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Abstract. Let [a1(x), a2(x), a3(x), . . . ] be the continued fraction expansion

of an irrational number x ∈ (0, 1). Denote by Sn(x) :=
∑n

k=1 ak(x) the sum
of partial quotients of x. From the results of Khintchine (1935), Diamond and

Vaaler (1986), and Philipp (1988), it follows that for almost every x ∈ (0, 1),

lim inf
n→∞

Sn(x)

n logn
=

1

log 2
and lim sup

n→∞

Sn(x)

n logn
= ∞.

We investigate the Baire category and Hausdorff dimension of the set of points

for which the above limit inferior and limit superior assume any prescribed val-
ues. We also conduct analogous analyses for the sum of products of consecutive

partial quotients.

1. Introduction

The continued fraction expansion of a real number x ∈ I := (0, 1) \ Q can be
written in the form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

=: [a1(x), a2(x), a3(x), . . . ], (1.1)

where a1(x), a2(x), a3(x), . . . are positive integers, known as the partial quotients of
x. See [6] for more details on continued fractions.

In this paper, we study the asymptotic behavior for the sum of partial quotients.
For any x ∈ I and n ∈ N, let

Sn(x) :=

n∑
k=1

ak(x)

be the sum of the first n partial quotients of x. In 1935, Khintchine [7] proved that

lim
n→∞

Sn(x)

n logn
=

1

log 2
in Lebesgue measure, (1.2)

and pointed out that (1.2) cannot hold almost everywhere. In 1986, Diamond and
Vaaler [1] explained that the obstacle to almost everywhere convergence of (1.2) is
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the occurrence of the largest term max1≤k≤n{ak(x)} in the sum Sn(x). Precisely,
they showed that for Lebesgue almost every x ∈ I,

lim
n→∞

Sn(x)−max1≤k≤n{ak(x)}
n logn

=
1

log 2
. (1.3)

Combining (1.2) and (1.3), we see that for Lebesgue almost every x ∈ I,

lim inf
n→∞

Sn(x)

n logn
=

1

log 2
. (1.4)

For its limit superior behavior, Philipp [12] established that for any sequence
{bn}n≥1 of positive numbers with {bn/n}n≥1 being non-decreasing, the following
holds for Lebesgue almost every x ∈ I,

lim sup
n→∞

Sn(x)

bn
= 0 or lim sup

n→∞

Sn(x)

bn
= ∞

according to whether the series
∑∞

n=1 1/bn converges or diverges. Consequently,
for Lebesgue almost every x ∈ I,

lim sup
n→∞

Sn(x)

n logn
= ∞. (1.5)

We summarize the results of (1.4) and (1.5) in the following theorem.

Theorem 1.1 (Khintchine-Diamond-Vaaler-Philipp’s Theorem). For Lebesgue al-
most every x ∈ I,

lim inf
n→∞

Sn(x)

n logn
=

1

log 2
and lim sup

n→∞

Sn(x)

n logn
= ∞

Theorem 1.1 demonstrates that, for almost all real numbers, the limit inferior
in (1.4) and the limit superior in (1.5) take values of 1

log 2 and infinity, respectively.

That is to say, the set of points where the limit inferior and the limit superior
assume other values has Lebesgue measure zero. Hence, it is natural to investigate
the size of such null sets.

For any 0 ≤ α ≤ β ≤ ∞, let

S(α, β) :=

{
x ∈ I : lim inf

n→∞

Sn(x)

n logn
= α, lim sup

n→∞

Sn(x)

n logn
= β

}
.

Baire category (see [11]) and Hausdorff dimension (see [2]), apart from Lebesgue
measure, are common methods for examining the size of sets. A set is said to be
of first category if it is represented as a countable union of nowhere dense sets, and
a set is called residual if its complement is of first category. In this context, a set
of first category is considered “small”, while a residual set is regarded as “large”.
We will show that S(α, β) is residual for α = 0 and β = ∞, otherwise it is of first
category. A similar result concerning the behavior of partial quotients is discussed
in [13].

