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Dupin Hypersurfaces in R

Carlos M.C. Riveros and Keti Tenenblat

Abstract. We study Dupin hypersurfaces in R> parametrized by lines of curvature, with four distinct
principal curvatures. We characterize locally a generic family of such hypersurfaces in terms of the
principal curvatures and four vector valued functions of one variable. We show that these vector
valued functions are invariant by inversions and homotheties.

Introduction

Dupin surfaces were first studied by Dupin in 1822 and more recently by many au-
thors [1-6,9-14, 16, 17], who looked at several aspects of Dupin hypersurfaces. The
class of Dupin hypersurfaces is invariant under Lie transformations [11]. Therefore,
the classification of Dupin hypersurfaces is considered up to these transformations.
The local classification of Dupin surfaces in R® is well known. Pinkall [12] gave
a complete classification up to Lie equivalence for Dupin hypersurfaces M> C R*,
with three distinct principal curvatures. Niebergall [10] and more recently Cecil and
Jensen [6] studied proper Dupin hypersurfaces with four distinct principal curva-
tures and constant Lie curvature (the cross-ratio of four principal curvatures).

In this paper we study generic Dupin hypersurfaces in R°, parametrized by lines
of curvature, with four distinct principal curvatures. We obtain a local characteriza-
tion of a generic family of such hypersurfaces (Theorem 3.1) in terms of the principal
curvature functions and four vector valued functions of one variable. The character-
ization is based on the theory of higher-dimensional Laplace invariants introduced
by Kamran—Tenenblat [7, 8].

We consider generic hypersurfaces in the sense that suitable generic conditions on
the Laplace invariants are required. Moerover, assuming that the Dupin hypersur-
faces are parametrized by lines of curvature, we eliminate those which are Lie equiv-
alent to an isoparametric hypersurface in S°. This follows from Pinkall’s result [11],
(see also [3]), which asserts that if M is an isoparametric hypersurface in S” with
more than two distinct principal curvatures, then M cannot be parametrized by lines
of curvature. Further, it follows from [6] that if M is a Dupin hypersurface of R
parametrized by lines of curvature, with four distinct principal curvatures, then M is
reducible in the sense of Pinkall or it has non constant Lie curvature.

We observe that if we consider a Dupin hypersurface M" C R""!, parametrized
by lines of curvature, with n distinct principal curvatures, satisfying the nongeneric
assumption that all Laplace invariants vanish, we can show that M has constant Lie
curvature. It follows from results of Pinkall [11] and Cecil-Jensen [6] that, when
n =3 or n = 4, M is reducible. This will appear in a forthcoming paper.
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In Section 1, we recall the main definitions and results on the Laplace invariants.
In Section 2, we give some properties of Dupin hypersurfaces with distinct principal
curvatures. In Section 3, Theorem 3.1 gives a local characterization of generic Dupin
hypersurfaces in R> with four distinct principal curvatures. In Section 4, we show
that the vector valued functions, which appear in the characterization of Theorem
3.1 are invariant by inversions and homotheties.

The local characterization of Theorem 3.1 is given in terms of the principal cur-
vatures ), and four functions of one variable G,(x,), 1 < r < 4, taking values in R°.
We observe that the principal curvatures A, change under inversions in spheres cen-
tered at the origin and under homotheties, while the functions G, are invariant under
such transformations. On the other hand, principal curvatures are preserved under
isometries of R°, but the functions G, are not invariant under isometries. This is
certainly expected, since parametrizations are not invariant under isometries. There-
fore, the functions G, are not invariant under the full group of Lie transformations
of R,

We conclude this introduction by observing that, although the theory in this pa-
per has been developped for M* C R®, one can consider a similar theory for hy-
persurfaces M" C R"™1 in other dimensions n. For example, when n = 3, a sim-
ilar classification result can be obtained with the generic condition that one of the
Laplace invariants does not vanish. However, in this case one knows from Pinkall’s
result [13] that such hypersurfaces are reducible. For dimensions n > 4, the proofs
get lenghthier as n increases. We observe that we do not have explicit examples in
higher dimensions, which might help the reader to develop some understanding of
the possible forms of the vector valued functions G,. However, for some known ex-
amples, when n = 3, the functions G, describe plane curves or points.

