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Stepping-Stone Model with Circular
Brownian Migration

Xiaowen Zhou

Abstract. In this paper we consider the stepping-stone model on a circle with circular Brownian migra-

tion. We first point out a connection between Arratia flow on the circle and the marginal distribution

of this model. We then give a new representation for the stepping-stone model using Arratia flow

and circular coalescing Brownian motion. Such a representation enables us to carry out some explicit

computations. In particular, we find the distribution for the first time when there is only one type left

across the circle.

1 Introduction

The stepping-stone model is a mathematical model for population genetics. A dis-
crete site stepping-stone model describes the simultaneous evolution of interacting
populations over a collection of finite or countable colonies. There are mutation, se-

lection and resampling within each colony, and there is migration among different
colonies. See [Kim53, Shi88] for some early work.

The continuous site stepping-stone model introduced in [Eva97] is a process tak-
ing values from the space Ξ := {µ : E → M1(K)}, where E denotes the continuous

site space, K denotes the type space, and M1(K) denotes the space of all probability
measures on K. Intuitively, such a map µ simultaneously represents the relative fre-
quencies of different types in populations at various sites. More precisely, for e ∈ E
and B ⊂ K, µ(e)(B) represents the “proportion of the population at the site e pos-

sessing types from the set B”. The “moments” of the continuous site stepping-stone
model are specified using the so-called migration processes taking values in E. The
paper [DEFKZ00] considered models of this type where E is a general Lusin space
and the migration process belongs to a very general class of Borel right processes.

In this paper we only consider a stepping-stone model with site space T, a circle of
circumference 1, with type space K = [0, 1], and with Brownian migration on T. We
call it a stepping-stone model with circular Brownian migration (in short, a SSCBM)

and write it as X throughout the paper.
The distribution of SSCBM is uniquely determined by a family of coalescing Brow-

nian motions on T. To present an explicit formula, we will require the following
notation.

Given a positive integer n, let Pn denote the set of partitions of Nn := {1, . . . , n}.
That is, an element π of Pn is a collection π = {A1, . . . , Ah} of disjoint subsets of
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Stepping-Stone Model with Circular Brownian Migration 147

Nn such that
⋃

i Ai = Nn. The sets A1, . . . , Ah are the blocks of the partition π. The
integer h is called the length of π and is denoted by |π|. Equivalently, we can think of

Pn as the set of equivalence relations on Nn and write i ∼π j if and only if i and j
belong to the same block of π ∈ Pn.

Given π ∈ Pn, let αi := min Ai , 1 ≤ i ≤ |π|. {αi} is the collection of minimal
elements for π.

By a circular (instantaneously) coalescing Brownian motion we mean a collection
of Brownian motions on T such that any two of them will move together as soon as
they first meet. Given a circular coalescing Brownian motion (Z1, . . . , Zn) starting
at e = (e1, . . . , en). For t > 0, let πe(t) be a Pn-valued random partition such that

i ∼πe(t) j if and only if Zi(t) = Z j(t). Then πe(t) is the random partition induced by
(Zi(t)). Write

Γ
e(t) := {αi(t) : 1 ≤ i ≤ |πe(t)|}

for the collection of minimal elements for πe(t).

SSCBM is then a Ξ-valued, continuous Markov process X with distribution spec-

ified as follows. Given µ ∈ Ξ and n > 0, for any fi ∈ C(T), Ki ⊂ K, i = 1, . . . , n,

(1.1) Q
µ
[

n
∏

i=1

∫

T

de fi(e)Xt (e)(Ki)
]

=

∫

Tn

de
(

n
∏

i=1

fi(ei)
)

P

[

∏

i∈Γe(t)

µ(Zi(t))
(

⋂

j∼πe(t)i

K j

)]

,

where Qµ denotes the probability law of X when its initial value is µ. See [DEFKZ00,
Theorem 4.1] for a result on a general continuous site stepping-stone model and for a
rigorous treatment of the measurability requirements on µ( · ) and the sense in which

X is continuous and uniquely characterized by (1.1).

In [DEFKZ00] a particle representation for X was given using the Poisson random

measure on DT[0,∞[ × K and a “look down” scheme similar to that in [DK96]. It
leads to better insight into the model. In the same spirit we are going to propose
another representation for X in this paper.