Theorem 1.2. The set S(α, β) is residual if and only if α = 0 and β = ∞.

From Theorems 1.1 and 1.2, we conclude that S( 1
log 2 ,∞) has full Lebesgue

measure but is of first category. This indicates that S( 1
log 2 ,∞) is “large” in terms of

Lebesgue measure but “small” from the perspective of Baire category. In contrast,
the set S(0,∞) is “small” in the sense of Lebesgue measure, but “large” with respect
to Baire category.

https://doi.org/10.4153/S0008439525100945 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525100945


ASYMPTOTIC BEHAVIOR FOR THE SUM OF PARTIAL QUOTIENTS 3

In the follow theorem, we will see that each S(α, β) is “large” from the viewpoint
of Hausdorff dimension.

Theorem 1.3. For any 0 ≤ α ≤ β ≤ ∞, we have dimH S(α, β) = 1.

Denote by S(α) := S(α, α) for any 0 ≤ α ≤ ∞. As a consequence of Theorem
1.3, we have S(α) has full Hausdorff dimension. This was obtained by Wu and Xu
[15, Theorem 1.4]. Actually, the Hausdorff dimension of Sn(x) has been extensively
studied by many authors, see [3, 5, 9, 15, 16] and references therein. Let

Sφ :=

{
x ∈ I : lim

n→∞

Sn(x)

φ(n)
= 1

}
,

where φ : N → R>0 is an increasing function satisfying φ(n) → ∞ as n → ∞.
For the linear case φ(n) = γn with γ ≥ 1, Iommi and Jordan [5] established that
with respect to γ, the Hausdorff dimension of Sφ is analytic and increasing from
0 to 1, and tends to 1 as γ goes to infinity. In [15], Wu and Xu proved that if
φ(n) = nr with r ∈ (1,∞) or φ(n) = exp(nr) with r ∈ (0, 1/2), then Sφ has full
Hausdorff dimension. Later, it was shown by Xu [16] that if φ(n) = exp(n), then
dimH Sφ = 1/2. We remark that his proof also applies to the case φ(n) = exp(nr)
with r > 1, and and it implies that the Hausdorff dimension of Sφ remains 1/2.
In 2016, Liao and Rams [9] investigated the Hausdorff dimension of Sφ for the
remaining case φ(n) = exp(nr) with r ∈ [1/2, 1) and showed that there is a jump
of the Hausdorff dimensions from 1 to 1/2 at r = 1/2. Recently, the dimension gap
was filled by Fang, Moreira and Zhang [3].

The rest of the paper is organized as follows. In Section 2, we provide the proof
of Theorem 1.2. Section 3 is devoted to proving Theorem 1.3. At last, we do similar
analyses for the sum of products of consecutive partial quotients in Section 4.

2. Proof of Theorem 1.2

In this section, we consider I equipped with the induced topology. Since I is a
Baire space, it suffices to prove that a set is residual by showing that it contains a
dense Gδ subset (see [11, Theorem 9.2]).

For any (a1, . . . , an) ∈ Nn, let

In(a1, . . . , an) := {x ∈ (0, 1) : a1(x) = a1, . . . , an(x) = an} .

It was shown in Theorem 1.2.2 of [6] that In(a1, . . . , an)∩ I is an open interval with
rational endpoints in I.

For any γ ∈ (0,∞), define

S∗(γ) =

{
x ∈ I : lim inf

n→∞

Sn(x)

n logn
≤ γ

}
and

S∗(γ) =

{
x ∈ I : lim sup

n→∞

Sn(x)

n logn
≥ γ

}
,

and let S(γ) := S∗(γ) ∩ S∗(γ).

Lemma 2.1. For any γ ∈ (0,∞), the set S(γ) is dense in I.
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Proof. For any γ ∈ (0,∞), let θn := ⌊γ logn⌋ + 1 for all n ∈ N. Then {θn}n≥1

corresponds to a unique irrational number x0 ∈ [0, 1) such that an (x0) = θn for all
n ∈ N. Hence,

lim
n→∞

Sn(x0)

n logn
= γ,

that is, x0 ∈ S(γ).
Set

D (x0) :=

∞⋃
N=1

{x ∈ I : an(x) = an (x0) ,∀n ≥ N} .