1 The Higher-Dimensional Laplace Invariants

In this section we briefly review the theory of higher-dimensional Laplace invariants
[7,8] which will be necessary in the following sections. We consider linear systems of
second-order partial differential equations of the form

(1) Y+ a,’ﬁlY_k + adeJ +cuY =0, 1<k=#I1<n,
where Y is a scalar function of the independent variables x1, x,, . . ., x,;, and the co-
efficients a and ¢ are smooth functions of x;, x,, . .., x, which are symmetric in the

pair of lower indices and satisfy certain compatibility conditions, and Y ; denotes the
derivative of Y with respect to x;.
The general form of system (1) is preserved under admissible transformations

(2) Y= @(xlvx%-'wxﬂ)ya
(3) xi = fi(%), 1<i<n,

where ¢ is a smooth and non-vanishing function and the f;’s are smooth functions
whose derivatives do not vanish. It is easily verified that under an admissible trans-
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formation, the coefficients a and ¢ transform according to

ay = fi [ah + (logw) i] ,

(4) Y 1 k © Kl
= /[ +allog o)+ aflogri+ |, 1<kl<n

and system (1) transforms into
Y+ a_IIElY.k + d;dYJ +eY =0, 1<k#1<n.

The higher-dimensional Laplace invariants of (1), introduced in [7], are the n(n — 1)?
functions given by

_ i i _ K i -
(5) mij = aj;; +a;;a;; — Gij,  Mijk = ag; — &ij, k#1, 7,

for all ordered pairs (i, j),1 <i # j < n.
Lemma 1.1 The higher-dimensional Laplace invariants of a compatible system (1)
satisfy the following relations: for 1 < i, j, k,1 < n, with i, j, k, I distinct,
mijk + myji = 0,
Mijkk — MijkMik — mij = 0,
(6) mij k + mjjemix + migjmi; = 0,
Mijk — mjj — myjx = 0,
Miik,j + Mijimgir + myjxmygq; = 0.

The functions m;;, m;jx are invariant under pure rescalings (2). The expression of
a system (1) in terms of its higher-dimensional Laplace invariants is given in the
following result proved in [8].

Theorem 1.2 Given any collection of n(n — 1)?,n > 3 smooth functions of x1, x,, . . . ,
X, Mij, Mijr, 1 < i, j, k < n, with i, j, k distinct, satisfying the constraints (6), there
exists a linear system (1) whose higher-dimensional Laplace invariants are the given
functions m;j, m;jr. Any such system is defined up to rescaling (2). A representative is
given by

Y_,‘j +AY,J' — min =0,

- Y+ (A+mjp)Y i —myY =0,
Y jk + mi;Y j+mipY =0,
Yo+ migY +mgY =0,

where (i, j) is a fixed (ordered) pair, 1 < i, j, k,1 < n are distinct and A is a function
which satisfies

(8) Aj=mj—mij Ap=—mjq;.
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2 Properties of Dupin Hypersurfaces with Distinct Principal
Curvatures

We consider the Euclidean space R” endowed with the Euclidian metric ( , ). Let §2
be an open subset of R” and x = (x1,%,...,%,) € Q.

Definition 2.1 An immersion X:  C R" — R"! is a parametrized Dupin hyper-
surface if each principal curvature is constant along its corresponding lines of cur-
vature. If the multiplicity of the principal curvatures is constant then the Dupin
submanifold is said to be proper.