Evans [Eva97] showed that the analogue of X on the site space E = R degenerates,
i.e., for any t > 0, for almost all e ∈ R, Xt (e) becomes a point mass on some k ∈ K.
A stronger version of this clustering behavior was later shown in [DEFKZ00] on the

site space E = T for general initial measure µ ∈ Ξ and in [Zho03] on the site space
E = R for the special case where µ(e) = θ ∈ M1(K) for all e ∈ R. In fact, when
the site space is E = T, there exists a random partition of T such that T is divided
into a finite number of disjoint intervals and Xt (e) is a point mass on the same k ∈ K

for almost all e in each interval (see [DEFKZ00, Theorem 10.2]). In this way we can
identify X with a step-function-valued process.

Let Ξ
′ be the space of K-valued right continuous step functions on T equipped

with the topology inherited from the Skorohod J1 topology on DK(T). For each
µ ∈ Ξ, we are going to construct a Ξ

′-valued process (X ′t , t > 0) which can be
regarded as SSCBM with initial value µ under the above-mentioned identification.
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148 X. Zhou

To this end, we first point out an interesting connection between Arratia flow and
SSCBM in Section 2. This connection allows us to specify the entrance law of X ′

using the pre-image of Arratia flow. Then we give an explicit construction of X ′ using
Arratia flow and circular coalescing Brownian motion, and we will show that X ′ so
defined does have the right distribution under the above-mentioned identification.
In this sense X ′ provides a nice version for X. Such a representation enables us to

compute the distribution of the time when there is only a single type of individuals
left across T in Section 3. It also allows us to obtain a result on the type that survives
eventually.

2 A Representation of Stepping-Stone Model with Circular Brownian
Migration

We adopt some conventions for the rest of this paper. We identify T with interval
[0, 1) oriented anti-clockwise. Whenever we write (e1, . . . , em) ∈ Tm, unless other-

wise specified, it implies that e1, . . . , em have been already arranged in anti-clockwise
order on T. Given u, v ∈ T, write [u, v[ for an interval starting at u and ending
at v in anti-clockwise order. Write v − u for the length of the interval [u, v[. For
(κ1, . . . , κm) ∈ Km and (e1, . . . , em) ∈ Tm, write

∑m
i=1 κi1{[ei , ei+1[}, em+1 := e1, for

a right continuous step function on T.

Arratia flow on T describes the evolution of a stochastic system in which there is
one Brownian motion starting at each point on T. Two Brownian motions coalesce
once they meet. Formally, a simple version of the Arratia flow on T can be defined as
a collection {φ(t, x) : t ≥ 0, x ∈ T} of T-valued random variables such that

• the random map (t, x) 7→ φ(t, x) is jointly measurable,
• for each x, the map t 7→ φ(t, x), t ≥ 0, is continuous,
• for each t , the map x 7→ φ(t, x) is non-decreasing and right continuous (in the

sense that it lifts to a map R 7→ R which is non-decreasing and right continuous),
• for (x1, . . . , xm) ∈ Tm the process (φ(t, x1), . . . , φ(t, xm))t≥0 has the same distri-

bution as a circular coalescing Brownian motion starting at (x1, . . . , xm).

Arratia flow (with T replaced by R) was first introduced in [Arr79]. We refer

to [Har84, Mat89] for definitions and constructions of related coalescing flows of
(dependent) diffusions. Also see [JR05] for work on more general coalescing flows.

The existence of such a coalescing Brownian flow on R was established in [Arr79,
Ch. 2, Theorem 1; Ch.4, Lemma5]. Similarly, we can construct {φ(t, x) : t ≥ 0,
x∈ T}as follows. Given a countable and dense subset Q of T, we first construct

{φ(t, x ′) : t ≥ 0, x ′ ∈ Q} using independent circular Brownian motions starting
at Q and the “collision precedence rule” introduced in [Arr79, Ch. 1]. Then set

φ(t, x) := lim
x ′
→x+

x ′∈Q

φ(t, x ′) for t ≥ 0 and x 6∈ Q.

