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Abstract

In this paper we treat transcendental meromorphic solutions of some algebraic differential equations.
We consider the number of distinct transcendental meromorphic solutions. Algebraic relations between
meromorphic solutions and comparisons of the growth of transcendental meromorphic solutions are also
discussed.

2000 Mathematics subject classification: primary 34A20; secondary 30D35.

1. Introduction

The binomial differential equation

(/)" = R(z, y),

where n is a positive integer and R(z, y) is a rational function in z and y, has been
studied under the assumption that it has a transcendental meromorphic solution y
in the complex plane (for example, Yosida [17], Laine [10]). The result due to
Steinmetz [13], Bank and Kaufman [2] states that by a suitable Mobius transformation
v = (ay + P)/(yy + 8), where cc8 — y8y ^ 0, the binomial equation is classified into
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15 8 Katsuy a Ishizaki and Nobushige Toda [2]

the following six simple differential equations:

(1.1) v' = a2(z)v2 + ax{z)v + ao(z)

-(1.2) (v'f = a(z)(v - b(z))2(v - T,)(U - T2)

(1.3) (i/)2 = a(z)(v - T,)(U - T2)(v - T3)(v - T4)

(1.4) (v')3 = a(z)(u ~ T,)2(V - r2)
2(i; - T3)2

(1.5) (i/)4 = a(z)(v - T,)2(V - T2)
3(v - r3)3

(1.6) ( l /)6 = fl(z)(V - T,)3(U - T2)
4(V - T3)

5

where T I , . . . , T 4 are distinct constants and a7(z)(^ 0), 7 = 0, 1, 2, a(z), b(z)
are rational functions. The result of Steinmetz cited above [13, Theorem 2], was
generalized by v. Rieth [16] and He-Laine [7] to cover the case when R(z,y) is
rational in y with meromorphic coefficients.

Throughout this paper 'meromorphic' means 'meromorphic in the complex plane'
and we use the standard notation of the Nevanlinna theory of meromorphic functions
(see for example, [6,11,12]).

We consider the following three problems for the equations (1.2) and (1.3). For
equation (1.2) we especially consider the case when b(z) is a constant and we refer
to this case as (1.2*), The equations (1.2*) and (1.3) are treated in Section 2 and in
Section 3 respectively.

The first problem is to classify the equations by the number of transcendental
meromorphic solutions. The differential equations (1.1)—(1.6) do not always admit
transcendental meromorphic solutions. It depends on the coefficients of the equa-
tions. We investigate how many transcendental meromorphic solutions the differential
equations have and under what conditions they have an infinite number of transcen-
dental meromorphic solutions. Some results are already known about the number
of meromorphic solutions to the Ricatti equation (1.1) (see, for example, [1], or [11,
Chapter 9]). Answers to this problem for (1.2*) are given in Corollary 2.4 and for (1.3)
are given in parts (a) and (b) of Corollary 3.2.

The second problem is to find algebraic relations between meromorphic solutions.
For the case of the Riccati equation (1.1), four distinct solutions fu f2, /3) / 4 of (1.1)
satisfy &(f\, /2 , /3, /4) = c, for a constant c, where & is a cross ratio of four elements
(see, for example, [9, Section 4.2]). We shall give an answer for (1.2*) by proving
Theorem 2.1, and give an answer for (1.3) by proving Theorem 3.1 (iii).

The third problem is to compare the growth of transcendental meromorphic solu-
tions. There are many results on the growth of transcendental meromorphic solutions
of these six differential equations (see, for example, [2,13,14]). The fact proved
in [2] and in [14] is that for the transcendental meromorphic solutions / of (1.2*)
or (1.3), the order of / is a positive integral multiple of 1/2, which is dependent on
the coefficients of the equation. For example (cf. [14, Satz 1]), for any solution
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[3] Some algebraic differential equations 159

of {f')1 = A(z)(f2 - 1) the order of / is equal to 1 + d/2 where d > - 1 and

A(z) = c l Z
d + c2z

d~x + ••• f o r z - > o o , c , jfc 0 .

This says that for given (fixed) coefficients, all transcendental meromorphic solu-
tions / and g of the equation have the same order of growth.

We shall give more detailed estimates of growth for transcendental meromorphic
solutions of (1.2*) in Theorem 2.1 and of (1.3) in part (c) of Corollary 3.2.

2. Results for the equation (1.2)

This section is devoted to answering the question, which we posed in Section 1 for
the equation (1.2*) (that is, equation (1.2) in the case where b{z) is a constant).

The linear transformation

= 2(r2 - b)(v - Tl)

(T2 " T,)(W - b)

can be used to transform equation (1.2*) into

(2.1) (/ ' )2 = A(z)(f2 - 1),

where A(z) = (b — X\)(b — T2)a(z). This form of the equation is more suitable for
investigation of solutions. We denote by 6 (A) the set of transcendental meromorphic
solutions of (2.1) for a given rational function A, and denote by #(5(A) the number of
functions in &(A).

In this section we prove the following theorems and corollaries.

THEOREM 2.1. Suppose that the differential equation (2.1) possesses distinct tran-
scendental meromorphic solutions f and g. Then there is a constant c such that

(2.2) / 2 + 2cfg + g2 = l-c2.

Conversely, if there are two nonconstant meromorphic functions f and g satisfy-
ing (2.2), then the following relation holds:

(/ ' )2 (g1)2

f2-\~g2-V

so that if f is a solution of (2.1) then so is g.

