achieved by using a relatively cold surface temperature
(the EISMINT II experiment F surface temperature condition,
with a range 223K < Ts < 235K) and a relatively thin sheet
(with dome height H0 = 3000 m compared to H0 = 3600m
in EISMINT II). It follows from Equations (22) and (23) that
223K < T < 273K for all points in the ice; see Figures 1
and 2.
A crucial technical point is that T (t , r , z) in Equation (22)

satisfies the boundary conditions (15) and (16) and possesses
the property that the integrals for horizontal velocity, flux and
vertical velocity can be computed analytically. Specifically,
because integrals of the form

∫
ezzn dz can be expressed in

terms of elementary functions, and because of the form of the
Arrhenius term, we see that functions T with z dependence
of the form 1/(C+z) are convenient for purposes of analytical
computation. In fact, the integrand in the expression for hori-
zontal velocity (see Equations (4) and (5)) takes the form ezzn

multiplied by a complicated z-independent factor. Thus, the
integrals (5), (6) and (7) can each be computed exactly. These
admittedly technical issues explain choices (22) and (23).
Interestingly, T defined by Equation (22) satisfies

−2
ν + z

∂T
∂z

=
∂2T
∂z2

, (24)

and thus it can be regarded as having a steady-state pro-
file generated by vertical conduction and downward (verti-
cal) advection with a hypothetical vertical velocity whyp =
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Fig. 3. Magnitude |U| (m a−1) of horizontal velocity in test F; the
vector field U points in the positive r direction.

−2k (ρcp )−1(ν + z)−1. This may suggest some measure
of physical reasonableness, but whyp is not the vertical
velocity w in the solution which follows. Indeed, T satis-
fies Equation (17) by design while it satisfies Equation (24)
incidentally.
The substitution of H and T into Equations (3) and (5),

respectively, and use of the constitutive relation (4), gives
analytical formulae for effective stress σ and horizontal vel-
ocity U. Taking the horizontal divergence of U and vertically
integrating the result (see Equations (6) and (7)) gives ana-
lytical formulae for the vertical velocity w and for the term
∇·Q in Equation (1). Substitution of H and ∇·Q into Equa-
tion (1) gives an analytical formula for the compensatory ac-
cumulationM. Substitution of T , U and w into Equations (8)
and (17) gives an analytical formula for the compensatory
heat source Σc.
The formulae derived for M and Σc have the following

property. If Equations (1), (17) and coupling relations (3–8)
are solved using the initial values found from the exact H
and T , and if the derived formulae for M, Σc are used as
accumulation and heat source for the whole coupled sys-
tem during the solution, then H in Equation (19) and T in
Equation (22) solve the whole initial/boundary problem. The
previous sentence is at the heart of the matter: we have used
the continuum model to find, from chosen H and T , the
functions U,w ,M, Σ and Σc so that all of the coupled equa-
tions are simultaneously true. As long as we believe in the
uniqueness of solutions of the continuum problem, then we
have the exact solution to that problem. We have manufac-
tured a continuum truth against which to compare numerical
approximations. In the following section, we will perform
such a comparison against the result of a finite-difference
scheme.
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Fig. 4. Vertical velocity w (m a−1) in test F.
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Fig. 5. Strain heating Σ (10−3 Ka−1) in test F.

The calculations summarized above are both tedious and
non-trivial, but their detailed form appears in Bueler and
Brown (2006). We can, however, communicate many of the
essential features of the exact solutions by illustrating the var-
ious coupling quantities in the thermomechanically coupled
system: Figures 3–7 show test F, and Figures 7–9 show test G
at time t = 500 years.
In some of these figures the margin is not shown. This is in

order to avoid division by zero. All quantities H, T ,U,w , Σ,
Σc andM are bounded all the way to the margin, but in some
cases the formulae have 0/0 limits at the margin (Bueler
and Brown, 2006). Numerical errors which might arise by
numerically evaluating the exact formulae near these 0/0
limits are avoided in the illustrations here. Similarly, evalu-
ating the exact formulae very close to the (exactly known)
location of the margin can and should be avoided when the
exact solutions are used for verification. In particular, one
should check that a gridpoint is at least a few meters inside
the exact margin r = L before evaluating the exact solutions
at that gridpoint, in order to determine the numerical error
there.

RESULTS
Verification
The exact solutions described above were specifically de-
signed for the purpose of verification. The verification
procedure described next is permanently built into our com-
prehensive ice-sheet model PISM (https://gna.org/projects/
pism/). When we make code changes we redo verification
to determine whether numerical results are still close to con-
tinuum values.
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Fig. 6. Compensatory heating term Σc (10−3 K a−1) in test F.
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Fig. 7. Compensatory accumulation M (m a−1) in test G (solid line)
at time t = 500 years and in test F (dashed line). The equilibrium
radius for test F is r = 403.6 km.

The data presented here involved substantial grid refine-
ment and represent many thousands of processor hours, but
use of exact solutions tests F and G for basic verification
should be within the resources of all ice-sheet modelling
groups.
We briefly summarize our scheme in Appendix A. The

reader not interested in the details of the scheme or in repro-
ducing these results need not read Appendix A but should
note that we use an explicit finite-difference scheme for Equa-
tion (1), withMahaffy (1976)-type evaluation of the diffusivity
(see also method 2 in Hindmarsh and Payne, 1996). Fur-
thermore, we use a semi-implicit and first-order upwinded
scheme (Morton and Mayers, 2005) with equal spacing in
the vertical, for Equations (2) and (17). Roughly speaking,
our scheme uses the simplest consistent choices. The local
truncation error (Morton and Mayers, 2005) of our scheme
for Equation (1) is O (Δx2, Δy2, Δt ) while the local trunca-
tion error for our temperature scheme isO (Δx,Δy , Δz,Δt );
see Appendix B. A major purpose of this paper is to quantify
the ways in which actual numerical errors for the coupled
free boundary problem relate to these local errors.
To verify our thermomechanically coupled SIA scheme

using tests F and G, we initialize with the exact contin-
uum values of all quantities and run the code using the
exact values of the compensatory accumulation M and heat
source Σc at every step. The quantities H,T , u, v ,w and Σ
are computed numerically at each time-step, and no refer-
ence is made to their exact values after initialization except
to measure errors at the end of the run. Boundary conditions
are held to their exact values at every step. Of course, the
numerical solution gradually diverges from the exact values;
the results below describe this quantitatively.
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Fig. 9. Strain heating Σ (10−3 K a−1) in test G at time t = 500 years.