As in [Arr79], we can show that {φ(t, x) : t ≥ 0, x ∈ T} defined as above has the
desired properties.
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For the Arratia flow on R, using a Borel–Cantelli type argument it was shown
in [Arr79, Ch. 3, Theorem 12] that almost surely, for every t > 0,

∣

∣{φ(t, x), x ∈ (−a, a)}
∣

∣< ∞, a > 0,

where |A| denotes the cardinality for a set A. So, the image {φ(t, x), x ∈ R} of map
φ(t, · ) is a discrete set for every t > 0.

For the flow on T, given t > 0 we can directly show that

P
[
∣

∣{φ(t, x), x ∈ Q}
∣

∣

]

= 1 + 2

∞
∑

n=1

exp{−n2π2t};

see the proof for [DEFKZ00, Corollary 9.3]. Then by the right continuity of φ(t, · )

we have

(2.1) N(t) :=
∣

∣{φ(t, x), x ∈ T}
∣

∣ =
∣

∣{φ(t, x), x ∈ Q}
∣

∣ < ∞.

Furthermore, there exists a sequence of distinct T-valued random variables (Vi(t)) ∈
TN(t) such that

(2.2) {φ(t, x), x ∈ T} = {Vi(t), i = 1, . . . , N(t)}.

Since the map φ(t, · ) is non-decreasing, given (u1, u2) ∈ T2 such that φ(t, u1) =

φ(t, u2) = v, we have either φ(t, u) = v for all u ∈]u1, u2[, or φ(t, u) = v for

all u ∈]u2, u1[. Then the pre-image of Vi(t) is a connected set. Moreover, φ(t, · )
is right continuous. So, there exists another sequence of distinct T-valued random
variables (Ui(t)) ∈ TN(t) such that

(2.3) φ(t, x) = Vi(t) for x ∈ [Ui(t),Ui+1(t)[,

where i = 1, . . . , N(t) and UN(t)+1 := U1. Note that we have suppressed the depen-

dence of (Ui(t)) and (Vi(t)) on N(t).

Similar results on the discreteness of the images for other coalescing flows can be
found in [Har84, Theorem 7.4], in [Mat89, Theorem 3.4] and in [JR05, Proposition
4.1].

Put ∆(ǫ) := max1≤i≤N(ǫ)(Ui+1(ǫ) −Ui(ǫ)), ǫ > 0, and

(2.4) τ := inf{t ≥ 0 : φ(t, x) = φ(t, y), ∀x, y ∈ T}.

Then τ is the time when the image of Arratia flow on T first becomes a set of a single

element.

Lemma 2.1 Given ǫ > 0, φ(ǫ, · ) is a random step function specified by (2.1), (2.2)

and (2.3) using N(ǫ), (Ui(ǫ)) and (Vi(ǫ)). Moreover, we have ∆(ǫ) → 0 in probability
as ǫ → 0+, and P{τ > 0} = 1.
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Proof Given ǫ > 0 and n ∈ N+, since

{φ(ǫ, i/n), i = 0, . . . , n − 1} ⊂ {Vi(ǫ), i = 1, . . . , N(ǫ)},

then
n−1
⋂

i=0

{|φ(ǫ, i/n) − i/n| < 1/2n} ⊂ {∆(ǫ) < 2/n}.

Observe that

P

{

n−1
⋂

i=0

{|φ(ǫ, i/n) − i/n| < 1/2n}
}

→ 1 as ǫ → 0+,

so, ∆(ǫ) → 0 in probability.

Let ǫ → 0+ in P{τ ≥ ǫ} ≥ P{φ(ǫ, 0) 6= φ(ǫ, 1/2)} Then P{τ > 0} = 1 follows

readily.

For any µ ∈ Ξ, given N(t), (Ui(t), i = 1, . . . , N(t)) and (Vi(t), i = 1, . . . , N(t)),
let (κi , i = 1, . . . , N(t)) be a collection of independent K-valued random variables
such that κi follows the distribution µ(Vi(t)). Define

(2.5) X ′t (e) =

N(t)
∑

i=1

κi1
{

[Ui(t),Ui+1(t)[
}

(e), e ∈ T,UN(t)+1 := U1.

We first point out that X ′(t), when identified as

(2.6) e 7→
N(t)
∑

i=1

δκi
1
{

[Ui(t),Ui+1(t)[
}

(e), e ∈ T,

is indeed a version of Xt .