COROLLARY 2.2. Suppose that the differential equation (2.1) possesses transcen-
dental meromorphic solutions f and g. Then we have

(2.4) T(r,g) = T(r,f)
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160 Katsuya Ishizaki and Nobushige Toda [4]

THEOREM 2.3. Suppose that the differential equation (2.1) admits at least three
transcendental meromorphic solutions. Then the following statements are true.

(i) There is a rational function a(z) such that A(z) = a(z)2.
(ii) We can write a{z) in (i) as a decomposition of partial fractions

(2.5) a(z) = p(z)

where p(z) is a polynomial not identically equal to 0, kj (j = 1, • • • , n) are integers
and Xj (j = 1, . . . , n) are distinct constants. Moreover, for any transcendental
meromorphic solution f there exists a constant C e C such that

(2.6) f(z) = cosh ( f p(z)dz + J^ l08(z - TJ)*' + c ) •

COROLLARY 2.4. (a) If the differential equation (2.1) admits at least three tran-
scendental meromorphic solutions then # 6 (A) = oo.
(b) For a rational function A, the number of transcendental meromorphic solutions

of (2.1) is 0, 2 or oo.

We note that any nonconstant meromorphic solution / of (2.1) satisfies the second
order linear differential equation

(2-7) f'(J

In fact, differentiating (2.1), we have Iff" = A'(f2 - 1) + 2Aff. Combining this
with (2.1), we obtain (2.7) since / ' ?£ 0.

For the proofs of Theorems 2.1 and 2.3 we need some lemmas given below.

LEMMA 2.5. [5, Theorem 1] Let F and G be meromorphic functions. F and G
satisfy F2 + G2 = 1 if and only if there is a meromorphic function f3(z) such that

LEMMA 2.6. Let f be a nonconstant meromorphic function and put

(f)2

(2.8) R(Z) = -p~.

IfR(z) has poles then any pole of R(z) is of order at most 2.

https://doi.org/10.1017/S1446788700036855 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036855


[5] Some algebraic differential equations 161

PROOF. Any pole z0 of R(z) is either a pole of / , a zero of f(z) — 1 or a zero of
f(z) +1 • If Zo is a pole of / then a standard pole order comparison of (2.8) implies that
R(z) has a double pole at ZQ. By similar reasoning, if f(z) = ±1 + 5ZyL* ajr(z ~ zo);

around zo then fl(z) is regular at z0 when k > 2, while /?(z) has a simple pole at zo
when fc = 1. •

LEMMA 2.7. Suppose that a meromorphic function a can be expressed in a neigh-
bourhood of a^ as

(2.9) a(z) = + h(z), (k^O),
z — a0

where h(z) is regular at a0. Then, the differential equation

(2.10) w" - (^T^) W - a2(z)w = 0

has a single-valued meromorphic solution in a neighbourhood ofa0 if and only ifk is
an integer.

PROOF. From (2.9), it is easy to see that a0 is a regular-singular point for (2.10)
(see [8, Satz 3.2]). The corresponding indicial equation at a0 is

and its solutions are p = k and p = —k. Therefore it is easy to see that (2.10) has
a nonconstant meromorphic solution in a neighbourhood of a0 if and only if k is an
integer. •

PROOF OF THEOREM 2.1. Assume that / and g are transcendental meromorphic
solutions to (2.1), so that

(2.11) {f')2 = A(f2 - 1) and (g1)2 = A{g2 - 1).

Then it follows from (2.7) that

(2.12) f"

We add the two equations in (2.12) and then multiply the obtained equality by
2( / ' + g')/A to obtain

A A2

from which we have ( ( / ' + g')2/A)' = ( ( / + g)2)' and hence

(2.13) ( f + / } =(/ + g)2 + c',
A
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162 Katsuya Ishizaki and Nobushige Toda [6]

where c' is a constant. From (2.11) and (2.13) we eliminate A, f and g' to obtain (2.2),
where c = 1 + d 12.

To prove the converse statement in the theorem, we suppose that two nonconstant
meromorphic functions / and g satisfy (2.2). When c2 = 1, we have f = ±g and so
the relation (2.3) holds. We consider the case c2 £ 1. Write (2.2) as

(2.14) (/

Differentiating both sides of (2.14), we have

(2.15) (/' + cg')(f+cg) + (1 - c2)g'g = 0.

•Combining (2.14) and (2.15), we obtain

Similarly we obtain by symmetry

J/OV = (g' + c/Q2

1-/2 (1-C2)/2

We can write (2.15) as / ( / ' + eg') = — g(g' + c/'), so that the right-hand sides of
(2.16) and (2.17) are equal, which proves that / and g satisfy (2.3). D

PROOF OF COROLLARY 2.2. Ifc2 = l.then/ = ±g and we have 7" (r, / ) = T(r, g).
Hence we only treat the case c2 ^ 1. From (2.2), we have

8 r
from -which we have, by Nevanlinna's first fundamental theorem,

2T(r,g)=2T(r,f/g)+O(l).