The runs reported here were for a fixed time of 25 kyr. This
was sufficient time for the scheme to diverge measurably
from the exact values. As the exact values are known, there
is no reason to run to numerical equilibrium, by whatever
standard might be determined. Instead, the actual errors were
computed at the final time. Our verification results would not
have been significantly different if we had run all computa-
tions for 200kyr.
All runs were completed with adaptive time-stepping, with

maximum time-step Δt limited to 10years. In particular, Δt
satisfied both constraints (25) and (27) at each step; see Analy-
sis below. (Inequality (25) was the active constraint because
the maximum velocities in tests F and G are relatively mod-
est. By contrast, the computations of EISMINT II experiment F
reported below were affected by both constraints.)
We use a computational ‘box’ with dimensions 1800 km×

1800 km× 4000m. For example, a spatial grid with spacing
Δx = Δy = 10km and Δz = 40m corresponds to a three-
dimensional grid with 181× 181× 201 ≈ 6.6× 106 points.
Note that our simple scheme has equal spacing in the vertical
(Appendix A).
Our first use of test F for verification is to refine the hori-

zontal grid, namely to use Δx = Δy = 30, 15, 10, 7.5 and
5 km, and to consider thickness errors. Figure 10 shows that
there is reasonable decay, under horizontal grid refinement
only, of average and dome thickness errors. (Various Δz in
the range 6.7–80m were used to produce Figure 10. The
role of Δz is addressed next.) This experiment gives an ap-
parently disappointing result for maximum thickness error,
however, as refinement produces maximum thickness errors
which are all in the range 25–29m. These maximum errors
do not significantly reduce with refinement (not shown).
The maximum thickness and temperature errors always

occur in the vicinity of the inevitably poorly approximated
margin (Bueler and others, 2005). As discovered by Calvo
and others (2002b), however, the quantity η = H (2n+2)/n =
H8/3 is much better approximated than the thickness H it-
self because η has a bounded gradient at the margin. As
shown in Figure 11, the maximum error in η converges at
a reasonable rate under purely horizontal grid refinement.
For clarity we report the relative maximum of η, that is,
max |ηnum − ηexact|/ηexact.
The grid refinement study reported in Figures 10 and 11

was carried out with several choices of Δz in the range 6.7–
80m. Thickness errors depend weakly on Δz. We can expect
temperature errors to depend on the size of Δz, however. If
Δx = Δy = 10km are fixed and Δz is reduced steadily
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Fig. 10. Average and dome thickness errors for test F. Several values
of Δz were used for each horizontal refinement level; see text.

from 80m to 6.7m then the average temperature error in
test F falls steadily from 0.12 to 0.02K (not shown).
Clearly grid refinement is a 3-D matter. Instead of reassess-

ing test F in this light, we turn to test G which is time-
dependent and therefore of greater interest anyway.
For test G we chose a fixed 3-D refinement path Δx =

Δy = 1800/N km and Δz = 4000/Nm with N = 60, 90,
120, 180, 240 and 360. In particular, Δx ranges from 30 km
down to 5 km while Δz ranges from 66.7m down to 11.1m.
The time-step Δt is limited to 10 years in all runs, but this
constraint is only active in the Δx = 20, 30 km cases since
for finer grids the time-step was further reduced by adaptive
time-stepping (constraints (25) and (27); see Analysis).
We observed reasonable convergence of all the quanti-

ties measured. The convergence is predictable for the part
of the refinement path with Δx ≤ 15 km. The observed
rates O (Δx1.90) and O (Δx1.98) in Figures 12 and 13, re-
spectively, for the average thickness and relative maximum
η errors, are essentially optimal for our O (Δx2) local trun-
cation error scheme for themass conservation equation (Mor-
ton and Mayers, 2005). In fact, given that there is a free
boundary problem for thickness, with margin location not
determined in advance, these rates are remarkably good.
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Fig. 11.Maximum relative error of η = H8/3 in test F. Convergence
under grid refinement is clear and occurs at a reasonable rate. Sev-
eral values of Δz were used for each horizontal refinement level.
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Fig. 12. Average and dome thickness errors for test G. In this and
the following two figures the horizontal and vertical grids are simul-
taneously refined. Rate of convergence given for Δx ≤ 15 km runs.

The horizontal location of the margin is at best approxi-
mated up to O (Δx) error (Calvo and others, 2002b; Bueler
and others, 2005), but this rate is hard to observe because
the location of the margin is discrete. There either is or is not
ice at a given gridpoint.
Figure 14 shows the numerical errors in temperature using

test G. Note that the thickness error made at a single
point, namely the dome, and the temperature error at a single
point, under the dome at the base, can be somewhat unpre-
dictable. Reports of average and maximum errors are more
meaningful.
It is believed that Figures 12–14 are the strongest possible

indication that we have chosen and correctly coded an effec-
tive thermomechanically coupled scheme. In the continuum
circumstances of tests F and G, grid refinement produces
good agreement between the numerical result and the con-
tinuum solution, as well as good rates of convergence.
The angular symmetry of the basal temperature map is of

obvious interest. It is shown for test G at the end of a 200kyr
model run with Δx = 30km in Figure 15. There is no sig-
nificant angular asymmetry even on this rough grid, and grid
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Fig. 13. Maximum relative error of η = H8/3 in test G.
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Fig. 14. Temperature errors for test G.

refinement clearly reduces the asymmetry. Figure 14 already
addresses angular symmetry because the maximum temper-
ature error is less than 2K at every point in the 3-D domain
of ice (for all levels of refinement). This shows that spokes
of greater angular variation than 2K cannot exist, as the re-
ported error compares the numerical result to the exact and
angularly symmetric solution to the continuum problem.
The non-existence of spokes in tests F andG is not asserted

to be physically interesting. Tests F and G are, as noted, not
based on the physical conservation of energy but rather on
the more general Equation (17). We emphasize, however,
that because an angularly symmetric exact solution is known,
any spokes would appear as numerical errors in a figure such
as Figure 14.
Note that test G is as cold as EISMINT II experiment F. Fig-

ure 15 recalls another fact, however, namely that the temper-
ature regimes of tests F and G are not physical. Tests F and G
solve Equation (17) while EISMINT II experiment F describes
a temperature field solving Equation (2).
Note that the temperature in tests F and G is allowed to

rise above the pressure-melting point, although the absolute
temperature remains below 273K, and thus the shaded re-
gion in Figure 15 is merely for illustrating the contrast of basal
temperature regime.