Remark 2.2 Let X: Q C R” — R"! be a proper Dupin hypersurface parametrized
by lines of curvature, with distinct principal curvatures \;,;1 < i < mand N: {2 C
R™ — R™! a unit normal vector field of X. Then

(X, Xj) = 0ijgii 1<1i,j<m,

9)
N;=-X\X;, X;=0.
Moreover,
(10) Xvij—rin,i—F{jX,j:O, 1 Sl#]ﬁm
(11) I Aij 1<i#£j<
= —— <i <mn,

where I‘f-‘j are the Christoffel symbols.

We now consider the higher-dimensional Laplace invariants of the system of equa-
tions (10), defined by (5).
mij = —Ti, + LT
(12) | i iz jtij
mije =14 —Tg;, k#i,j, 1<k<n.

As a consequence of (11) and Lemma 1.1, we obtain for 1 < i,j,k, I < n,i,j,k,I
distinct,
mij =0,  mjk+miji =0,  Mijx — mijpmix; = 0,

(13)
Mijk — miji — My = 0, Mg j + Mg + myjgmp; = 0.

We now consider the effect on the principal curvatures and on the higher-dimen-
sional Laplace invariants of a Dupin hypersurface under an inversion or a homothety.
Let X: Q C R" — R™! — {0}, n > 2, be a proper Dupin hypersurface parametrized
by lines of curvature with distinct principal curvatures \;,1 < i < n. Consider an
inversion

R — {0} — R™ — {0}

(14) X In+1 X) = X
—I"(X) = XX
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Denoting I"*}(X) = X, we have that

(X, N)
(X, X)

N=-2 X+N

is a unit vector field normal to X. Then X is a Dupin hypersurface parametrized by
lines of curvature, with distinct principal curvatures given by

A\ = <X,X>)\,‘ +2<X,N> , 1 < 1 <n.
Moreover, X satisfies the system
Xy—ThX,—TuX;=0, 1<k#£1<n, k#i,j,

and since X is a rescaling of X, we conclude that for n > 3, an inversion does not
change the higher-dimensional Laplace invariants i.e., #;; = m;; = 0 and 77, =
M jk.

Similarly, let X:  C R" — R"" 1 > 2 be a proper Dupin hypersurface parame-
trized by lines of curvature with distinct principal curvatures \;, 1 < i < n. Consider
the homothety

D: R™ — R
(15)
X —DX)=aX, a€R, a#0.

Denoting X = D(X), we have that N = N is a unit vector field normal to X. Then
X is a Dupin hypersurface parametrized by lines of curvature, with distinct principal
curvatures given by \; = \;/a, 1 < i < n . Moreover, since X satisfies the system

Xy —ThXp—ThX; =0, 1<k#1<n k#i,j,

and X is a rescaling of X, for n > 3 the higher-dimensional Laplace invariants do not
change, i.e., m;; = m;; = 0 and ;5 = m; ;.

The following result provides some properties which are satisfied by the principal
curvatures of a Dupin hypersurface in R"*! parametrized by lines of curvature. Its
proof is a straightforward computation which follows from (13).

Lemma 2.3 Let \,: Q CR" — R, n > 3, be smooth functions distinct at each point,
such that \., = 0. Consider functions m; ji. defined by (11) and (12). Then for i, j fixed,
1 < i # j < n, the following properties hold

(16) {;i : ij mﬂa} i — Mg i,
(17) {;i:ijmﬂa} ’j=0,
(18) {:\\i : ;\\j mjkl} o [:\\iii\i mjlz} K

where 1 < k # 1 < n are distinct from i and j.
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The next result is a straightforward application of Theorem 1.2.

Lemma 2.4 LetX: Q) CR" — R"!' n > 3, bea proper Dupin hypersurface parame-
trized by lines of curvature, with n distinct principal curvatures \;,1 < r < n. Fori, j, k
fixed, 1 <i# j# k < n, the transformation

ef %m]’kid"k
(19) X=VX, whereV=-"—"——,
N — A

transforms system (10) into
X’,‘j +AX’J' = 0,
X,ir +(A+ mjir)X,r =0,
(20) . . >
Xﬁjr + mir]—X,j + m,‘er,r = 0,
X,rl + mier,r + mirlX,l =0,

wherelandr aresuchthat1 <r#1#i# j<nand

(21) A= —/m]—ki7i dxk.
Moreover,
(22) A;=0, A,=-mj;;,

Remark 2.5 For subsequent use, we will compute the derivatives of the function V'
given by (19). It follows from Lemma 2.3 that,

03 Vi=(A+ f;i) vV, V; : T}V,
V7k = szv, V’l == FilV,

where A is given by (21) and / is distinct from i, j, k.