Changing the roles of / and g and using Nevanlinna's first fundamental theorem, we
obtain the relation 2T(r, f) = 2T(r, g/f) + 0(1) = 2T(r, f/g) + 0(1). Combining
the two relations above, we obtain (2.4). •

PROOF OF THEOREM 2.3(i). By the hypothesis of this theorem and by Theorem 2.1,
there are transcendental meromorphic functions / and g satisfying

f2 + 2cfg + g2 = 1 - c2 (c2^ 1),

from which we have f2 + ((c/ + g)/(Vl — c2)) = 1. By Lemma 2.5, there is a
meromorphic function yS(z) such that / = 2)8/(1 + yS2). We see that because / is
transcendental, so is p. Hence
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That is to say, A(z) = a(z)2 where a(z) = (2iyS')/(l + 02). Since A(z) is a rational
function, a (z) must be a rational function. •

PROOF OF THEOREM 2.3(ii). By Theorem 2.3 (i), we can write A(z) = u(z)2 for a
rational function a(z). If a(z) has a pole, then the pole is simple by Lemma 2.6 and
the residue at the pole must be an integer by Lemma 2.7. Hence we can write a(z) in
the form

where p(z) is a polynomial, n is the number of poles of ar(z), k} (j — 1, . . . , n) are
integers, and r; (j = 1 n) are distinct constants. If we put f (z) = /Q2 p(t)dt
then the meromorphic functions

n

(2.18) Mz) = e<MY\(z-Tj)k> and /2(z) = e"

which are linearly independent, satisfy the linear differential equation (2.10). Since
any solution f(z) of (2.1) satisfies (2.10), f{z) can be expressed as a linear combina-
tion of /i and /2) say

(2.19) / (z) = C,/,(z) + C2/2(z),

where Ci and C2 are constants. As /,'(z) = a(z)/i(z), /2'(z) = —oc(z)fz{z) and
/1/2 = 1 from (2.18), by substituting (2.19) into (2.1), we obtain that CXC2 = 1/4.
Therefore we see that for some C € C, / (z) is represented in the form

f(z) = cosh U(z) + J > g ( z - Tj)k< + C j .

It is immediately concluded that if p(z) = 0 then meromorphic solutions to (2.1)
are rational functions, which is a contradiction. Hence p(z) # 0 and the assertion
follows. •

PROOF OF COROLLARY 2.4. (a) It follows from the proof of Theorem 2.3 (ii) that
if A = a2, where a satisfies (2.5), then a meromorphic function of the form (2.6) is
a solution of (2.1). This implies that &(A) is an uncountable set when p(z) # 0.
This implies that if (2.1) possesses at least three distinct transcendental meromorphic
solutions then #&(A) = 00.

(b) It is clear that if / is a transcendental meromorphic solution of (2.1) then —/is
also a transcendental meromorphic solution of (2.1). By part (a), #&(A) > 3 implies
#6(A) = 00. Therefore we have proved (b). •
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REMARK 1. We mention a condition which implies 6(A) is an empty set: if A has
at least one pole of order not less than 3 then #6 (A) = 0. This is a direct consequence
of Lemma 2.6.

PROOF. We proved part (a) of Corollary 2.4 by means of Theorem 2.3. We mention
here that we can get the same result by only using the algebraic relation (2.2) and the
relation (2.4). In fact, by the hypothesis of this Corollary, there are two meromorphic
functions / and g in ©(A) satisfying f2 + 2cfg + g2 = 1 — c2 (c2 ^ 1), from which
we have

This shows that (cf + g) /Vl - c2 e &(A) by (2.3) in Theorem 2.1 and (2.4) since
/ € ©(A). Put

cf + e
h = ; s and F = yf + Sh,

V1 — c2

where y and 8 are constants satisfying y2 + S2 = 1. Then

(2.20) f2 + h2 = 1 and / / ' = -hh'.

Now we are going to prove that F e 6(A). In fact, by (2.20),

(2.21) (F')2 = y 2 ( / ' ) 2 + 2y8f'h' + S2(h')2

n
+ S2h2 - 1) 4- 2ySAfh = A ((yf + Sh)2 - l)

since (f')2/h2 = {h'f/f2 = - A by (2.20) and / , h e ©(A). It follows from (2.21)
thatF = y/+«5/i is a meromorphic solution of(2.1)and by (2.4) thatyf+Sh e 6(A).
This proves the assertion. •

3. Results for the equation (1.3)

In this section we are concerned with the differential equation of the type (1.3)
in Section 1. It will be seen below that solutions of the equation (1.3) are closely
connected with the Weierstrass p-function. We choose and fix a p-function satisfying

(3.1) ( P ' ) 2 = 4 p 3
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where g2, g3, are constants satisfying 27g3 - g\ ^ 0. For the sake of brevity we put
G(x) = 4x3 — g2x — g3, and we denote by eu e2, e3 the distinct roots of G{x) = 0.
For any solution v of (1.3), we set

/(z) = a - fi with a = _
v(z) - r4 4

£ = — (2T4(T, + T2 + T3) - (TiT2 + T2T3 + T3Ti) - 3T4
3) .

Then the equation of type (1.3) can be translated into the form

(3.2) (f'f = A{z) (4/3 - g2f - g3) = A(z)G(f),

where A(z) ^ 0 is a rational function. We denote by Z(A) the set of transcendental
meromorphic solutions of (3.2) for a given rational function A, and denote by #T(A)
the number of functions in X(A).

The purpose of this section is to prove the following theorem and corollary.

THEOREM 3.1. Suppose that the equation (3.2) admits two transcendental mero-
morphic solutions f and g such that f ^ L{g) for some Mobius transformation L
such that L{z) # z. Then the following statements are true.