Then D (x0) ⊆ S(γ) is dense in I. To see this, for any x ∈ I and n ∈ N, define xn

in terms of the continued fraction expansion as

xn := [a1(x), . . . , an(x), an+1 (x0) , an+2 (x0) , . . .] .

Then xn ∈ D (x0) and |xn − x| → 0 as n → ∞, which implies that D (x0) is dense
in I. Hence S(γ) is also dense in I. □

Lemma 2.2. For any γ ∈ (0,∞), the sets S∗(γ) and S∗(γ) are residual.

Proof. Let γ ∈ (0,∞) be fixed. It follows from Lemma 2.1 that S∗(γ) and S∗(γ)
are dense. To prove that S∗(γ) and S∗(γ) are residual, it suffices to show that they
are all Gδ sets.

For S∗(γ), we deduce that

S∗(γ) =

∞⋂
k=1

∞⋂
N=1

∞⋃
n=N

En(γ, k),

where En(γ, k) is given by

En(γ, k) :=

{
x ∈ I : Sn(x) <

(
γ +

1

k

)
n logn

}
.

We observe that for sufficiently large n, En(γ, k) is nonempty and can be written
as a countable union of open sets in I. More precisely,

En(γ, k) =
⋃

∑n
i=1 ki<(γ+1/k)n logn

In(k1, k2, . . . , kn) ∩ I,

where (k1, k2, . . . , kn) ∈ Nn. Since In (k1, k2, . . . , kn) is an open set in I, we have
En(γ, k) is open in I, and so S∗(γ) is a Gδ set.

For S∗(γ), we conclude that

S∗(γ) =

∞⋂
k=⌈1/γ⌉

∞⋂
N=1

∞⋃
n=N

{
x ∈ I : Sn(x) >

(
γ − 1

k

)
n logn

}
,

and {x ∈ I : Sn(x) > (γ−1/k)n log n} is a countable union of open sets in I. Hence
S∗(γ) is a Gδ set. □

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. For any K ∈ N, it follows form Lemma 2.2 that S∗(1/K)
and S∗(K) are residual. By the definition of residual set, we see that the countable
intersection of residual sets is also residual. Since{

x ∈ I : lim inf
n→∞

Sn(x)

n logn
= 0

}
=

∞⋂
K=1

S∗(1/K) (2.1)

https://doi.org/10.4153/S0008439525100945 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525100945


ASYMPTOTIC BEHAVIOR FOR THE SUM OF PARTIAL QUOTIENTS 5

and {
x ∈ I : lim sup

n→∞

Sn(x)

n logn
= ∞

}
=

∞⋂
K=1

S∗(K), (2.2)

we derive that the sets on the left-hand side of (2.1) and (2.2) are residual, and so
and their intersection S(0,∞) is residual.

Note that every subset of a set of first category is also of first category. For any
α > 0 or β < ∞, each S(α, β) is a subset of the complement of S(0,∞), and so
S(α, β) is of first category. □

Remark 2.3. As suggested by the referee, we provide the following refinement of
the result concerning the set in (2.1): for a residual set of values of x ∈ I, it holds
that

lim inf
n→∞

Sn(x)

n
= 1.

In fact, using the arguments in this section, we obtain an analogue of Theorem 1.2
for the arithmetic mean of partial quotients: the set{

x ∈ I : lim inf
n→∞

Sn(x)

n
= α, lim sup

n→∞

Sn(x)

n
= β

}
is residual if and only if α = 1 and β = ∞.

3. Proof of Theorem 1.3

In this section, we prove that dimH S(α, β) = 1 for all 0 ≤ α ≤ β ≤ ∞. To this
end, we require the following lemma.