3 A Characterization of Dupin Hypersurfaces in R’

In this section, we prove our main result which provides a local characterization of
generic Dupin hypersurfaces in R, with four distinct principal curvatures. We start
by introducing some functions that will be useful in what follows. Considering the
higher-dimensional Laplace invariants, satisfying (13), for 1 <i # j # k# 1< 4
fixed we introduce the following functions admitting that m;;x # 0, mj; # 0 and

myi1 # 0,
-
(24) Tijuw = mji + [log(i” ;
Mg i
-
(25) Uijn = myi + [108( ﬂk”
mii ki
(26) Pt =mTiu, P{=muUiu, P} =muUiu.

https://doi.org/10.4153/CJM-2005-052-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2005-052-1

Dupin Hypersurfaces in R> 1297

Theorem 3.1 Let X: Q C R* — R, be a proper Dupin hypersurface, parametrized
by lines of curvature, with four distinct principal curvatures A,. For i, j, k, 1 distinct fixed
indices, suppose miy 7 0, myjx # 0 and T;jy # 0 then

27) X:V[B?—Bﬁua?],
where

A my d 4

e 7 1 QSG,‘(X,‘ .
(28) V:ﬁ, B?:@{/T)dxi_{'cs(xs)}, S#h

P! are defined by (26), G,(x,),1 < r < 4, are vector valued functions of R°>, A =
— [ 'mjxi; dxy, and

(29) Q=

el Armi) s ifs — 1.

{ef“xf if's = ji

Moreover, considering

(30) i (A+ A )M+M o N MM s
o = i, @ = s S 1
)\1‘ - )‘j ’ )\5 - )\,‘ *
where M = B} — By + B} , the functions G, (x;) satisfy the following properties in €, for
1<r#t<4
(a) a" #0,

(b) (o', a%) = 0,r #1,

(af, ;o x ol x af x o)

Viar fad] ad] [a*] o]

Conversely, let \,: Q C R* — R,r = 1,...,4 be real functions, distinct at each point,
such that A, = 0. Assume that the functions m, defined by

k

(C) A=

Are At
31 rts = - - ) 1§ t §47
(31) Myt N — A M — A r#EtF£Ss

satisfy (13), and for i, j, k, I distinct fixed indices, mjy # 0, myjx # 0, Tiju # O.
Then for any vector valued functions G,(x,) satisfying properties (a), (b), (c) where o'
is defined by (30), the function X: Q@ C R* — R® given by (27) describes a Dupin
hypersurface, parametrized by lines of curvature, whose principal curvatures are the
functions A,.

Before proving this theorem, we observe that T;;;; = 0 if and only if U;juy = 0. In
fact, using the relation my; + m,,jix = mj; (see (13)) twice, it follows from (24) and
(25) that m;jxmy; Tiju = Ujju. Hence, the hypothesis of Theorem 3.1 implies that
Pt =£0,fors # i.

For the proof of Theorem 3.1 we will need three lemmas.
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Lemma 3.2 Let X be a Dupin hypersurface as in Theorem 3.1, then

1%
Mjik

(32) X=—[Wr-wl],

where W¥(x;, xj,x;) and Wi(x;, xx, x;) satisfy the following systems of equations,

Mjik,i

Wlf +A— wk + mkjimjikwk =0,
i mig )
Mkil i

Mkl

(33) Wlfl + (A + mji — ) W,’; + m,‘lkﬂ’lkilwk =0,

wh g L Tk ik

ik kil

Mjik,i
Mjik

W,]ik + (A + Mmjix — ) W)’;{ + mikjmj,-kWJ = 0,

(34) Wfil + (A +mji) — mﬂll ) WﬁJl + miz]‘m]'ile =0,
Jt
i Mg g MMk
j JKMjil 7 M jik i
Wi+ —— W + ——W;=0.
jik miji

Proof From Remark 2.2, we have,
(35) Xy -T5X,—TLX, =0, 1<s#r<4.