(i) There exists a polynomial a(z) such that A(z) = a'(z)2.
(ii) Any f(z) 6 %(A) can be expressed as

(3.3) f(z) = p(a(z) + c), ceC,

where p is the Weierstrass p function given in (3.1).
(iii) Let u(z) and v(z) denote arbitrary distinct transcendental meromorphic so-

lutions of (3.2). Then there exists a constant d0 e C such that U = u — do and
V = v — d0 satisfy an algebraic relation

(3.4) U2V2-G2UV -Gi(U + V)-G0 = 0,

where Go, Gt and G2 are constants.
Conversely, if transcendental meromorphic functions U and V satisfy (3.4) then we
have

(3 5) 0Ol0Ol

where K{x) is a polynomial of degree 3 expressed as

(3.6) K(x) = 4x3 + ( ^ ^ ) x2 + 2G2x
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COROLLARY 3.2. (a) If the equation (3.2) admits two transcendental meromor-
phic solutions f and g such that f ^ L(g)for some Mbbius transformation L which
is not the identity, then #T(A) = oo.
(b) For a rational function A, the number of transcendental meromorphic solutions

of (3.2) is 0, 4 or oo.
(c) For any transcendental meromorphic solutions f and g of (3.2) we have

(3.7) T(r, g) = T{r, f) + 5(r),

where S(r) is small with respect to T(r, f) and T(r, g).

We need the following results due to Bank and Kaufman [2, Lemma 5], and
Valiron [15].

LEMMA 3.3. Let H(w) be a polynomial having constant coefficients, andletw(z)be
a nonconstant elliptic function of elliptic order q which is a solution of the differential
equation (w')q = H(w). Then the following statements are true.

(a) If c0 and cy are complex numbers satisfying c\ = H (c0) then there exists a
complex number £ such that u>(£) = c0 and w'(£) = C\.
(b) Any solution of the differential equation (w')q = H (w) which is meromorphic

and nonconstant in a region of the plane must be of the form w{z + C) where C is a
constant.

The lemma given below is also needed for the proof of Theorem 3.1.

LEMMA 3.4. Suppose that (3.2) has distinct transcendental meromorphic solu-
tions f and g. If f and g have a common pole Zo and we let <p = f — g then <p does
not have a zero at Zo-

PROOF. We write A in a neighbourhood of z0 as

(3.8) A(z) = RA(z - ZoY + O(z - zo)
k+\ RA # 0,

where A is an integer. Let fif and /u,g denote the orders of the poles of / and g at z0-
From (3.2), we have — 2(/z/ + 1) = A. — 3jj,f, so /x/ = 2 + A. Similarly we have
/zs = 2 + A. For the sake of brevity we write /x/ = /xx = fi.

Write / and g in a neighbourhood of zo as

(3.9) / ( ) ^

(z -(3.10) g(z) = ,_ g_ x<i + O(z - zo)"0*-", Rt * 0.
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[11] Some algebraic differential equations 167

Substituting these representations into (3.2) and comparing the coefficients of terms
(z - 2o)"2(M+1). we obtain

(3.11) Rf = R' = W-

It follows from (3.2) that

(3.12) (^ (/ ' + g') = A (4 (/2 + fg + g2) - g2).

Assume that <p has a zero at z0 of order o > 0. We compare the coefficients of
(z — Zo)~('i+2) in t n e Laurent expansions in both sides of (3.12). Using (3.11), we
obtain

which implies —a = 3/x/2, which is absurd. We have thus proved Lemma 3.4. •

The following remark states some basic properties of solutions of (3.2).

REMARK 2. (A) Every solution / of (3.2) satisfies

(3.13) r

Moreover, if / and g are distinct solutions of (3.2), then we have
A'(z)

(3.14) (p"-^r(p'-6A(z)(f + g)(p = 0, or

(3.15) --^r7-=6A(z)(f + 8l

where <p = / — g.
(B) Let / be a transcendental meromorphic solution of (3.2). We introduce here

the following four Mobius transformations:

L0(x)=x,
X 6\

e2x + e\-e\- e2e3 e3x + e\ -e\- e3e}
L\X)2 \ ) , i \ )

x — e2 x — e3

We see that Lj(f) (j = 0, 1, 2, 3) are also solutions of (3.2), which is verified by
direct computations. Moreover, we assert that for any other Mobius transformation
L(x) = (ax + b)/(cx + d), with A = ad - be ^ 0, the equation (3.2) is not satisfied
by L( / ) . To show this, we assume that L(f) satisfies (3.2), that is,
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First we treat the case c = 0. In this case we may assume that d = 1 and a ^ 0.
Using (3.2) and (3.16), we eliminate / ' and obtain a polynomial in / which must
vanish. Then we have that a = 1 and b = 0 since / is a transcendental function. This
implies that L must be Lo in this case.

Next we consider the case c ^ 0. We may assume that c = 1 in this case. Using
the same argument as above, we obtain a polynomial in / of degree 4 which must
vanish. Since / is transcendental, all coefficients must vanish. From the coefficients
of / 4 , / 3 and f2, we obtain the following relations

(3.17) 4a3 - g2a - g3 = 0,

(3.18) \2a2b - 4b2 + 4a3d + 8abd - 4a2d2 - bg2 - 3adg2 - 4dg3 = 0,

and

(3.19) 4ab2 + 4a2bd - bdg2 - ad2g2 - 2d2g3 = 0.

From (3.17) and (3.19), we eliminate g3. Then, noting that ad — b ^ 0, we have

(3.20) 4ab + d(8a2 - g2) = 0.