Proposition 2.2 For any t > 0, with the identification (2.6) X ′t has the same distri-
bution as Xt under Qµ.

Proof To determine the distribution of X ′t we only need to specify joint distribu-
tions such as

P{X ′t (e1) ∈ K1, . . . , X ′t (en) ∈ Kn}, Ki ⊂ K, i = 1, . . . , n.

By definition (φ(t, e1), . . . , φ(t, en)) is a circular coalescing Brownian motion start-
ing at (e1, . . . , en). Let πe(t) be the induced partition on Nn. Given N(t), (Ui(t)) and
(Vi(t)) as before, observe that i ∼πe(t) j implies φ(t, ei) = φ(t, e j) = Vr(t) for
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some r, and so ei and e j belong to the same interval [Ur(t),Ur+1(t)[ where X ′t (ei) =

X ′t (e j) = κr follows distribution µ(Vr(t)). Therefore,

P

{

n
⋂

i=1

{X ′t (ei) ∈ Ki}
}

= P

[

∏

i∈Γe(t)

N(t)
∑

r=1

1
{

κr ∈
⋂

j∼πe(t)i

K j

}

1{ei ∈ [Ur(t),Ur+1(t)[}
]

= P

{

∏

i∈Γe(t)

µ(φ(t, ei))
(

⋂

j∼πe (t)i

K j

)}

.

(2.7)

An inspection of (2.7) reveals that (1.1) holds for X ′(t) when it is regarded as
Ξ-valued. So Xt and X ′t have the same distribution.

By Proposition 2.2, there exists a Ξ-valued SSCBM (Xt , t ≥ 0) and a collection of
Ξ
′-valued random variables (X ′t , t > 0) such that Xt may be identified with X ′t via

(2.6) for all t > 0. In the rest of the paper, we will assume that (Xt , t ≥ 0) is such

an SSCBM, and we will consider it to have values in Ξ
′ at all positive times whenever

this is convenient.

We can read off some properties for Xt , t > 0, immediately from Proposition 2.2.
First, with probability one Xt (as a function of e) can only take finitely many different
values from K. Moreover, if µ(e) is a diffuse measure for almost all e ∈ T, then with
probability one Xt takes different values over different intervals on T, i.e., X(e) = κ
for e ∈ [e1, e2[, whenever X(e1) = κ = X(e2). Such properties are also discussed
in [DEFKZ00, §10].

Conditioning on Xs =
∑m

i=1 κi1{[ui , ui+1[}, (1.1) shows that given t > s, Xt can

only take values from {κi}. Moreover, for any {κ ′j , j = 1, . . . , n} ⊂ {κi} and any
(z j ) ∈ Tn, by (1.1) we can further show that

Q

{

n
⋂

j=1

{Xt (z j) = κ ′j}
∣

∣ Xs =

m
∑

i=1

κi1{[ui , ui+1[}
}

= Q

{

n
⋂

j=1

{Xs(Z j(t − s)) = κ ′j}
}

,

(2.8)

where (Z j) is a circular coalescing Brownian motion starting at (z j).

To describe the evolution of X over time we need a lemma on duality between two
circular coalescing Brownian motions.

Fix y = (y1, . . . , ym) ∈ Tm and z = (z1, . . . , zn) ∈ Tn. Let (Y1, . . . ,Ym) be an

m-dimensional circular coalescing Brownian motion starting at y. Let (Z1, . . . , Zn)
be an n-dimensional circular coalescing Brownian motion starting at z. Put

I→i j (t, z) := 1{Yi(t) ∈ [z j , z j+1[}
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and

I←i j (t, y) := 1{yi ∈ [Z j(t), Z j+1(t)[}

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Recall that zn+1 := z1 and Zn+1 := Z1.

Lemma 2.3 The two (m × n)-dimensional arrays (I←i j (t, y)) and (I→i j (t, z)) have the
same distribution.

Proof We can prove Lemma 2.3 in the same way as [Zho07, Theorem 2.1], i.e., we

first show that the corresponding duality holds for circular coalescing random walks,
and then apply time space scaling to obtain the desired result for circular coalescing
Brownian motions.