For fixed distinct indices i, j, k, we consider the transformation
(36) X =VX,
as in Lemma 2.4, where V is given by (19). Then system (35) reduces to
X:,'j + AX’] = 0,
X,ir +(A+ mjir)X,r =0,
(37) B} _ _
X.jr + m,‘,jXJ + mij,X, =0,
X+ mipX g+ mX; =0,
wherer = k,land k # I,
(38) A;i=0, A,=-—-mj;;.

It follows from the third and second equations of (13) and (38), that

(39) (A + mj',‘,)’r = 0, r= k, I
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Using (38) and (39) in the first two equations of (37), we have that

(40) X+ AX =W (x;, x, x1),
(41) X+ (A+mjp)X = Wi, xj,x),
(42) Xﬁi + (A + m]‘,‘l)X = Wl(xi,xj,xk).

where W/, W* and W are functions that do not depend on x;j, % and x;, respectively.
Since m;x # 0, from (40) and (41) we have

1
Mjik

(43) X = (WK — wi].

Therefore, it follows from (36) that X is given by (32).

We will now obtain the differential equations that W* and W/ must satisfy, by
using (37), (40)—(42).

The substitution of X and X ; into (40), (41) and (42), gives

Mk i . . .
(44) (4= Z20) Wh— Wi+ (W= W) = myaW,
Mjik

Mjik,i H i

(45) (A= D) (WE W W - W) = W,
m ik ’

(46) (A + mjip — mjikd) [Wk — Wj] + [Wk — Wj]_’,‘ = m]',‘le.
Mjik

Substituting X ; and X ;; into the first equation of (37), it follows from (13), that

Mk
Mijik

Mjik i
Mjik

Whi+ (A YWh—mige{ (Asmpu— "0 ) wE—wi+ wE-wil | =o.
Using (45) in this equation, we conclude that Wk satisfies the first equation of (33).
Similarly, substituting X y and X j; in the second equation of (37) for r = k, and

using (13) we obtain that

Mjik i
Mjik

W,]ik + (A + mjix — ) Wﬁjk

+ m,»kj{ (A - J—") Wr — Wi+ Wk — WJ]J} —o.
Mjik
It follows from (44) that this equation reduces to the first equation of (34).

Now substituting X ; and X ; in the second equation of (37) with r = I, and using
(13) we obtain a relation equivalent to (46). The substitution of X j, X x and X j; in
the third equation of (37) with r = k, gives an identity.

Using X ;, X; and X j in the third equation of (37) with r = ], and using (13), we
have that
MM i

wh + m,jk{ —wk - w4 D ke Wf]} —0.
Mjik

M1k Mkl
(47) W+ L
' Mijik
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From (40), (41) and (42) we get,

Mijik
Ml

(48) wk_wi= (W' — wk.

Differentiating (48) with respect to x;, and using (13), we obtain

(49) [Wk—Wj]lz W[Wk_wj]_@wﬁ’
’ Mijik My’

which substituted into (47), provides the third equation of (33).
Similarly, substituting X s, X ; and X ; in the last equation of (37), and using (13),

we have that
M jikMijil Mk ik Mk

(50) W.,]I;l + Wi + mlkijf — mlkjo + [Wk — Wj] =0.