(i) When a ^ 0, substituting b — -d(Sa2 - g2)/(4a) from (3.20) and
g3 = 4a3 - g2a from (3.17) into (3.18), we obtain (a + d)d(\2a2 - g2)

2 = 0.
We note that d(\2a2 - g2) j=- 0. In fact, if d(\2a2 - g2) = 0, by (3.20) we obtain that
a = 0 since ad — b ^ 0, which is a contradiction. We have

(3.21) d = -a

and from (3.20) we have

(3.22) b =

(ii) When a = 0, we have g3 = 0 by (3.17) and dg2 = 0 by (3.20). If d ^ 0,
g2 = 0. This implies that 27£f — g\ = 0, which is a contradiction. We have d = 0.
Substituting a = 0, d = 0 into (3.18), we obtain the equality b(4b + | 2 ) = 0. As
£ ^ 0 in this case (ad — b ^0), we have b = —g2/4.

(i) and (ii) imply that (3.21) and (3.22) hold in any case.
By (3.17), we see that a coincides with one of the roots of G(x) = 0, say eu e2

or e3. We note that g2 = —4(e\e2 + e2e3 + e3e{) and g3 = 4e\e2e3. In view of (3.21)
and (3.22), if a = e\ then b = e\ - e\ — exe2 and d = —ex. This implies that L
coincides with L\. Similarly we see that L = L2 when a = e2 and L = L3 when
a = e3.
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PROOF OF THEOREM 3.1(i). Let / and g be two transcendental meromorphic solu-
tions of (3.2) satisfying the hypothesis of this theorem. First we will show that A(z)
in (3.2) has no poles. From (3.2),

(/) ig)(3.23) A(Z) = !±L = ^LL and
G(f) G ( )G(f) G(g) G(g)

Suppose that A has a pole zo- From (3.23), there are four possibilities:

(1.1) z0 is a pole of / and a pole of g,
(1.2) zo is a pole of / and a zero of G(g),
(1.3) zo is a pole of g and a zero of G( / ) ,
(1.4) zo is a zero of G( / ) and a zero of G(g).

Here we make a remark. In the cases (i.2)—(i.4) we consider the zeros of G ( / )
and G(g). Assume that z0 is a zero of G(f). It follows that / has one of the es

(j = 1, 2, 3) points at zo- Without loss of generality we may assume that it is an e\
point. We set f\ = Li(f), where L\ is given in Remark 2 (B), that is,

(3.24)

Then we see by a simple computation that /i also satisfies (3.2) and Zo is a pole
of f\. Hence the cases (i.2)—(i.4) reduce to the case (i.l), by using a suitable Mobius
transformation which can be defined in a similar way to (3.24). Thus we have only to
consider the case (i. 1). Denote by /JLA, fxf and ng the orders of the poles at z0 for A, f
andg.

From (3.2), we have 2(/z/ + 1) = 3/x/ + /x^, that is, (1 <))U./ = 2 — /xA. Hence
ixf = (MA — 1 and similarly \xg = 1. Here we consider the Laurent expansions of A, f
and g in a neighbourhood of zo as follows:

Z-Zo

f f

z — Zo
g(z) = —s—+ag + O(z-z0), Rg^0.

z — Zo

From (3.11), Rf = Rg = l/4RA. Further, substituting these representations
into (3.2) and comparing the coefficients of terms (z — Zo)~3, we have

n T O -RfOtA -OCA
(3.25) af = ag= -3RA 12R2

A '
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By the assumption of thisJemma, the function q> = / — g does not vanish identically,
and by (3.25) <p has a zero at ZQ. However, by Lemma 3.4 it is impossible that <p has a
zero at zo, a contradiction.

Secondly, we will show that all zeros of A are of even order. Let z\ be a zero of A.
From (3.23), if zi is a zero of / ' (respectively g') and if Z\ is not a zero of G(f),
(respectively G(g)), then the order of the zero of A at z\ is an even integer. Hence we
shall consider the following four possibilities.

(1.5) z\ is a pole of / and a pole of g,
(1.6) z\ is a pole of / , a zero of g' and a zero of G(g),
(1.7) Z\ is a pole of g, a zero of / ' and a zero of G( / ) ,
(1.8) zi a zero of / ' , a zero of G(f), a zero of g' and a zero of G{g).

We only have to treat the case (i.5). In fact, as in the cases (i.2)-(i.4) above, the cases
(i.6)—(i.8) can be reduced to the case (i.5) by using suitable Mobius transformations.
We denote by k the order of the zero of A atz\, and denote by /x/ and fxg the orders
of the poles of / and g at z\.

In a manner similar to the proof of Lemma 3.4, weobtain(l <)X = /J,f—2 = fxg—2,
which implies ixf > 3. As before, we write fxf — fig = \i.

Consider the Laurent expansions of A, / and g in a neighbourhood of z\. Denote
by RA the coefficient of (z — Z\Y~2 in the expansion of A, and denote by Rf, Rg the
coefficients of (z — zO~M in the expansions of / , g respectively. From (3.2), similarly
to (3.11), we have

(3.26) Rf=R
1 * 4RA

We see that the coefficient of the term (z — Zi)~2 in the right-hand side of (3.15) is
6RA(Rf + Rg) = 3n2 by (3.26).

We divide the behaviour of q> at z = Z\ into three cases, namely, (p has a pole at
Z\, <p has a zero at z\, or cp does not have a pole nor a zero at z\.

We first assume that (p has a pole at Zi of order v. Note that by (3.26) v is at
most /z — 1. In the left-hand side of (3.15), the coefficient of double pole z\ is
v{v + 1) + (/x — 2)v/2 = v2 + /xv/2. Hence we have 2v2 + \xv — 6/x2 = 0, so
v — —2/x or 2v — 3/x. Since \x and v are positive, v = —2\i is absurd. If 2v = 3/x
then since v < //, — 1, we have /x < -2 which is also absurd.