By Lemma 2.3 we can easily derive the following side result concerning a dual rela-

tionship for Arratia flow on T. Such a result was pointed out in [Arr79] for coalescing
Brownian flow on the real line.

Proposition 2.4 When identified as point processes, (Ui(t)) and (Vi(t)) have the same
distribution for any fixed t > 0.

Proof For any (zi) ∈ T2n, let (Zi) be a coalescing Brownian motion starting at (zi).
Consider a sequence of circular coalescing Brownian motions {(φ(t, xm

i ))m
i=1, m =

1, 2, . . . } such that the set {xm
i , i = 1, . . . , m} of starting locations approaches to a

dense set in T as m → ∞. Such a sequence provides an “approximation” for the

Arratia flow on T. Then by Lemma 2.3

P

{

m
⋂

i=1

{

φ(t, xm
i ) 6∈

n
⋃

j=1

(z2 j−1, z2 j)
}}

= P

{

m
⋂

i=1

{

xm
i 6∈

n
⋃

j=1

(Z2 j−1(t), Z2 j(t))
}}

.

(2.9)

On one hand, taking limits on both sides of (2.9) as m → ∞, we can show that

P

{

{Vi(t)} ∩
n

⋃

j=1

(z2 j−1, z2 j) = ∅

}

= P

{

n
⋂

j=1

{Z2 j−1(t) = Z2 j(t)}
}

.

On the other hand, {Ui(t)} ∩ (z2 j−1, z2 j) = ∅ if and only if

(z2 j−1, z2 j) ⊂ [Ui(t),Ui+1(t)[
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for some i if and only if φ(t, z2 j−1) = Vi(t) = φ(t, z2 j) for some i. Consequently, we
also have

P

{

{Ui(t)} ∩
n

⋃

j=1

(z2 j−1, z2 j) = ∅

}

= P

{

n
⋂

j=1

{φ(t, z2 j−1) = φ(t, z2 j)}
}

.

Therefore, (Ui(t)) and (Vi(t)) have the same avoidance function. So, the assertion
of this proposition holds (see [Kal76, Theorem 3.3]).

Let us go back to the stepping-stone model. We first consider a special initial

value ν. Given ν =
∑m

i=1 δκi
1{[ui, ui+1[} ∈ Ξ, write Y = (Yi) for an m-dimensional

circular coalescing Brownian motion starting at u := (ui) and define

X ′ ′t =

m
∑

i=1

κi1{[Yi(t),Yi+1(t)[}, t ≥ 0,

with the convention that 1{[y, y[} := 0. We also write Qν for the probability law
of X ′ ′.

Lemma 2.5 X ′ ′ has the same distribution as X under Qν .

Proof (X ′ ′t ) is clearly a Markov process from its definition.
Given {κ ′1, . . . , κ ′n} ⊂ {κi , i = 1, . . . , m} and (v j) ∈ Tn, let Z = (Z j) be a circular

coalescing Brownian motion starting at v := (v j). Set

g(y; z) :=

n
∏

j=1

∑

i:κi=κ ′

j

1
{

[yi , yi+1[
}

(z j ), y := (yi), z := (z j ).

Lemma 2.3 yields that

Q
ν
{

n
⋂

j=1

{X ′ ′t (v j) = κ ′j}
}

= P

{

n
⋂

j=1

{

m
∑

i=1

κi1{[Yi(t),Yi+1(t)[}(v j ) = κ ′j

}}

= P[g(Y(t); v)]

= P[g(u; Z(t))]

= P

{

n
⋂

j=1

{

m
∑

i=1

κi1{[ui , ui+1[}(Z j(t)) = κ ′j

}}

= Q
ν
{

n
⋂

j=1

{

X ′ ′0 (Z j(t)) = κ ′j

}}

.

Thus X ′ ′ and X have the same initial distribution under Qν , and it follows from (2.8)
that they have the same distribution.
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Now we are ready to construct a representation for X with a general initial value
µ ∈ Ξ. Given ǫ > 0, as in (2.5) put

(2.10) X ′ ′ǫ =

N(ǫ)
∑

i=1

κi1
{

[Ui(ǫ),Ui+1(ǫ)[
}

.