Mjik Mmjik

From (49) we get,

Mgl i Mg Mg .
k’lWJl + M[Wk — Wi

mjip Mjik

wh =

Using this relation into (50), we obtain the third equation of (34).
Differentiating the first equation of (33) with respect to x; and using the third
equation of (33), we get

Mt M\ Mg
(51) W+ [(A_ J_) _ (A_ J_) 17} wh
' Mjik /1 Mjik Mjik '
Mijik,i\ MijkMjik

jikii KM
+ |:mkj,‘m]‘,‘ — (A — 7) EE—

k k
} W,l + (mkjimj,»k)JW =0.
Mjik

Mk

Differentiating the third equation of (33) with respect to x;, it follows from the first
equation of (33), that

(52) W];li 4 |:( jlk kzl) = (A _ ]Ik,z) jlk kzl:| WI; n ( ljk ]1k) W];
; i ’ i

Mjik Mijik Mijik Mii] i
MyjkMjik -k k
+ 4W,li + mjpmpgm; pW" = 0.
Miil

Since myj # 0 and W,I;Zi = Wﬁjl ,
second equation of (33).

Similar computations provide the second equation of (34). In fact, differentiating
the first equation of (34) with respect to x;, and using the third equation of (34), we
get

from (51), (52), (38) and (13), we obtain the

4 — Miri\ Mg
(53) W]ikl+ |:(A+m]‘1'k— ! l) — (A-l'm]'ik— L) #} W]k
, Mjix /1 m ik Mmjik ’
Mjiki\ MjmMjik] i ‘
jiki'\ Mk j _
+ [mikjmjik - (A + mjix — ) } Wi+ (migjm i) W7 = 0.
mjix /- mjiy
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Differentiating the third equation of (34) with respect to x; and using the first equa-
tion of (34), we obtain

, o M\ Mgl
(54) WJ,%(#) —(A+m,k—#)#}wf
Kli - ) j - - &

M ik ! M ik Mk

Mg jik j mjm H

I (e Ll L W VY le Ll L3 VYA A mjm jimi W/ = 0.

B . ,l i J ]
mjij ! mii

Since mjy # 0 and Wlkl = Wkl , from (53), (54), (38), and (13), we obtain the
second equation of (34). Which concludes the proof of Lemma 3.2. ]

The solutions of the systems of equations (33) and (34) are given in the following
two lemmas.

Lemma 3.3 The solution of (33) is given by

) 4G (x;
(55) W= "S;k [/prfx)dxﬁcj(xj)] L /QZG("’ dx; + Gilx)|
] ]

Proof Using equations of (13) and (38), we have that

Mk
(56) (A - l) = MikMyji,
M ik
Ml i
(57) (A +mji — — l) = My mij.
Myip /1

Substituting (56) in the first equation of system (33), we get

(wWh (4= 22w =0
! Mjik j ’

whose integration with respect to x;, provides

(58) Wk + (A — J—") Wk = Di(x;, x)).
’ Mjik

Using (57) in the second equation of system (33), we obtain

m
{W~’;+(A+m]‘iz— kll)Wk:| =0.
' Lgsi A

Therefore, integrating with respect to x;, we get

Miil,

(59) W’: + (A + mji — l) Wk Dl(xi,xj).

Ml
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From (58), (59) and (24), we conclude that

1

(60) wk =
Tiiu

(D' — D7].

Differentiating W, using (13) and the following derivatives

M jik M) jk Mgt 11 i
Tijnj = ———Tiju  Tijuk =0 Tijug = ———Tiju,
kil mjik
we have
61) wh =~ DMy pipy L pi - piy,
’ (Tiju) Tiju ’
myjmiix 1 ; 1
(62) wk = R (pl— DI+ D,
' myii Tiju Tiju
mixmgi 1 ; 1 i
(63) wh= 2T p! —pi)— D)
’ mjik  Tiju Tiju

o T " (Tijw)*

mir - Tijw M (Tiju)?