Next we treat the case where <p has a zero at z\. By the assumption, the function
<p = f — g does not vanish. Hence, in view of Lemma 3.4, this case does not occur.

Finally we consider the case where <p does not have a pole nor a zero at z\. In this
case z\ is a simple pole or a regular point of the left-hand side of (3.15). However the
right-hand side has a double pole, a contradiction.

Therefore A must be a polynomial whose zeros are of even order, which implies
that there exists a polynomial a such that A = (a')2. •

https://doi.org/10.1017/S1446788700036855 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036855


[15] Some algebraic differential equations 171

PROOF OF THEOREM 3. l(ii). We follow the idea in the proofs of Lemma 3.3 parts (a)
and (b), (see Bank and Kaufman [2]). Let / be a transcendental meromorphic solution
of (3.2). We fix zo e C which is not a pole of / satisfying the conditions a'(zo) ^ 0,
p'(zo) ^ 0 and f'(zo) £ 0 (or G(/(z0)) ^ 0). Denote by DQ a fundamental
parallelogram of p that contains z0. Further we set f(zo) = b0 and /'(zo)A*'(zo) = b\.
Then from (3.2), b2 = G(b0). In view of Lemma 3.2, there exists z\ € DQ such that
P (z\) = b0 and p'(zi) —bx. We set a(z) = a(z) + z\ - a(zo) and

/ , = Mz) = p(.a(z)) = p(a(z) + zi - a(zo)).

Then /,'(z) = p'(a(z))a'(z) = p'(a(z))a'(z) and hence

(/i')2 = (p'(a))2(a')2 = AG(p(a)) = AG(/,)

which implies that /i is a meromorphic solution of (3.2). We have that

(3.27) / , (z0) = p (a(z0) + Zi - a(z0)) = p(zi) = bo = f(zo),

(3.28) /,'(zo) = p' (fl(zo) + z, - fl(zo)) fl'(zo) = P'(zi)fl'(zb) = 6ifl'(zb) = /'(zo).

Set î  = / — / , . Then from (3.27) and (3.28) we have that V(z0) = ^'(zo) = 0.
We see that A'/2A and A are analytic at zo from our assumption. Regarding g as /i
and (p as T̂  in (3.14), we conclude that x// = 0, so f and /i must coincide. This
proves (ii). •

PROOF OF THEOREM 3.1(iii). Let u and v denote meromorphic solutions of (3.2)
and let a(z) be a polynomial given in (i). We may assume that u = u{z) = p (a(z))
and we can write v = v(z) = p (a(z) + c) for a constant c € C by (ii). Put p (c) = d0

and p'(c) = d\. Then by the addition formula for the p-function,

( , ,^ , 1 fp'(a(z))-p'(c)\2 . . . . . .
p(a(z) + c) = -[——— —- -p(a(z))-p(c),

4 \p(a(z))-p(c) J
that is,
(3.29) _u_

4 V u - d0

Since d2 = G(d0) and (a'(z))2 = A(z), from (3.2) and (3.29) we obtain

(3.30) (4(v + u + dQ)(u - dQ)2 - G(u) - G(d0))
2 = 4G(do)G(u).

Put U = U(z) = u(z) - d0 and V = V(z) = u(z) - rfo- Then since

G(rf0) = H 3 - g2d0 - h and G'(d0) = ™l - g2,

we can write (3.30) as

U2V2 - X-G\d0)UV - G{do)(U + V) + ^-(G'(d0)
2 - 4$d0G(d0)) = 0,

2 16
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which confirms that U and V satisfy a relation of the form (3.4).
Conversely, we suppose that the relation (3.4) holds for meromorphic functions U

and V. We differentiate (3.4) to obtain

(3.31) U'(2UV2 - G2V - G,) = -V'(2VU2 - G2U - G,).

Using (3.4) we have

(3.32) (2VU2-G2U-Gi)2

+ 2G2GiU =4G1U
3 + (4G0 + Gl)U2 + 2GlG2U + G] = G.KiU).

Similarly we obtain

(3.33) (2UV2-G2V-Gxf = GXK{V).

Combining (3.31)—(3.33), we obtain the assertion (3.5) with (3.6). D

PROOF OF COROLLARY 3.2. (a) This assertion follows from (ii) of Theorem 3.1.
(b) Suppose that (3.2) has a transcendental meromorphic solution / . If there exists

a'transcendental meromorphic solutiong of (3.2) such that g ^ L(/) for some Mobius
transformation then we have #X(A) = oo by (a). For the proof of (b), it remains to
find the number of Mobius transformations L; such that Lj ( / ) satisfies the equation
(3.2) if #T(A) ^ 0, oo. By means of Remark 2(B), the number of such Mobius
transformations is equal to four, so WX(A) = 4.

(c) In the case f — L(g) for a Mobius transformation L, we have, by means of
Nevanlinna's first fundamental theorem, T(r, f) — T(r, g) + 0(1). We may suppose
that / T^ L(g) for any Mobius transformation L. Then in view of Theorem 3.1(iii),
there isarfo 6 C such that the functions /o = /—doandgo = g—d0 satisfy an algebraic
relation (3.4). Since T(r, /„) = T(r, f) + 0(1) and T(r, g0) = T(r, g) + 0(1),
we need only show that f0 and g0 satisfy the assertion of part (c), namely that
T(r, /o) = T(r, g0) + 0(1). If Gx = 0 in (3.4) then fogo is a constant, from which
we obtain that T{r, f0) = T(r, g0) + 0(1). In what follows, we assume that Gx ^ 0.
Define meromorphic functions

(3.34) / l = - ~ l ° » ' ; G ° and gi =-Gl
2 6 1 — z-2

/oSo SoH
From (3.3) for (/ = f0, V = g0, we have

, G2go + Gi G\go + Go
J° 2 = T~2—•

go logo
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Eliminating f0 from this equation by using the first one of (3.33), we see that / i and g0

satisfy (3.4). Similarly we see that f0 and g\ satisfy (3.4), so

(3.35) figl ~ G2fxgo - G,(/, + go) - Go = 0,

(3.36) flg\ - G2f0gl - G,(/o + g,) - Go = 0.