On the spokes in EISMINT II experiment F
We now have a ‘verified’ numerical scheme, verified to the
extent allowed by known exact solutions. We can apply
our numerical scheme to EISMINT II experiment F. When
comparing 11 models, experiment F produced spokes for all
schemes which included horizontal advection (Payne and
others, 2000). For this numerical experiment, one solves the
thermomechanically coupled system including Equation (2).
We also return to the Paterson and Budd (1982) flow law and
use a 1500 km× 1500km × 5000m computational box.
Our verified scheme produces spokes for EISMINT II exper-

iment F. Furthermore, they do not disappear under, nor are
they reduced by, grid refinement. Our results confirm those
of Payne and Baldwin (2000) and Saito and others (2006).
Figure 17 shows their configuration on a modestly refined
Δx = Δy = 12.5km grid (a factor of 2 finer than the EIS-
MINT II choice). Note that our code produces results with
angular symmetry for EISMINT II experiment A (not shown).

xx (km)

y 
(k

m
)

Fig. 15. Basal temperatures in test G at 200 kyr with Δx = Δy =
30km and Δz = 66.7m. Grey shaded region is at or above
pressure-melting temperature. Contour interval is 2 K, and the first
contour outside the grey shading is 270K.

The temperature distribution at depth for experiment F is
significantly different from that of tests F and G; (cf. Figs 1
and 16). It may also be the case that the margin in experi-
ment F is more singular than that in tests F and G (Saito and
others, 2006), but this is difficult to evaluate as we have only
gridded approximate margin shapes for experiment F.
We will analyze our EISMINT II experiment F numerical

results as solutions close to continuum solutions of impor-
tance, in the Discussion section.

ANALYSIS
In this section we identify the most important accuracy is-
sues which arise in any numerical simulation of a thermo-
mechanically coupled ice-sheet model which uses the SIA.
Many of these issues are widely observed in the literature,
but we believe that no comprehensive analysis of their effect
exists, though partial analyses appear in several places (Payne
and Baldwin, 2000; Payne and others, 2000; Hindmarsh,
2001; Bueler and others, 2005; Saito and others, 2006). The
analysis in this section was strongly influenced by the veri-
fication process described above. It is also supported by the
precise analysis of numerical errors in the temperature equa-
tion described in Appendix B.
As summarized in the Introduction, we believe that the

most important numerical issues are:

margin approximation,

the effect of diffusivity of the flow equation, in the coupled
system, on time-stepping,

domination of the temperature problem by vertical ad-
vection, and

the role of a derivative of the strain-heating term in the
non-linear ‘thermal runaway’ of the numerical error.

By separating and clarifying the first three of these issues we
can clearly identify the source of the spokes in the fourth.
By definition, the numerical error at a grid location is

the difference between the computed quantity at that grid
location and the (usually unknown) exact solution of the
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Fig. 16. Computed thickness and temperature field (K) in EISMINT
experiment F. This is a slice along a flowline of a full 3-D compu-
tation with Δx = Δy = 12.5 km and Δz = 25m. Compare with
Figure 1.

continuum initial/boundary problem at the same grid loca-
tion (Morton and Mayers, 2005). The numerical error at a
gridpoint is simply a number, even if we do not know it.
Because of current controversies in numerical ice-sheet

modelling, we feel obliged to caution the reader that stating
that a numerically computed quantity has a numerical error
should not imply that the possible physical import of the
error can be neglected. Conversely, one need not deny that
a numerical error has occurred in order to claim physical
importance of a numerical result.
Many more numerical issues than those addressed here

can, of course, be expected to arise if additional physics
is added to the continuum model (e.g. thermal bedrock,
coupling to ice shelves or ice streams, etc.).
Some modellers have used the Jenssen (1977) change of

vertical coordinate to simplify the numerics of the thermal
problem by avoiding the manipulation of a free boundary,
namely the surface of the ice within the numerical grid. This
coordinate change introduces an additional issue, namely
singular conductivity as one approaches the margin. See, for
example, equation (3) in Payne and Dongelmans (1997). Our
numerical scheme avoids this issue (Appendix A).
The issues raised in this section are universal for thermo-

mechanically coupled ice-sheet simulations, all of which
involve approximating a continuum dynamical system on a
finite grid in space and time. The detailed effects of the issues
raised here obviously depend on the particular numerical
scheme, however.

Margin approximation
It is well known that at a stationary grounded ice-sheet
margin in the SIA approximation, |∇H| is unbounded. It
follows that all known numerical methods are subject to
large numerical thickness errors at the margin. In fact, these
errors completely dominate the numerical thickness errors
made anywhere else in an ice-sheet computation (Bueler
and others, 2005). The only solution to this difficulty is to
recognize that the (isothermal) SIA is well posed for trans-
formed thickness η = H (2n+2)/n (Calvo and others, 2002b).
The quantity η has bounded gradient at the margin and is
well approximated by many numerical schemes.
We are describing here the issue of agreement between

numerical and continuum solutions to our model (the SIA).
A distinct issue is whether the SIA is adequate for particular
modelling goals, in other words whether margins must be
handled by the full, non-shallow Stokes equations in order

Fig. 17. Basal temperatures in EISMINT experiment F with Δx =
Δy = 12.5 km andΔz = 25m. Shaded region is at pressure melting
temperature. Contour interval is 2K and innermost, coldest contour
is at 244K.

to adequately model real ice sheets. The results of Leysinger
Vieli and Gudmundsson (2004) suggest that even in sur-
prisingly non-shallow circumstances the isothermal SIA pro-
duces results close to those of the isothermal Stokes model.
The margins of interest to users of the thermomechanically

coupled SIA have strongly varying temperatures within the
ice near the margin. This affects their shape in a poorly un-
derstood manner. For the exact solutions described in the
previous section, however, the margin is chosen to have the
same profile as the isothermal, stationary, ablation-zone mar-
gin. For such isothermal margins, if x is the distance from
the margin then the thickness satisfies H ∼ x1/2 for small x
(Fowler, 1997).
Based only on numerical computation we believe that

realistic thermomechanically coupled, stationary, ablation-
zone margins are more singular than isothermal margins
(cf. Figs 1 and 16). It is, however, very difficult to diagnose the
shape of a margin based purely on numerical evidence. Bet-
ter numerical techniques may clarify the situation (Saito and
others, 2007). No complete asymptotic analysis of thermo-
mechanically coupled margin shape, for the SIA, has been
found in the literature, although Fowler (2001) analyses the
shape of the margin in the case that advection is ignored.