Given N(ǫ), (U1(ǫ), . . . ,UN(ǫ)(ǫ)) and (κ1, . . . , κN(ǫ)), write (Yi) for an N(ǫ)-dimen-

sional circular coalescing Brownian motion starting at (Ui(ǫ)). We further define

(2.11) X ′ ′t =

N(ǫ)
∑

i=1

κi1
{

[Yi(t − ǫ),Yi+1(t − ǫ)[
}

, t ≥ ǫ,

again, with the convention that 1{[y, y[} := 0. Write Qµ for the probability law of
(X ′ ′t , t ≥ ǫ).

It follows from Proposition 2.2 and (2.10) that X ′ ′ǫ and Xǫ have the same distribu-

tion

ν =

N(ǫ)
∑

i=1

δκi
1
{

[Ui(ǫ),Ui+1(ǫ)[
}

,

and we may condition on ν and apply Lemma 2.5 to obtain the following result.

Theorem 2.6 Given µ ∈ Ξ and ǫ > 0, (X ′ ′t , t ≥ ǫ) has the same distribution as
(Xt , t ≥ ǫ) under Qµ.

Remark 2.7 The representation (2.11) suggests that SSCBM can also be thought of

as a multi-type, nearest-neighbor voter model on T. See [Lig85, CH. 5] for discus-
sions on voter models.

3 The First Time When There Is a Single Type Left

In this section we are going to study properties of X using the representation given in
Section 2.

Treating (Xt , t > 0) as Ξ
′-valued, put

T := inf{t > 0 : ∃κ ∈ K, Xt (e) = κ, ∀e ∈ T}.

Then T is the first time when a single type of individuals prevails all over T. It is easy
to see from the representation (2.11) that Qµ{T < ∞} = 1, for all µ ∈ Ξ. Now we
are going to find the exact distribution for T.

We start with a preliminary result which is interesting in its own right. Let (Yi)

be an m-dimensional circular coalescing Brownian motion starting at (yi) ∈ Tm,
m ≥ 2. Let Tm := inf{t > 0 : Y1(t) = · · · = Ym(t)}.

Proposition 3.1 Given any positive integer m ≥ 2, we have

(3.1) P[e−λTm ] =

m
∑

i=1

sinh((yi+1 − yi)
√

λ)

sinh(
√

λ)
, λ > 0.
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Proof For i = 1, . . . , m, write Si for the time when Yi+1 first overtakes Yi from Yi ’s
“clockwise side” i.e., when the interval length Yi+1 − Yi first reaches 1. As usual, we

define Ym+1 := Y1. Since (Yi+1 − Yi)/
√

2 is again a Brownian motion which starts at
(yi+1 − yi)/

√
2 and stops whenever it reaches 0 or 1/

√
2, Si is then the first time that

the Brownian motion (Yi+1 − Yi)/
√

2 reaches 1/
√

2 before it reaches 0 or Si = ∞ if
it reaches 0 before 1/

√
2, i.e.,

Si := inf{t > 0 : Yi+1(t) − Yi(t) = 1,Yi+1(s) − Yi(s) > 0, ∀ 0 < s < t}.

We thus have

(3.2) P[e−λSi ] =
sinh((yi+1 − yi)

√
λ)

sinh(
√

λ)
.

See [RY91, Exercise II.3.10].
Our key observation is that {Tm < t} =

⋃m
i=1{Si < t}, and the events on the

right-hand side of this equation are disjoint. So, (3.1) follows.

Remark 3.2 By a standard argument we can show that for any positive integer
m ≥ 2,

P[Tm] =
1

6
− 1

6

m
∑

i=1

(yi+1 − yi)
3,

and moreover, P[Tm] attains its maximum 1/6 − 1/6m2 if and only if all the initial
values y1, . . . , ym are equally spaced on T.

Remark 3.3 An explicit expression for the distribution of Tm can also be found.
By [Kni81, Theorem 4.1.1], we have

(3.3) P{Si ≤ t} = (yi+1 − yi) +
2

π

∞
∑

n=1

(−1)n

n
sin(nπ(yi+1 − yi)) exp{−n2π2t}.

Therefore,

P{Tm ≤ t} = 1 +
2

π

m
∑

i=1

∞
∑

n=1

(−1)n

n
sin(nπ(yi+1 − yi)) exp{−n2π2t}.