Thus /o, go, f\ and gi are transcendental meromorphic solutions of

(3.37) (u/)2 = A(z)K(w),

where A(z) is given in (3.2) and K(w) is given in (3.6). We also have

(3.38) /o + / , = j and g0 + gi = 7 2
£0 Jo

It follows from (3.38) and Gx ^ 0 that

(3.39) 27(r, go) < T(r, f0) + T(r, / , ) + (9(1).

Using (3.34) and (3.38), we obtain

(3.40)
/o /i Gigo + Go

By means of Nevanlinna's first fundamental theorem of and (3.40),

(3.41) T(r, / ,) < T(r, g0) + T{r, f0) + 0(1).

Combining (3.39) and (3.41), we have T(r, g0) < 2T(r, f0) + 0(1). Changing the
roles of /o(z) and go(z), we obtain T(r, f0) < 2T(r, g0) + 0(1). This implies that if
<p{r) = Sir, /o), then <p(r) = S(r, g0), and if <pir) = Sir, g0), then <pir) = Sir, f 0 ) .
Hence for two meromorphic functions / and g, we can write Sir, f) = Sir) and
Sir, g) = Sir).

We recall some properties of a transcendental meromorphic solution wiz) of (3.37).
Let wiz) be a transcendental meromorphic solution of (3.37). Then, by means of
Gol'dberg's theorem [4], we see that wiz) is of finite order. We also have that all
poles of wiz), except for a finite number, are double, and m(r, w) = O(logr). Also
all zeros of wiz), except for a finite number, are simple, and mir, l/w) = O(logr)
since we assume Gt ^ 0. Hence,

(3.42) Nir, w) = 277(r, w) + O(logr) = T(r, w) + O(logr), and

(3.43) Nir, l/w) = W(r, l/w) + O(logr) = T(r, w) + O(logr).

Let zo be a pole of /0(z) and let zi be a pole of /i(z). Then we see from (3.4)
and (3.35) (or (3.34)) that zo is a zero of g0 and z\ is also a zero of g0. If both /0(z)
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and /i(z) have a common double pole z2 then z2 is a zero of go(z) of multiplicity
at least two. From (3.43), the counting function of such common poles is O(log r).
Thus it follows that

(3.44) Jf{r, /o) + JV(r, /,) < Jf{r, I/go) + O(logr).

From (3.42)-(3.44),

T(r, /o) + T(r, / , ) < 2T(r, go) + 0(U>gr).

Combining this with (3.39), we obtain

(3.45)

Further we define

Gifi + Go Gig] + Go

* • — S T T and A jtS—"
Repeating this process, we define sequences of meromorphic functions f0, g\, f2,

g3, . . . , and go, / i , g2, / 3 , . • • • Namely, for fc = 0, 1, 2 , . . . . we set

J2k+3 — 7 2 ' S2*+2 — 7 2
J2k+\g2k+2 82kJ22k+\

GoGif2k+2 + Go ,
g2*+3 = " 72 ' M+2 = 7 2

82k+lJ2k+2 J2kg2k+l

Then we see that all the functions

and {gk(z)) (* = 0, l ,

are transcendental and satisfy the differential equation (3.37), and all pairs

(fj(z),gj+i(z)) and (g;(z),

satisfy (3.4) and all triples

and (gj-dz

satisfy (3.45). For j = 0, 1, 2 , . . . , we write

[ , if; is even.

Let ao,bo, a\ and b\ be positive constants. We assume that there exists a sequence [rn]
such that rn —> co as n —>• oo and

^ , o) aortr,, /o) + O(logrn)
(3.46)

and
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T{rn, hi) < axT{rn, /„) + O(logr)
(3.47)

T(ra,hl)>blT(rn,f0)+O(\ogr).
We assert that there exist sequences {ay} and [bj], j = 0, 1, 2 , . . . , such that

(3.48) T(rn,hj)<ajT(rnif0) + O(\ogrn) and

(3.49) T(rn, hj) > bjT(rn, /„) + O(logrn).

In view of (3.45) and the comment that we made after the definitions of {fj(z)} and
}, we have, for j = 1, 2, . . . ,

(3.50) T(rn, hj-J + T(rn, hJ+l) = 2T(rn, hj) + O(logrn).

Assume that (3.48) and (3.49) hold for j = 0, 1, 2, . . . , k. Then from (3.50),

T(rn, hk+l) = 2T(rn, hk) - T(rn, hk_x) + O(logrn)

< 2akT(rn, f0) - bk^T{rn, f0) + O(logrn),

which gives

(3.51) ak+l = 2ak -bk^.

Similarly, we obtain

(3.52) bk+1=2bk-ak^.

Therefore, using the assumptions (3.46) and (3.47), we can use (3.51) and (3.52)
recursively to obtain a sequence {an} which satisfies (3.48) and a sequence [bn} which
satisfies (3.49).