Diffusivity of the mass conservation equation
Because we are considering the SIA, Equation (1) and its
isothermal version (13) can each be written in the form of a
non-linear diffusion equation

∂H
∂t

= M +∇ · (D∇H)

with diffusivity coefficient

D =

{
2(ρg)nA0(n + 2)−1Hn+2|∇H|n−1 (isothermal),

2ρg
∫ H
0 F (T ,σ)(H − ζ)2 dζ (coupled),

(Hindmarsh and Payne, 1996; Saito and Abe-Ouchi, 2005).
The thermomechanically coupled formula combines Equa-
tions (1), (5) and (6). It is correct for arbitrary flow laws
F (T , σ). This scalar quantity D , the diffusivity coefficient, is
known numerically at every mass conservation time-step be-
cause it is the scalar factor involved in computing the fluxQ.
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The identification Q = −D∇H is the ice flow analogue of
Fourier’s law for heat, although the expression Q = ŪH,
where Ū is the vertically averaged horizontal velocity, also
holds. As diffusion equations, (1) and (13) are simultaneously
highly non-linear and highly degenerate. (‘Degenerate’ ap-
plies because D → 0 at margins and divides, where H → 0
and |∇H| → 0, respectively.)
The maximum value of D anywhere on an ice sheet con-

trols the largest stable time-step for explicit approximations
of Equation (1) (Hindmarsh and Payne, 1996; Hindmarsh,
2001). Indeed, in the thermomechanically coupled case
using the explicit numerical scheme described in Appendix A,
we observe the stability restriction

Δt
2

(
1
Δx2

+
1
Δy2

) (
maxDijl

) ≤ 0.12. (25)

The maximum is taken over values of D computed at every
horizontal grid location (xi , yj ) on the simulated ice sheet at
the current time-step tl .
Restriction (25) is reliable enough to use in an adaptive

time-stepping scheme if advection in the temperature equa-
tion is also well approximated; see the comments on numer-
ical approximation of the advection below. Our observed
restriction (25) is only slightly more restrictive than that in the
isothermal case, where Hindmarsh (2001) predicts a critical
value of the righthand side of (25) of 1/(2n) = 1/6.When the
time-step violates inequality (25) the resulting stability prob-
lems (wiggles) emerge at locations on the ice sheet where the
function Hn+2|∇H|n−1 is largest. This will generically occur
away from divides and margins.
Implicit schemes for Equation (1) avoid stability restric-

tions such as (25), but fully coupled implicit schemes are
significantly harder to implement. In any case, there is an
additional restriction on thermomechanically coupled time-
stepping, described next.

Domination of the temperature problem by vertical
advection
In simulating real ice sheets, rough surfaces sometimes pro-
duce large vertical velocities in columns of ice below the
roughness. Similarly, sliding laws which allow an abrupt on-
set of sliding adjacent to frozen bed areas can produce unrea-
sonably large vertical velocities (through incompressibility).
These large velocities can produce a poor approximation of
the advection part of the temperature problem if the numer-
ical time-step is not restricted.
To explain why large vertical velocities appear, supposewe

combine Equations (5) and (7), and suppose for completeness
there is a possibly non-zero basal horizontal velocity field
Ub and a possibly non-flat bed z = b. (We now need to
distinguish between the surface elevation z = h and the
thickness H.) Then

w = 2ρg∇2h
(∫ z

b
F (h − ζ)(z − ζ) dζ

)
(26)

+ 2ρg∇h ·
(∫ z

b
∇{F (h − ζ)} (z − ζ) dζ

)
− (z − b) (∇ ·Ub)+Ub · ∇b,

where F = F (T , σ) and∇2h = ∇·(∇h). One sees that the ver-
tical velocity is affected by both the first and second deriva-
tives of the surface h, by the divergence of Ub and by the

gradient of b. The integrals here are not the point; we are sim-
ply identifying dependencies on horizontal derivatives and
thus on possible numerically induced inaccuracies.
Because the vertical velocity depends on the second de-

rivative of the surface, it is more sensitive to surface rough-
ness than are the horizontal velocity components (which
depend only on the first derivatives of the surface eleva-
tion). In particular, a gridded (rectangular or triangular mesh)
approximation of the surface elevation which is acceptable
for computing horizontal velocity may be rough enough to
cause unreasonable vertical velocities in some columns of
ice. We observe, for instance, that digital elevation maps
for Antarctica drive this effect in many locations when these
maps are used as initial conditions for ice-sheet simulation.
The dependence of w upon the divergence of the basal

horizontal velocity field has been observed before. For in-
stance, EISMINT II experiment H, which involved pressure-
melting temperature-activated basal sliding, has been crit-
icized because it used basal velocities Ub proportional to
the effective shear stress and involved sudden transitions of
the basal velocity as one moves from frozen base to melted
base (Fowler, 2001). The resulting jump in Ub produces un-
bounded vertical velocity within the ice in the continuum
limit. Such discontinuities in basal velocity are presumably
avoidable by using more complete physical models of the
basal conditions.
Flow velocities are of importance here because they advect

heat, and this advection must be numerically approximated.
Numerical schemes for Equation (2) may have conditions
on the length of the time-step in terms of the magnitude of
the advection velocities. Upwinded schemes of any finite
order require some version of the CFL condition (Morton
and Mayers, 2005) for stability.
For example, we use a first-order upwind for temperature

Equation (2); see Equation (A2) in Appendix A. This method
sacrifices accuracy and it produces some artificial diffusivity
but it is essentially as stable as possible (Morton and Mayers,
2005). For our scheme a precise form of the CFL condition
for pure advection is the inequality

Δt max
(∣∣∣uijkl
Δx

∣∣∣+
∣∣∣∣vijklΔy

∣∣∣∣+
∣∣∣wijkl
Δz

∣∣∣) ≤ 1. (27)

See Appendix B and Equation (B3) in particular. Here the
numerators of the terms within parentheses are the gridded
values of the components of velocity. The maximum is over
the whole 3-D gridded region of ice at the time tl . Condition
(27) is combined with condition (25) in our adaptive time-
stepping scheme, and the shorter of the two time-steps is
used.
We observe in practice that condition (27) is more likely

to be activated by large vertical velocities than horizontal
velocities. Of course, vertical speeds in an ice sheet are typi-
cally lower in absolute terms than horizontal speeds, but the
vertical mesh is always much finer. As described above, nu-
merically computed vertical velocities can be of surprisingly
large magnitude because of surface roughness and/or large
gradients in the basal velocity field.
Payne and Dongelmans (1997) introduced a scheme with

unequally spaced five-point upwinding which maintains sta-
bility with higher-order local truncation error. We believe this
scheme, which is subject to some unstated CFL condition,
is used in several current ice-sheet models. Such a scheme
is definitely worthwhile if it can be shown that the global
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approximation error – the actual error – is reduced. The exact
solutions of this paper are well suited to demonstrating such
improved performance.