Proposition 3.4 For any t > 0, probability P{Tm ≤ t} reaches its minimum if
y1, . . . , ym are equally spaced on T.

Proof Put

h(u1, . . . , um−1, t)

:= 1 +
2

π

∞
∑

n=1

(−1)n

n
exp{−n2π2t}

(

sin
(

nπ(1 −
m−1
∑

i=1

ui)
)

+

m−1
∑

i=1

sin(nπui)
)

.
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Then P{Tm ≤ t} = h(y2 − y1, . . . , ym − ym−1, t). In addition, for 0 ≤ u < 1 and
t > 0, put

g(u, t) := u +
2

π

∞
∑

n=1

(−1)n

n
sin(nπu) exp{−n2π2t}.

Then by (3.3) g(u, t) is the (defective) distribution function for the time when a
Brownian motion starting at u/

√
2 first reaches 1/

√
2 before it reaches 0. As a re-

sult,

(3.4)
∂g

∂t
(u, t) ≥ 0.

We first notice that

∂h

∂ui
(1/m, . . . , 1/m, t) = 0, i = 1, . . . , m − 1.

We also find that

∂2h

∂u2
i

(u1, . . . , um−1, t) =
∂g

∂t

(

1 −
m−1
∑

k=1

uk, t
)

+
∂g

∂t
(ui , t),

and

∂2h

∂ui∂u j
(u1, . . . , um−1, t) =

∂g

∂t

(

1 −
m−1
∑

k=1

uk, t
)

, i 6= j.

Consequently, given (u1, . . . , um−1) ∈ Rm−1, for r ∈ R such that 1/m + rui ≥ 0 and
∑m−1

i=1 rui ≤ 1/m,

dh

dr
(1/m + ru1, . . . , 1/m + rum−1, t)

∣

∣

r=0
= 0

and

d2h

dr2
(1/m + ru1, . . . , 1/m + rum−1, t)

=

(

m−1
∑

i=1

ui

) 2 ∂g

∂t

(

1/m − r

m−1
∑

i=1

ui , t
)

+

m−1
∑

i=1

u2
i

∂g

∂t
(1/m + rui, t)

≥ 0,

where we have used (3.4) for the last inequality. Therefore, the claim in this proposi-
tion holds.

Let κ be the type of individuals left after time T. Then κ = limt→∞ Xt (e), ∀e ∈ T.
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Theorem 3.5 Given µ ∈ Ξ such that µ(x) is a diffuse probability measure for almost
all x ∈ T, then the Laplace transform for T has the expression

(3.5) Q
µ[e−λT] =

√
λ

sinh(
√

λ)
, λ > 0.

Moreover,

(3.6) Q
µ{κ ∈ K} =

∫

T

deµ(e)(K), K ⊂ K.

Proof Given (ym
i ) ∈ Tm for each m ∈ N+, we first observe that by (3.1),

(3.7) lim
m→∞

P[e−λTm ] = lim
m→∞

m
∑

i=1

(ym
i+1 − ym

i )
√

λ

sinh(
√

λ)
=

√
λ

sinh(
√

λ)
,

provided max1≤i≤m(ym
i+1 − ym

i ) → 0+.

For ǫ > 0,

X ′ ′t =

N(ǫ)
∑

i=1

κi1
{

[Zi(t − ǫ), Zi+1(t − ǫ)[
}

, t ≥ ǫ,

where, given N(ǫ), (Zi) is a circular coalescing Brownian motion starting at (Ui(ǫ)) ∈
TN(ǫ). Put

T(ǫ) := inf{t ≥ 0 : Z1(t) = · · · = ZN(ǫ)(t)}.

Given N(ǫ), notice that κ1, . . . , κN(ǫ), are all different, since µ(e) is diffuse for almost
all e ∈ T. Then ǫ + T(ǫ) is also the first time after ǫ when X ′ ′(e) assumes a single

value in K for all e ∈ T.

It follows from Theorem 2.6, Lemma 2.1 and (3.7) that

Q
µ[e−λT ; T > 0] = lim

ǫ→0+
Q

µ[e−λT ; T > ǫ]

= lim
ǫ→0+

Q
µ[Q

µ[e−λ(ǫ+T(ǫ)); T(ǫ) > 0|X ′ ′ǫ ]]

=

√
λ

sinh(
√

λ)
.