Let {nk}k≥1 and {uk}k≥1 be sequences of positive integers satisfying nk/k → ∞
and uk → ∞ as k → ∞. For each M ∈ N, define

EM ({nk}, {uk}) := {x ∈ I : ank
(x) = uk, 1 ≤ aj ≤ M (j ̸= nk) ,∀k ∈ N} . (3.1)

Shang and Wu [14] determined the Hausdorff dimension of EM ({nk}, {uk}), stated
as follows. See [3, 10] for similar results.

Lemma 3.1 ([14, Lemma 3.1]). Let EM ({nk}, {uk}) be defined as above. Suppose
that

lim
k→∞

1

nk

k∑
j=1

log uj = 0. (3.2)

Then
lim

M→∞
dimH EM ({nk}, {uk}) = 1

We will use Lemma 3.1 to show dimH S(α, β) = 1 by choosing suitable sequences
{nk}k≥1 and {uk}k≥1 according to the values of α and β.

Proof of Theorem 1.3. The proof is divided into six cases. For convenience, we first
introduce some notation. For any n ∈ N, let t(n) := max{k ∈ N : k2 ≤ n} and
ϕ(n) := 22

n

. Then
√
n− 1 ≤ t(n) ≤

√
n and (ϕ(n))2 = ϕ(n+ 1).

In the following, we always take nk := k2 for all k ∈ N. The definition of {uk}k≥1

depends on the values of α and β.
Case 1: 0 < α ≤ β < ∞. Let u1 := 1. For all k ≥ 2, let

uk :=

{
⌈4αk log k⌉, if ⌈log2 log2 k⌉ is even;

⌈4βk log k⌉, if ⌈log2 log2 k⌉ is odd.
(3.3)
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Then {nk} and {uk} satify condition (3.2). Moreover, we claim that the set S(α, β)
defined in (3.1) is a subset of EM ({nk}, {uk}). In fact, for any x ∈ EM ({nk}, {uk})
and for all k ∈ N, we have 4αk log k ≤ ak2(x) < 4βk log k + 1 and 1 ≤ aj(x) ≤ M
for all j ̸= k2. For any n ∈ N, we see that

Sn(x) ≥
t(n)∑
k=2

4αk log k ≥ 4α

∫ t(n)

1

x log xdx = α(t(n))2
(
2 log t(n)− 1

)
and

Sn(x) <

t(n)∑
k=2

(4βk log k + 1) + nM

< 4β

∫ t(n)+1

1

x log xdx+ t(n) + nM

= β(t(n) + 1)2
(
2 log (t(n) + 1)− 1

)
+ t(n) + nM.

Combining this with the fact that
√
n− 1 ≤ t(n) ≤

√
n, we derive that

α ≤ lim inf
n→∞

Sn(x)

n logn
≤ lim sup

n→∞

Sn(x)

n logn
≤ β. (3.4)

Next, we show that the limit superior and the limit inferior in (3.4) are β and
α, respectively. To this end, consider

lim sup
m→∞

Sϕ(2m)(x)

ϕ(2m) log ϕ(2m)

and

lim inf
m→∞

Sϕ(2m+1)(x)

ϕ(2m+ 1) log ϕ(2m+ 1)
.

Note that for all k,

(1) if ϕ(2m − 2) < k ≤ ϕ(2m − 1), then ⌈log2 log2 k⌉ is odd, and so ak2(x) =
⌈4βk log k⌉;

(2) if ϕ(2m − 1) < k ≤ ϕ(2m), then ⌈log2 log2 k⌉ is even, and so ak2(x) =
⌈4αk log k⌉,

and 1 ≤ aj(x) ≤ M for all j ̸= k2. On the one hand, it follows from (1) that

Sϕ(2m)(x) ≥
ϕ(2m−1)∑

k=ϕ(2m−2)+1

4βk log k

≥ 4β

∫ ϕ(2m−1)

ϕ(2m−2)

x log x dx

= β(ϕ(2m− 1))2 (2 log ϕ(2m− 1)− 1)

− β(ϕ(2m− 2))2 (2 log ϕ(2m− 2)− 1) .