The strain-heating term: emergence of spokes
A standard finite-difference convergence analysis (Appen-
dix B) of our scheme for Equation (2) reveals that if con-
dition (27) holds for each time-step then the growth of the
numerical error is controlled by two quantities. One quantity
is the smoothness of the continuum solution to Equation (2),
as reflected in the local truncation error of the scheme (Mor-
ton and Mayers, 2005). The other quantity, however, is the
size of a derivative of the strain-heating term Σ. Recall that

Σ =
1

ρcp

(
σxz ,σyz

) · ∂U
∂z

=
2A
ρcp

exp
(
− Q
RT

)
σn+1. (28)

Let El be themaximum of the numerical temperature errors
|Tijk ,l−T (xi , yj , zk , tl )| over the entire spatial grid at time-step
tl . That is, consider the maximum of the difference between
the computed approximate temperature Tijkl and the exact
temperature T (x, y , z, t ) predicted by the continuum equa-
tions but evaluated at the gridpoint (xi , yj , zk ) at time tl ; this
is an instance of the definition of numerical error above. One
can show (Appendix B) that

El+1 ≤
(
1 + Δt

∂Σ
∂T

)
El +Δt τl , (29)

where τl is the local truncation error at time tl . Note that τl
depends on the size of higher partial derivatives of the exact
solution to the temperature equation, that is, it depends on
the smoothness of the continuum solution.
By inequality (29) the local truncation error can, at worst,

cause arithmetic growth in the actual error El . By contrast,
in estimate (29) the error El multiplies ∂Σ/∂T . The worst-
case error can therefore grow exponentially (geometrically)
if ∂Σ/∂T is large. The quantity ∂Σ/∂T acts like an interest
rate for growth of error. A refined form of inequality (29) is
inequality (B7), which shows that the exponential growth can
be greatest at the locations where ∂Σ/∂T is maximum.
Consider the spokes which appear in EISMINT II experi-

ment F, and are illustrated in Results above. Note that the EIS-
MINT II experiment F continuum set-up has perfect angular
symmetry. The exact solution of this initial/boundary value
problem, which is unknown, also has this angular symmetry.
Thus the magnitude of the spokes, as measured by the devi-
ation from a given temperature value as one follows a curve
of fixed z and r in a circle within the ice around the z axis,
is a lower bound for the numerical temperature error. (In this
literal sense, the spokes unequivocally are a numerical error.)
Figure 18 shows that ∂Σ/∂T has strong maxima along

the warm spokes in EISMINT II experiment F. (In this figure,
large values of ∂Σ/∂T for points where the thickness is less
than 1000m are set to zero. We assert that these values are
corrupted by margin mis-approximation, but that the slow
flow very close to the margin (e.g. within 20km of the mar-
gin) is unable to feed back to affect the surface slopes and
near-basal strain rates at the upstream locations of the onset
of spokes. Better numerical schemes for approximation of
the fields near the margin may remove this issue (Saito and
others, 2007).)
Thus the spokes emerge under a version of the well-known

thermocoupling feedback mechanism, with warmer spokes
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Fig. 18. Basal values of ∂Σ/∂T (10−12s−1) from EISMINT experi-
ment F, from the same computation which provided Figure 17. To
give clear detail, only one-quarter of the computational region is
shown.

locally drawing down the surface and steepening the gra-
dient nearby, thus increasing the strain heating upstream of
the warm spokes, and generally accelerating flow to produce
more strain heating, and so on. This describes ‘thermal run-
away’, which is also observed in fluid systems other than ice
(Fowler, 2001). The spokes themselves are errors, however,
because the continuum problem and its unknown (exact)
solution have angular symmetry. Thus the quantity which is
‘running away’ in this analysis is the size of the numbers
Tijk ,l − T (xi , yj , zk , tl ), the numerical temperature errors.
The analysis here usefully predicts that spokes emerge in

locations of peak values of the diagnostically computable
quantity ∂Σ/∂T . On the other hand, the derivative of Σ with
respect to T , using the second form of Σ in Equation (28), is:

∂Σ
∂T

= Σ
Q
RT 2

. (30)

This quantity is always positive. From Equation (30) it follows
that if a realistic Arrhenius-type term in the flow law is used
with the Paterson and Budd (1982) law as the representative
case, then as the temperature rises from cold to within 10K
of the melting point the quantity ∂Σ/∂T will jump up dis-
continuously. The jump occurs at a temperature of 263.15K
in the Paterson–Budd relation, where Q changes from 6.0
to 13.9 (in units of 104 Jmol−1): see Figure 19. Note Σ is
a continuous function of temperature but ∂Σ/∂T is not in
the Paterson–Budd case. The Hooke (1981) flow law, which
has been demonstrated to produce spokes for experiment F
in practice (Payne and Baldwin, 2000), apparently behaves
in an even worse manner because the value of ∂Σ/∂T near
melting is even larger, although there is no actual jump. This
seems to cause even stronger error growth in the immediate
vicinity of the margin.
However, if the contribution of Σ to the temperature field

as in Equation (2) is non-physically ‘smeared’ then the spokes
go away. In particular, suppose we smooth the strain-heating
term Σ in horizontal directions, at each temperature time-
step, by replacing gridded values Σijk ,l with an average of
horizontally neighboring values. An example of the result for
the basal temperature map is shown in Figure 20; the spokes
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Fig. 19. Graphs A(T ) for the Paterson and Budd (1982) and Hooke
(1981) flow laws, and of the cold and warm simple Arrhenius
parts of the Paterson–Budd law extended to all temperatures. For
the Paterson–Budd and Hooke laws the slope of A(T ) jumps or
changes rapidly as one approaches the melting temperature. There-
fore ∂Σ/∂T jumps or changes rapidly; see Equation (28).

are gone. In this case, the smoothing was by a finite-support
averaging kernel whichwas approximately Gaussian and had
a standard deviation of about two grid spaces (25 km) and a
maximum range of four grid spaces (50 km) on this 12.5km
grid. From runs on various grids we believe the smoothing is
effective in eliminating the spokes if it has a range (standard
deviation) of the order of 25 km for a 1 year time-step.
The average was globally energy-conserving for the ice,

that is, all of the heat generated by strain heating (and no
more heat) was put into the ice. The location of that heat-
ing was spread in the horizontal by a mechanism not ex-
plained by the missing horizontal conduction terms in the
conservation-of-energy equation, however. Easy estimates of
the thermal diffusivity of ice show that our ad hoc smooth-
ing is significantly greater than would be the effect of re-
introducing horizontal conduction of heat through the ice
or bed. (Neither of these reintroductions was numerically
tested, however.) An interesting possibility is that the inclu-
sion of longitudinal stresses into the coupled system would
spread the strain heating itself in the horizontal (Hindmarsh,
2006) and provide a physical mechanism which smears the
spokes.
The ‘thermal runaway’ of the numerical temperature errors