We now compute ak and bk concretely. Put ck = ak + bk. Then we have
ck+\ — 2ck + Q_I = 0 and hence ck — (ci — co)k + CQ, k = 0, 1, 2 , . . . . Thus
we obtain

(3.53) ak+\ — 2ak — ak-\ = \xk + v,

where \x — c0 — cx and v — c\ — 2c0. In (3.53), we set dk = ak+\ — ak. Then we have
dk — 2dk^\ — dk_2 = H- Further, we put ek = dk + (u,/2. Then

(3.54) ek - 2e,_, - ek_2 = 0.

Thus we can write ek with some constants y\ and y2 as

(3.55) ek = YxA + ft%,

where A., = 1 + V2 and X2 = 1 - -J2, (which are the roots of t2 - 2t - 1 = 0),
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see, for example, [3]. Thus dk = ek — n/2 and hence for k = 1, 2 , . . . , we have

(3.56)
k-\ k-\ k-\

( f ) ( i ~ f ) + a°

We,

j=o

1 -
" 1 -

bk = 2at -

Y\

assert that

- A.*
1

- A ,

7=0

1 -
1

91* a.
- ZAj -+

A *

A 2 2

V"

7=0

r0, and

(3.57) hminf > 1 and hminf > 1.
r-oo T(r, /o) r^oo T(r, go)

To show this, we assume that

(3.58) I£L£l£ £ a < l .
T{r, /o)

For any e > 0 such that a + e < 1, there exists a sequence {rn} = {rn(e)} satisfying

(3.59) T(rn, / 0 < (a + e)T(rn, /0) and T(rn, / , ) > (a - e)T{rn, / 0 ) ,

for n > no(e). Later we choose a suitable e. From (3.45),

Similarly, we have

We now set

1+a+e 1+a-e
and b\ = a — €.a0 = r » *o = r , a i = a +

We compute /x, v, y\ and y2 concretely under our assumptions. We have

fi = Co — cx = (a0 + to) — (ai + &i) = 1 — a and v = c\ — 2c0 = —2.
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From (3.53),

a2 = 2a]+ao + n, + v = -a + -€ - 1/2.

On the other hand, from (3.56),
€

a\ = Yi + Y2 + cc + -

3 1 1
f 2 a + 2 e ~ 2"

Hence we have

y! + y2 = — and (1 + A.i)yi + (1+ A2)y2 = 2e.

Since Ai = 1 + y/l and A2 = 1 — VI, we obtain

= (l + ^ ) c = (1-^)

Hence we can write

(3.60) at =(a -

Since we assume that a < 1, we can take fc = k(a) so large that (a — l)k + 1 < 0.
Once we find such a k, we fix it. Then we choose e so small that ak < 0. For this e,
there exists {/•„} = {rn(e)} satisfying (3.59), in particular,

(3.61) T(rn, hj) < akT(rn, /„) + O(\ogrn).

We observe the term O(logrn) in (3.61). Write this term as ^(log^). Then the
function ir{x) in x depends on k. However, it is independent of e. Since h0 is
transcendental and ak < 0, the right hand side of (3.61) is negative for sufficiently
large n, a contradiction. This gives the first inequality in (3.57). On the other hand,
we consider a sequence of functions

h*(z)=\fjM> if 7 is even
\gj(z), if y is odd

instead of hj(z) above. Then we obtain the second inequality in (3.57) by similar
arguments. Hence the assertion (3.57) follows. It follows from (3.45) and the first
inequality in (3.57) that

(3.62) Z ^ ^

https://doi.org/10.1017/S1446788700036855 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036855


178 Katsuya Ishizaki and Nobushige Toda [22]

We recall the remark that we posed after the definitions of {fj(z)} and [gj(z)}, in
particular,

T(r, go) + T(r, gx) = 2T(r, /„) + O(logr).

From this and the second inequality in (3.57), we have

hminf — > 1,
r-oo T(r, go)

and hence
(3.63) l i m s U p ^ l M < l .

r->oo I C. 7o)

Hence we see that lim^oo T(r, fo)/T(r, g0) = 1. This implies that as r -> oo,
T(r, /0) = (1 + o(l))7(r, g0) which gives (3.7). Finally, we comment that the
case hj(z) = ht(z) for some j ^ i is included in our arguments. We have thus
proved (c). •

4. Examples

Finally, we state some examples in this section. As mentioned in the statement
in Theorem 2.3, a condition that gives #6(A) > 3 is obtained and in Remark 1, a
condition that gives #<5(A) = 0 is obtained.

A natural question arises: Under what conditions does #&(A) = 2 occur?
We shall give some examples of A in (2.1) for which # 6 (A) = 2 and an example

for (3.2) having the property #T(/i) = 4.

EXAMPLE 1. 6 (£) = {cosh *Jz, -coshv'i}.

In fact, it is easy to see that cosh *fz and — cosh ->/z are transcendental entire
solutions of the differential equation

It follows from Theorem 2.3 (i) that there is no other solution to the equation above.
Similarly let p(z) be a polynomial with simple zeros only. Then,

6 (4 (z2 - 1)) = j± cosh (zVz2 - 1 - log (z + y/z2 - l ))} •
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EXAMPLE 2. The equation

if')1 = -^ (4 / 3 - hf ~ ft)

possesses a solution p (-Jz), where p is Weierstrass' elliptic function satisfying (3.1).
Clearly p («/z + c), c ^ 0 e C, is not meromorphic and hence #T(l/4z) = 4.
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