Note that (ϕ(n))2 = ϕ(n+ 1), we have

Sϕ(2m)(x) ≥ βϕ(2m)(log ϕ(2m)− 1)− βϕ(2m− 1)(log ϕ(2m− 1)− 1).

Since

lim
m→∞

ϕ(2m− 1)(log ϕ(2m− 1)− 1)

ϕ(2m)(log ϕ(2m)− 1)
= 0,
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we derive that

lim sup
m→∞

Sϕ(2m)(x)

ϕ(2m) log ϕ(2m)
≥ β. (3.5)

On the other hand, we deduce from (2) that

Sϕ(2m+1)(x) <

ϕ(2m)∑
k=2

(4αk log k + 1) +

ϕ(2m−1)∑
k=2

(4βk log k + 1)

+ ϕ(2m+ 1)M

< 4α

∫ ϕ(2m)+1

k=1

x log xdx+ 4β

∫ ϕ(2m−1)+1

k=1

x log xdx

+ ϕ(2m+ 1)(M + 2)

< 2α(ϕ(2m) + 1)2 log (ϕ(2m) + 1)

+ 2β(ϕ(2m− 1) + 1)2 log (ϕ(2m− 1) + 1))

+ ϕ(2m+ 1)(M + 2).

By the definition of ϕ(n), we see that

lim
m→∞

2(ϕ(2m) + 1)2 log (ϕ(2m) + 1)

ϕ(2m+ 1) log ϕ(2m+ 1)
= 1

and

lim
m→∞

(ϕ(2m− 1) + 1)2 log (ϕ(2m− 1) + 1))

(ϕ(2m) + 1)2 log (ϕ(2m) + 1)
= 0,

and so

lim inf
m→∞

Sϕ(2m+1)(x)

ϕ(2m+ 1) log ϕ(2m+ 1)
≤ α. (3.6)

Combining (3.4), (3.5) and (3.6), we obtain

lim inf
n→∞

Sn(x)

n logn
= α and lim sup

n→∞

Sn(x)

n logn
= β,

i.e., x ∈ S(α, β). Hence, dimH S(α, β) ≥ dimH EM ({nk}, {uk}). Letting M → ∞,
we conclude from Lemma 3.1 that dimH S(α, β) = 1.

For other cases, when α = 0, replace ⌈4αk log k⌉ in (3.3) with k; when β = ∞,
replace ⌈4βk log k⌉ in (3.3) with k2. More precisely,

Case 2: α = β = 0. For all k ≥ 1, let uk := k.
Case 3: α = β = ∞. For all k ≥ 1, let uk := k2.
Case 4: α = 0 and β = ∞. Let u1 := 1. For all k ≥ 2, let

uk :=

{
k, if ⌈log2 log2 k⌉ is even;

k2, if ⌈log2 log2 k⌉ is odd.

Case 5: α = 0 and 0 < β < ∞. Let u1 := 1. For all k ≥ 2, let

uk :=

{
k, if ⌈log2 log2 k⌉ is even;

⌈4βk log k⌉, if ⌈log2 log2 k⌉ is odd.

Case 6: 0 < α < ∞ and β = ∞. Let u1 := 1. For all k ≥ 2, let

uk :=

{
⌈4αk log k⌉, if ⌈log2 log2 k⌉ is even;

k2, if ⌈log2 log2 k⌉ is odd.
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Following the proof in Case 1 step by step, we can similarly derive the same result.
The details are omitted here for brevity. □

4. The sum of products of consecutive partial quotients

Our results can be extended to include the sum of products of consecutive partial
quotients. For any x ∈ I and n ∈ N, let

S̃n(x) :=

n∑
k=1

ak(x)ak+1(x).

The asymptotic behavior of {S̃n(x)}n≥1 was studied by Hu, Hussain and Yu [4].