is rather slow in that it takes at least thousands of model
years to become significant. It can only occur if the condi-
tions causing the runaway remain in place for a significant
time and apply over significant spatial extent. In particular,
EISMINT II experiment F results show spokes in its flat base
and smoothly varying accumulation conditions but they take
more than 10 kyr to stabilize after the geometry is roughly in
place. It is therefore likely that in conditions of significantly
varying bed elevation, or of varying surface temperature and
accumulation boundary conditions, the necessary coherence
for thermomechanically coupled runaway of error does not
occur. Thus the spokes phenomenon might be minimally in-
fluential for the simulation of real ice sheets.
The ‘thermal runaway’ of the error, though it may grow ex-

ponentially in some cases, has a maximal exponential rate
if the geometry is fixed. In fact, one can turn inequality (29)

into a proof of convergence of our numerical scheme for tem-
perature under the assumption of fixed geometry and also
stringent smoothness assumptions about the velocity fields
(Bueler and Brown, 2006). This proof yields a maximum ex-
ponential rate based on the largest value of ∂Σ/∂T as de-
scribed above.
We see no strong reason to believe that some version of

the spokes will not appear when numerical 3-D thermo-
mechanically coupled Stokes simulations are applied to cir-
cumstances similiar to EISMINT II experiment F. This is be-
cause the temperature equation keeps its same strain-heating
term, and thus an analysis of the numerical error in the tem-
perature equation will reveal the same possibility (at least)
of ‘thermal runaway’ of the error. Indeed it appears that in
at least one higher-order stress balance scheme there are
still spokes for the EISMINT II experiment F boundary values
(Saito and others, 2006).

DISCUSSION
The above analysis of the spokes in EISMINT II experiment F,
which identifies them mathematically as numerical errors, is
correct but it is also impoverished scientifically. The spokes
are not merely telling us that there is some divergence of the
numerical solution from the exact (and angularly symmet-
ric) solution. Indeed, there is pattern to the numerical error,
and the pattern comes from a mechanism in the thermo-
mechanically coupled SIA which allows the ice flow to con-
centrate into spokes (Payne and Dongelmans, 1997). We
would not want to claim that the spokes are solely a numer-
ical artifact (Saito and others, 2006) even though our mathe-
matical analysis clearly identifies them as numerical errors.
We now attempt to include both of these complementary
interpretations of the spokes in the same discussion.
First note that, based on the verification performed in this

paper, we can exclude the possibility that the spokes arose
because the numerical scheme does not consistently approx-
imate all the terms and all the coupling mechanisms in the
continuum thermomechanically coupled SIA.
We have not observed any numerical evidence which sug-

gests an unequivocal ill-posedness of the time-dependent
problem. That is, we have never observed the effect that the
numerical scheme is unable to maintain stability by choos-
ing appropriately small time-steps. This would be the symp-
tom if any numerical scheme were applied to the ill-posed
backward heat equation ∂u/∂t = −∂2u/∂x2, for instance.
In such a case, the continuum dynamical system has the
property that the rate of exponential explosion of modes
of various spatial frequencies is an unbounded increasing
function of the frequency. Numerically, all wiggles blow up
and the more ‘wiggly’ they are the faster they blow up.
Shortening the time-step would never help in this kind of
problem.
On the other hand, the kind of ill-posedness claimed by

Hindmarsh (2004, 2006), in particular, would be more
subtle. It would correspondmerely to non-decay of the rate of
exponential growth of the modes as a function of the spatial
frequency. We have not observed this phenomenon either,
however. In particular, Figure 17 shows spokes with smooth
contours. This must be because the highest-frequency com-
ponents of the temperature variation actually decay slightly
(i.e. some smoothing occurs). Note, however, that the spokes
which appear when we use the Hooke (1981) flow law (not
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shown, but see similar results in Payne and Baldwin, 2000),
do not have much smoothness. This could be evidence for
the Hindmarsh (2004) interpretation in the (non-standard)
Hooke flow-law version of EISMINT II experiment F.
We believe that the specific time-dependent continuum

dynamical system in question has an unstable equilibrium
point. In particular, we believe that as the continuum solution
evolves from the prescribed zero-ice initial condition, any
added perturbation from perfect symmetry becomes a path
which diverges from the intended path of ice sheets with
perfect symmetry. Perturbations will, of course, inevitably
happen with numerical errors, including rounding errors.
But the unstable equilibrium is a property of the continuum
dynamical system itself.
We propose that by tuning the central surface temperature

from Tmin = 243K (experiment A) to Tmin = 223K (experi-
ment F) the angularly symmetric equilibrium solution under-
goes a bifurcation (Guckenheimer and Holmes, 1983) from
stable to unstable. The spokes we see represent a new sta-
ble equilibrium of a slightly perturbed continuum problem,
which is significantly far away from the unstable angularly
symmetric equilibrium of the unperturbed problem. Further-
more, it seems that the new stable equilibrium is relatively
dependent on the details of the numerical discretization.
Thus, one sees different forms for the spokes coming from
different numerical schemes (Payne and others, 2000; Saito
and others, 2006; this paper).
Note that, if desired, one could approximate the angularly

symmetric equilibrium by computing on a r , z cylindrical
coordinate grid and thereby enforcing symmetry. We suspect
that the instability is occurring in directions (in the relevant
function space) which are orthogonal to the angularly sym-
metric states; compare the form of the most unstable mode
in Hindmarsh (2006). In other words, if we restrict ourselves
to the angularly symmetric subspace then we expect there
to be a stable equilibrium.
It is possible that a change to a more complete contin-

uum model will eliminate the spokes problem by making
the equilibrium stable. The addition of higher-order stresses
by the Blatter (1995) shallow approximation, however, seems
not to eliminate the spokes (Saito and others, 2006). On the
other hand, Hindmarsh (2006) performs a stability analysis
which suggests that use of the Blatter (1995) approximation
should dampen the spokes instability.
We certainly believe that the form of the spokes, and even

the existence of spoked stable equilibria, is sensitive to the
source and boundary functions of the problem. We expect
that the equilibrium solution is sensitive to the spatial
distribution of the surface accumulation rate. Similarly, the
equilibrium solution is a sensitive function of the surface tem-
perature and of the shape of the bed. We therefore expect
that the solution of the equilibrium continuum problem is
very sensitive to the equilibrium climate. It might even be
a discontinuous function of such an equilibrium climate. If
the spokes represent the steady state that arises as the sur-
face temperature parameter Tmin passes a bifurcation point,
then the solution of the problem is certainly a discontinuous
function of the climate.
We do not believe that the time-dependent problem is

meaningfully ill-posed. But it seems likely to us that the equi-
librium thermomechanically coupled problem is ill-posed
in the sense that it depends discontinuously on the climate
inputs to the ice-sheet model. It is an interesting question

Fig. 20. Basal temperatures from EISMINT II experiment F, exactly as
in Figure 17, but recomputed with smoothing of the strain-heating
term. Compare also with Figure 15.

whether this situation applies to any continuum model of
ice sheets which is sufficiently complete.