(3.8)

Letting λ → 0+ in (3.8), we have Qµ{T > 0} = 1. Consequently, Laplace transform
(3.5) follows.

Finally, by (1.1) we have limt→∞Qµ{Xt (e) ∈ K} = limt→∞ P[µ(Z(t))(K)],
where Z is a circular Brownian motion starting at e ∈ T. Thus (3.6) follows.

Remark 3.6 Notice that the distribution of T does not depend on µ as long as µ(x)
is diffuse for almost all x ∈ T.
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Remark 3.7 Let Y be a Brownian motion starting at 0 < y < 1/
√

2. Put

Sy := inf{t ≥ 0 : Yt = 0 or 1/
√

2}.

We observe that for the µ in Theorem 3.5,

Q
µ[e−λT] = lim

y→0+

sinh(y
√

2λ)

y
√

2 sinh(
√

λ)

= lim
y→0+

P[e−λSy ; YSy
= 1/

√
2]

P
{

YSy
= 1/

√
2
}

= lim
y→0+

P
[

e−λSy
∣

∣YSy
= 1/

√
2
]

.

(3.9)

Using (3.9) and [Kni81, Theorem 4.1.1] again we can further find an explicit ex-
pression for Qµ{T ≤ t}. For t > 0,

Q
µ{T ≤ t} = lim

y→0+
P
{

Sy ≤ t
∣

∣ YSy
= 1/

√
2
}

= lim
y→0+

1√
2y

(
√

2y +
2

π

∞
∑

n=1

(−1)n

n
sin(

√
2nπy) exp{−n2π2t}

)

= 1 + 2

∞
∑

n=1

(−1)n exp{−n2π2t}.

(3.10)

Remark 3.8 It is not hard to see from the proof for Theorem 3.5 that the distribu-

tion (3.10) coincides with the distribution for τ , which has been defined in (2.4).

Again, for the µ given in Theorem 3.5, for any ǫ > 0, let interval [U ′ǫ ,U ′′ǫ [ be
the unique interval [Ui(ǫ),Ui+1(ǫ)[ in (2.10)) such that κ = κi , i.e., [U ′ǫ ,U ′′ǫ [ is the

collection of sites at time ǫ whose type eventually prevails.

Proposition 3.9 For the µ given in Theorem 3.5, as ǫ → 0+ both (U ′ǫ ) and (U ′′ǫ )

converge in distribution to a uniform distribution on T.

Proof Clearly U ′′ǫ − U ′ǫ → 0 in probability. Therefore, we just need to show that
for any [a, b[⊂ T,

(3.11) lim
ǫ→0+

Q
µ{U ′ǫ ∈ [a, b[} = b − a.

To prove (3.11), we first notice that given N(ǫ), events {Si < ∞}, 1 ≤ i ≤ N(ǫ), are
all disjoint, where Si is defined as in the proof for Proposition 3.1, but for a coalescing
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Brownian motion starting at (Ui(ǫ),Ui+1(ǫ)). Consequently, by (3.2)

Q
µ{U ′ǫ ∈ [a, b[} = Q

µ
{

⋃

1≤i≤N(ǫ)

{Ui(ǫ) ∈ [a, b[, Si < ∞}
}

= Q
µ
{

∑

1≤i≤N(ǫ)

(Ui+1(ǫ) −Ui(ǫ))1{Ui(ǫ) ∈ [a, b[}
}

= Q
µ[Un+1(ǫ) −Um(ǫ],

where m := min{i : Ui(ǫ) ∈ [a, b[} and n := max{i : Ui(ǫ) ∈ [a, b[}. Therefore,
(3.11) follows from Lemma 2.1 readily.

Remark 3.10 If µ ∈ Ξ is arbitrary, we cannot find the explicit distribution for T

under Qµ . Nevertheless, similar to the proof for Theorem 3.5 we can still show that

Q
µ{T ≤ t} ≥ 1 + 2

∞
∑

n=1

(−1)n exp{−n2π2t}, t ≥ 0.

As a result, T under Qµ for an arbitrary µ ∈ Ξ is stochastically smaller than the T in
Theorem 3.5.
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