They obtained the Khintchine-type theorem for S̃n(x):

lim
n→∞

S̃n(x)

n log2 n
=

1

2 log 2
in Lebesgue measure,

and the Diamond-Vaaler-type theorem for S̃n(x): for Lebesgue almost every x ∈ I,

lim
n→∞

S̃n(x)−max1≤k≤n{ak(x)ak+1(x)}
n log2 n

=
1

2 log 2
.

These two results imply that for Lebesgue almost every x ∈ I,

lim inf
n→∞

S̃n(x)

n log2 n
=

1

2 log 2
. (4.1)

For its limit superior, we introduce the zero-one law for products of consecutive
partial quotients established by Kleinbock andWadleigh [8]. For any Φ : N → [1,∞)
with Φ(n) → ∞ as n → ∞, let

K(Φ) := {x ∈ I : an(x)an+1(x) ≥ Φ(n) for infinitely many n ∈ N} .
Then the Lebesgue measure of K(Φ) is zero or one according to whether the series∑∞

n=1
log Φ(n)
Φ(n) converges or diverges. As a result, for Φ(n) = n(log2 n)(log logn), we

see that the Lebesgue measure of K(Φ) is one. Hence, for Lebesgue almost every
x ∈ I,

lim sup
n→∞

S̃n(x)

n log2 n
= ∞. (4.2)

In light of (4.1) and (4.2), we have the following theorem.

Theorem 4.1 (Kleinbock-Wadleigh-Hu-Hussain-Yu’s Theorem). For Lebesgue al-
most every x ∈ I,

lim inf
n→∞

S̃n(x)

n log2 n
=

1

2 log 2
and lim sup

n→∞

S̃n(x)

n log2 n
= ∞.

In what follows, we study the Baire category and Hausdorff dimension of S̃n(x).
For any 0 ≤ α ≤ β ≤ ∞, let

S̃(α, β) :=

{
x ∈ I : lim inf

n→∞

S̃n(x)

n log2 n
= α, lim sup

n→∞

S̃n(x)

n log2 n
= β

}
.

Using a method similar to that employed in Theorem 1.2, we obtain the necessary

and sufficient conditions for S̃(α, β) to be residual.
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Theorem 4.2. The set S̃(α, β) is residual if and only if α = 0 and β = ∞.

We end this section with the Hausdorff dimension of S̃(α, β).

Theorem 4.3. For any 0 ≤ α ≤ β ≤ ∞, we have dimH S̃(α, β) = 1.

To prove Theorem 4.3, we first give a result analogous to Lemma 3.1.
Let {ωk}k≥1, {bk}k≥1, and {ck}k≥1 be sequences of positive integers satisfying

ωk/k → ∞, bk → ∞, and ck → ∞ as k → ∞. For each M ∈ N, define

EM ({ωk}, {bk}, {ck}) :=
{
x ∈ I : aωk

(x) = bk; aωk+1(x) = ck;

1 ≤ aj ≤ M (j ̸= ωk, ωk + 1) , ∀k ∈ N
}
.

The Hausdorff dimension of EM ({ωk}, {bk}, {ck}) is as follows.

Lemma 4.4. Let EM ({ωk}, {bk}, {ck}) be defined as above. Assume that

lim
k→∞

1

ωk

k∑
j=1

log (bjcj) = 0. (4.3)

Then
lim

M→∞
dimH EM ({ωk}, {bk}, {ck}) = 1.

Proof. This result can be regarded as a consequence of Lemma 3.1. To see this,
define {nk}k≥1 and {uk}k≥1 as follows: for any k ∈ N,{

n2k−1 := ωk,
n2k := ωk + 1,

and

{
u2k−1 := bk,
u2k := ck.

Then EM ({ωk}, {bk}, {ck}) = EM ({nk}, {uk}). Since ωk/k → ∞ as k → ∞, it
follows that nk/k → ∞ as k → ∞. Moreover,

lim
k→∞

1

n2k

2k∑
j=1

log uj = lim
k→∞

1

ωk + 1

k∑
j=1

(log bj + log cj)

= lim
k→∞

ωk

ωk + 1
· 1

ωk

k∑
j=1

log (bjcj)

= 0,

and

lim
k→∞

1

n2k−1

2k−1∑
j=1

log uj = lim
k→∞

1

ωk

k−1∑
j=1

(log bj + log cj) + log bj


≤ lim

k→∞

1

ωk

k∑
j=1

(log bj + log cj)

= 0.