CONCLUSION
We have described the first non-trivial exact solutions of
the thermomechanically coupled SIA. These exact solutions
come with the caveat that a compensatory heat source is
used in their construction. In these exact solutions, the tem-
perature field at depth is not physical. We believe, how-
ever, that the glaciology community can substantially replace
intercomparison with verification using exact solutions as a
test method for numerical models of thermomechanically-
coupled ice sheets based on the SIA.
The numerical scheme used by our group shows clear evi-

dence of convergence under grid refinement when approxi-
mating these exact solutions.
Our numerical scheme also exhibits spokes, however,

when approximating the unknown continuum solution to
the EISMINT II experiment F boundary value problem (Payne
and others, 2000). We assert that the spokes are literally a
numerical error relative to the exact solution (which has an-
gular symmetry). On the other hand, the spokes grow to a
finite size through a physically significant mechanism (e.g.
the mechanism discussed by Payne and Dongelmans, 1997).
We show that a numerical solution can diverge exponentially
from the exact solution at a rate which depends on the size
of the derivative of the strain-heating term with respect to
temperature. The equilibrium solution of EISMINT II experi-
ment F is unstable, so this actually occurs.
The resulting spokes suggest that the function (map) from

the climate data used in the model, in particular the accu-
mulation and surface temperature data, to the solution of the
equilibrium thermomechanically coupled SIA, is probably
discontinuous.
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APPENDIX A
NUMERICAL SCHEME
The numerical scheme used to produce the results on verifi-
cation and on EISMINT II experiment F is described here.
Note that the notation used here does not completely con-

form to Table 1. We assume, for the purposes of notational
simplicity in this Appendix only, that there is only one hori-
zontal coordinate x. A space–time gridpoint is denoted
(xi , zk , tl ). We suppose that the ice sheet is, at all times, con-
tained within a box (x, z) ∈ [−Lmax, Lmax] × [0,Hmax] and
that Δx = 2Lmax/N, Δz = Hmax/Nz . Gridded values of
quantities independent of z are denoted here as Hil , etc.,
while quantities dependent on z are denoted Tikl , etc.
Equation (1) is approximated by

Hi,l+1 −Hil
Δt

= M(tl , xi )−
Qx
i+1/2,l −Qx

i−1/2,l
Δx

. (A1)

(In fact, Q =
(
Qx ,Qy) is a vector, but we are suppressing

the y coordinate.) This is an explicit scheme because the
right side contains only time tl values.
The temperature Equation (2) is approximated by an up-

winded semi-implicit scheme. Let δ2f• = fk+1 − 2fk + fk−1
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and let Up
(
f•|αi

)
= αi (fi−fi−1) if αi ≥ 0 while Up

(
f•|αi

)
=

αi (fi+1 − fi ) if αi < 0. The scheme is

Tik ,l+1 − Tikl
Δt

=− Up
(
T•,kl |uikl

)
Δx

− Up
(
Ti,•,l |wikl

)
Δz

(A2)

+
k

ρcp

δ2Ti,•,l+1
Δz2

+ Σikl .

Both the upwinding and the semi-implicitness are chosen
so that relatively long time-steps can be computed stably,
but the time-step is still constrained by condition (27). Using
boundary conditions (15) and (16), Equation (A2) can be re-
arranged to be a rapidly solvable tridiagonal system for the
unknowns {Ti,•,l+1} in the ith column of ice.
Note that boundary condition (15) is approximated by ap-

plying the value of the surface temperature to the highest
gridpoint within the ice (at the given horizontal grid loca-
tion). That is, boundary condition (15) is applied at the mov-
ing surface up to an error of orderO (Δz). The Jenssen (1977)
change of coordinates is not used.
To complete the above finite-difference equations we

need to approximate u,w ,Qx and Σ at time-step tl . We
will both suppress the time index l and revert to two hor-
izontal coordinates x and y . The surface gradient ∇H =(
∂H/∂x,∂H/∂y

)
is computed on a staggered grid by the

Mahaffy (1976) scheme:

∇Hi+1/2,j =
〈Hi+1,j − Hij

Δx
, (A3)

(Hi+1,j+1 +Hi,j+1)− (Hi+1,j−1 +Hi,j−1)
4Δy

〉
.

A similar formula computes ∇Hi,j+1/2. Using Equation (5)
we compute the horizontal velocity on the staggered grid by
integrating a scalar function in the vertical:(

ui+1/2,j,k , vi+1/2,j,k
)

(A4)

= ∇Hi+1/2,j ·
[
−2ρg

∫ zk

0
F (ζ)

(
Hi+1/2,j − ζ

)
dζ

]
.

The integral is computed numerically by the trapezoid rule.
Note F (ζ) = F (Ti+1/2,j,q , σi+1/2,j,q ) at ζ = zq ; see constitutive
relation (4) for F (T , σ). Note that σi+1/2,j,k = ρg(Hi+1/2,j −
zk )× |∇Hi+1/2,j |, where Hi+1/2,j = (Hi+1,j + Hij )/2. Note
also that the value Ti+1/2,j,k is computed by averaging hori-
zontal non-staggered grid neighbors. We find ui,j+1/2,k and
vi,j+1/2,k by similar formulae to (A4).
To compute Qx

i+1/2,l we vertically integrate the staggered
grid values of u, computed from Equation (A4), by the trap-
ezoid rule. To compute uikl for the first upwinded term in
Equation (A2), we average horizontal staggered grid neigh-
bors. To computewikl for the second upwinded term in Equa-
tion (A2), we use Equation (A4) and compute (∂u/∂x)ikl ≈
(ui+1/2,kl − ui−1/2,kl )/Δx and then integrate the result verti-
cally by the trapezoid rule; see Equation (7). Finally, note that
Σ = 2(ρcp )−1 F (T ,σ)σ2 is first computed on the staggered
grid by the Mahaffy choices for |∇H| and H in σ = ρg(H −
z) |∇H|. These are then averaged onto the regular grid.

APPENDIX B
A FINITE-DIFFERENCE ERROR ANALYSIS
Here we analyze the error in the finite-difference scheme
(A2) which applies to the temperature Equation (2). This

analysis of error is standard for finite-difference approxima-
tions of many PDEs (Morton and Mayers, 2005), but no simi-
lar analysis is known to the authors for the shallow ice flow
conservation-of-energy equation. The most important
assumptions made here are that the components of the vel-
ocity field are assumed to be fixed functions of space and
time (independent of the temperature) and also that the
geometry of the ice sheet is fixed. This analysis nonethe-
less provides enough information to build a reliable adap-
tive time-stepping scheme for the temperature equation in
the fully coupled system. It also reveals a significant point of
numerical error growth.
We analyze the numerical scheme in three spatial dimen-

sions, that is, we add a second horizontal dimension to Equa-
tion (A2). In particular, the upwinded approximation to the
advection term v ∂T/∂y is added. We suppose Equation (2)
applies on some bounded region Ωwhich is fixed in time.We
enclose Ω in a rectangular computational domain. We set a
rectangular grid on that computational domain with spacing
Δx, Δy ,Δz. We denote the gridpoints by (xi , yj , zk ). The in-
terval of time is divided in an unequally spaced manner, but
we use Δt for the current time-step in the analysis.
Let uijkl = u(xi , yj , zk , tl ), etc. Let Tijkl be our numerical

approximation of the temperature at a gridpoint. The gridded
value of the exact solution is denoted T (xi , yj , zk , tl ).
The local truncation error τijkl is defined to be the non-zero

result of applying the finite-difference scheme to the exact
solution T (x, y , z, t ) (Morton and Mayers, 2005). It plays a
supporting role in the analysis of the global approximation
error (the actual numerical error). The local truncation error
of our scheme decays to zero at rate O (Δt ,Δx,Δy , Δz) as
the grid is refined. Including the Taylor expansions and all
cases of upwinding, it has the more detailed form of

τijkl =
1
2
TttΔt ±

uijkl
2
TxxΔx ±

vijkl
2
TyyΔy (B1)

± wijkl
2
TzzΔz − K

12
TzzzzΔz2,

where the partial derivatives of T are evaluated somewhere
in the neighborhood of (xi , yj , zk , tl ) and where K = k/(ρcp ).
We see that the finite-difference scheme is consistent (Morton
and Mayers, 2005), that is, the local truncation error tends
to zero as the grid is refined, assuming the exact solution is
smooth enough. (This is the minimal situation in which we
may proceed.)
Let eijkl = Tijkl − T (xi , yj , zk , tl ) be the (signed) numerical

error at a gridpoint. Since Tijkl solves scheme (A2) exactly,
and by the definition of the local truncation error,

eijk ,l+1 − eijkl
Δt

+ uijkl
eijkl − ei−1,jkl

Δx
(B2)

+ vijkl
eijkl − ei,j−1,kl

Δy
+ wijkl

eijkl − eij,k−1,l
Δz

− K δ2eij,•,l+1
Δz2

+
[
Σ(T (xi , yj , zk , tl ))− Σ(Tijkl )

]
= −τijkl .

Equation (B2) and also (B3) below apply as stated only in the
upwinding case of all positive components of velocity.
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We are interested in the evolution of error so we solve for
the error at gridpoint (xi , yj , zk ) at time tl+1:(
1 + 2

KΔt
Δz2

)
eijk ,l+1 =

KΔt
Δz2

(
eij,k+1,l+1 + eij,k−1,l+1

)
(B3)

+
{
1− uijkl ΔtΔx − vijkl

Δt
Δy

−wijkl ΔtΔz
}
eijkl

+ uijkl
Δt
Δx

ei−1,jkl + vijkl
Δt
Δy

ei,j−1,kl +wijkl
Δt
Δz

eij,k−1,l

−Δt [Σ(T (xi , yj , zk , tl ))− Σ(Tijkl )]−Δt τijkl .
Wenow assume that the quantity in braces in Equation (B3)

is non-negative in all upwinding cases, which is precisely
the CFL condition (27). This assumption, which limits our
time-step and generates part of the adaptive time-stepping
scheme, allows us to proceed with a version of the standard
maximum principle argument for a finite-difference scheme
(Morton and Mayers, 2005, especially section 2.15). As is
standard in such arguments, our plan is to use as a stability
condition the assumption that all coefficients of errors are
non-negative in Equation (B3).
Let El = maxi,j,k |eijkl | and τl = maxi,j,k |τijkl |. Our goal

is to know how much El can grow in one time-step. Equa-
tion (B3), considering all upwinding cases, and condition
(27) together imply(

1 + 2
KΔt
Δz2

)
|eijk ,l+1| ≤ 2KΔtΔz2

El+1 + El (B4)

+ Δt
∣∣Σ(T (xi , yj , zk , tl ))− Σ(Tijkl )∣∣+Δt τl .

The size of the |Σ(T (xi , yj , zk , tl ))−Σ(Tijkl )| term is very im-
portant, and we must make another assumption. It amounts
to knowing that the derivative of Σ with respect to the tem-
perature T is finite. This assumption is fully justified in the
case of existing flow laws, but the size of this derivative, and
of the coefficient L which appears next, is of importance in
connection with the spokes; see Analysis.

We assume there exists a bounded non-negative function
L(x, y , z, t ) ≥ 0 such that

|Σ(T1)− Σ(T2)| ≤ L(x, y , z, t )|T1 − T2|. (B5)

Note that the strain-heating term Σ actually depends on co-
ordinates x, y , z and t as well as temperature T through its
dependence on the thickness and surface slope of the ice
sheet. In particular, if the partial derivative ∂Σ/∂T exists and
is bounded, and if we define

LΣ = max
T

∣∣∣∣∂Σ∂T
∣∣∣∣ , (B6)

then we may take L = LΣ to make inequality (B5) true. The
result is the inequality:(

1 + 2
KΔt
Δz2

)
|eijk ,l+1| ≤ 2KΔtΔz2

El+1 + El (B7)

+ Δt LΣ |eijkl |+Δt τl .
Inequality (B7) gives inequality (29) by considering the worst
case location on the grid at time tl+1, that is, at i, j, k such
that |eijk ,l+1| = El+1.
Regarding inequalities of the form of (B7) and/or (29), note

that if

αl+1 ≤ Aαl + Bl (B8)

for some abstract sequence {αl}, given A > 0 and particular
values B0,B1, . . . , then

αl ≤ Alα0 +
(
Al−1 + · · · + A1 + 1

)(
maxBk

)
. (B9)

Thus, coefficient A in (B8) controls exponential growth of
{αl}, while the effect of large values of Bl can only contribute
linearly (arithmetically) to {αl}.
In the text we have exploited inequality (29) to substan-

tially explain the spokes as numerical errors. In Bueler and
Brown (2006) we also use inequality (B7) to build a conver-
gence theorem for the finite-difference scheme under add-
itional (admittedly stringent) smoothness assumptions.
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