Thus, {nk}k≥1 and {uk}k≥1 satisfy condition (3.2). By Lemma 3.1, we derive that

lim
M→∞

dimH EM ({ωk}, {bk}, {ck}) = lim
M→∞

EM ({nk}, {uk}) = 1.

The proof is completed. □

We are now in a position to show that dimH S̃(α, β) = 1 by using Lemma 4.4.
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Proof of Theorem 4.3. We onely give the proof for the case where 0 < α ≤ β < ∞.
Let ω1 = b1 = c1 := 1. For all k ≥ 2, let ωk := k2,

bk :=

{
⌈8αk log k⌉, if ⌈log2 log2 k⌉ is even;

⌈8βk log k⌉, if ⌈log2 log2 k⌉ is odd,
(4.4)

and ck := ⌊log k⌋. Then {ωk}k≥1, {bk}k≥1 and {ck}k≥1 satisfy condition (4.3).

Moreover, we claim that EM ({ωk}, {bk}, {ck}) is a subset of S̃(α, β). In fact, for
any x ∈ EM ({ωk}, {bk}, {ck}), we see that 8αk log k ≤ ak2(x) ≤ 8βk log k + 1,
log k − 1 ≤ ak2+1(x) ≤ log k, and 1 ≤ aj(x) ≤ M for all j /∈ {k2, k2 + 1}. Hence,

S̃n(x) ≥
t(n)∑
k=2

8αk log k(log k − 1) ≥ 8α

∫ t(n)

1

(
x log2 xdx− x log x

)
dx,

and

S̃n(x) ≤
t(n)∑
k=2

(8βk log k + 1) log k +M

t(n)∑
k=2

(8βk log k + log k + 1) + nM2

≤
∫ t(n)+1

1

(
8βx log2 x+ 8Mβx log x+ (M + 1) log x

)
dx+ nM(M + 1).

Our analysis focuses exclusively on the main term of the integral, since the contri-
butions from the integrals of the remaining terms are negligible, being infinitesimal
of the order n log2 n. Since

√
n− 1 ≤ t(n) ≤

√
n and∫

x log2 xdx =
1

8
x2

(
log2 x2 − 2 log x2 + 2

)
+ C, (4.5)

we deduce that

α ≤ lim inf
n→∞

S̃n(x)

n log2 n
≤ lim sup

n→∞

S̃n(x)

n log2 n
≤ β. (4.6)

Note that for all k ∈ N ,

(1) if ϕ(2m − 1) < k ≤ ϕ(2m), then ⌈log2 log2 k⌉ is even, and so ak2(x) =
⌈8αk log k⌉ and ak2+1(x) = ⌊log k⌋;

(2) if ϕ(2m) < k ≤ ϕ(2m + 1), then ⌈log2 log2 k⌉ is odd, ans so ak2(x) =
⌈8βk log k⌉and ak2+1(x) = ⌊log k⌋,

and 1 ≤ aj(x) ≤ M for all j /∈ {k2, k2 + 1}. Thus,

S̃ϕ(2m)(x) ≥
ϕ(2m−1)∑

k=ϕ(2m−2)+1

8βk log k(log k − 1)

= 8β

∫ ϕ(2m−1)

ϕ(2m−2)

(
x log2 xdx− log x

)
dx.

By (4.5) and the definition of ϕ(n), we obtain

lim sup
m→∞

S̃ϕ(2m)(x)

ϕ(2m) log2 ϕ(2m)
≥ β. (4.7)

Similarly, we can derive that

lim inf
m→∞

S̃ϕ(2m+1)(x)

ϕ(2m+ 1) log2 ϕ(2m+ 1)
≤ α. (4.8)
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Combining (4.6), (4.7) and (4.8), we conclude that

lim inf
n→∞

S̃n(x)

n log2 n
= α and lim sup

n→∞

S̃n(x)

n log2 n
= β,

i.e., x ∈ S̃(α, β). So dimH S̃(α, β) ≥ dimH EM ({ωk}, {bk}, {ck}). Letting M → ∞,

it follows from Lemma 4.4 that dimH S̃(α, β) = 1. □

Acknowledgements The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions, which have greatly improved the qual-
ity of this manuscript. This research was supported by the Natural Science Founda-
tion of Jiangsu Province (Grant No. BK20241541) and the National Undergraduate
Training Program for Innovation and Entrepreneurship (Grant No. 202410288085Z).

References

[1] H. Diamond and J. Vaaler, Estimates for partial sums of continued fraction partial quotients,
Pacific J. Math. 122 (1986), 73–82.

[2] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley &
Sons, Ltd., Chichester, 1990.

[3] L. Fang, C. G. Moreira and Y. Zhang, Fractal geometry of continued fractions with large

coefficients and dimension drop problems, arXiv: 2409.00521, preprint, 2024.
[4] H. Hu, M. Hussain and Y. Yu, Limit theorems for sums of products of consecutive partial

quotients of continued fractions, Nonlinearity 34 (2021), 8143–8173.

[5] G. Iommi and T. Jordan, Multifractal analysis of Birkhoff averages for countable Markov
maps, Ergodic Theory Dynam. Systems 35 (2015), 2559–2586.

[6] M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions, Kluwer Academic

Publishers, Dordrecht, 2002.
[7] A. Khintchine, Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361–382.

[8] D. Kleinbock and N. Wadleigh, A zero-one law for improvements to Dirichlet’s Theorem,
Proc. Amer. Math. Soc. 146 (2018), 1833–1844.

[9] L. Liao and M. Rams, Subexponentially increasing sums of partial quotients in continued

fraction expansions, Math. Proc. Cambridge Philos. Soc. 160 (2016), 401–412.

[10] L. Liao and M. Rams, Big Birkhoff sums in d-decaying Gauss like iterated function systems,
Studia Math. 264 (2022), 1–25.

[11] J. Oxtoby, Measure and Category, Springer, New York, 1980.
[12] W. Philipp, Limit theorems for sums of partial quotients of continued fractions, Monatsh.

Math. 105 (1988), 195–206.

[13] L. Shang and M. Wu, On the growth behavior of partial quotients in continued fractions,
Arch. Math. (Basel) 120 (2023), 297–305

[14] L. Shang and M. Wu, Limit behaviours of the largest partial quotient in continued fraction

expansions, Results Math. 80 (2025), Paper No. 92, 24 pp.
[15] J. Wu and J. Xu, On the distribution for sums of partial quotients in continued fraction

expansions, Nonlinearity 24 (2011), 1177–1187.

[16] J. Xu, On sums of partial quotients in continued fraction expansions, Nonlinearity 21 (2008),
2113–2120.

https://doi.org/10.4153/S0008439525100945 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525100945


12 XIAO CHEN, JUNJIE LI, LEI SHANG∗, AND XIN ZENG

School of Mathematics and Statistics, Nanjing University of Science and Technol-

ogy, Nanjing, 210094, China

Email address: 922130830116@njust.edu.cn

School of Mathematics and Statistics, Nanjing University of Science and Technol-

ogy, Nanjing, 210094, China
Email address: mathli@njust.edu.cn

College of Sciences, Nanjing Agricultural University, Nanjing 210095, China

Email address: shanglei@njau.edu.cn

School of Mathematics and Statistics, Nanjing University of Science and Technol-

ogy, Nanjing, 210094, China
Email address: very.zeng@outlook.com

https://doi.org/10.4153/S0008439525100945 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525100945

	1. Introduction
	2. Proof of Theorem 1.2
	3. Proof of Theorem 1.3
	4. The sum of products of consecutive partial quotients
	References