(64) W 1 T ik, D [mljk myji Mk Tiju,

. mpixmii 1 :
x mj[D' — DI] — =% _—_[p! — pi],
mir - Tiju
1 i Tijui ma;  mae Mk Tijki
(65) Wh=——D + J=DJ_[ 4 itk _ }
o Tiw " (Tiju)? mjic  Tiju mjik (Tiji)?
; MM 1 ;
X myg[D' — DI — 28— p —-D’];
mjix  Tiju
2mimy; . Mg 1 mrixmiix 1 ;
(66) W.kjl:M[Dl—D]]—M—D?]-+M—D].
' Tiiu mjix  Tijw myii Tiju

The substitution of (60) and (61) into (58) and (59), gives

(67) (A - mkal B TU—]Z;) [D' = D/} + [D' = D'} = TijuD,
Jt 1]

miii  Tijk,i

—> [D' — D] + [D' — D']; = T;uD'.
Miil Tiju '

(68) (A + mjip —
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Substituting (60), (62), (64) in the first equation of system (33), and using (67), we
obtain

D 4 itk

" Myil

Tijlel =0.

) Miiki  Tiju,i
(69) Dﬁji+(A— jiki _ Zij )

Mjik Tiju

Similarly, using (63) and (65) in the second equation of system (33), and using
(68), we get

, migi Tiiki\ i
(70) Dl + (A+ iy — ok L)Df, +
' Myl T/

M jlk Ml

Tijle] =0.
Mjik

The substitution of (62), (63) and (66) in the third equation of (33) gives an identity.
Next we compute the Laplace invariant 771;; of equation (69),

miiki  Tijki MU jik
L ijkl-
J

mj = (A - —
Mjik Tiiu Miil
Using (38), (13) and the relation

Tijk,i

Tijnij = ijkl,j(Tijkl +
ijkl

) + mjiemji Tiju

we conclude that
mj = 0.

Therefore, the solution of equation (69) is given by,

e/ A% Gi(x;)

dx; + Gi(x;)| .
mjixTiju 7

D'(xi,x)) = mjuTijue 4% {/

where G;(x;) e Gj(x;) are vector valued functions in IR3.
Let us compute the Laplace invariant #1;; of equation (70):

_ myii Tijk,i kMg
my; = (A +miji — - - Tija-
Miil Tiju /1 Mjik
Using (39), (13) and the relation
Tijkt,i
Tijit = —Tijug\ Tiju — ——— ) + mgaminTiju
i ki
we obtain
my; = 0.

Therefore, the solution of equation (70) is given by,

. S (Atmyin) dxi G (.
(71)  DI(x;,x)) = myg Tyjge  Armm & [/ el T TGi(xi) dx; + Gz(xz)} :

M1 T jr
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where G;(x;) and Gi(x;) are vector valued functions in R°.

We will now show that G;(x;) = G;(x;). Differentiating D' and D/ with respect to
X;, we obtain, respectively

Mmiiki 1
D’i:—(A—ﬂ— 2l >D1+G(x1)
' mjix  Tiju

) Tio o
D]~ (A + mjip — % — Ukl#) D+ G,‘(x,‘).

! mar Tiju
Therefore
. ; - T i, ] ;
D = D], = Gitx) = Gitx) — (A4 — 240) (' - D]
’ Tiju
m]zkz Dl (mjil . Mkl i ) D]
M jik Miil
It follows from (67), that i
Gi(xi) = Gi(x;).
Now using (26) and (29) we get
QiGi(x:)
(72) D(x,,x])—g[/ S dxi+ G|
i

On the other hand, from equations (13) we obtain,
(73) mii Tiju = mjiUsn.
Therefore from (73) and (71), we have that

. . S (A+mjip) A% G (o
D (xi,x1) = mjilUijkleij(Aerﬁl)dxi {/ o T Giln) dx; + Gl(xl)} :
m;iUijn
Using (26) and (29) we obtain
j p} Q/Gi(x:)
J (- _ i B AT W
(74) Dt = k| [ A5 o]
Substituting (72) and (74) into (60), we conclude that

Gi(x;
W= T‘l‘kl{ Q! [ & P4(x) dxi + G; (xJ -4 / QZG () dx; + Gl(xl)} }
ij

It follows from (73) and (29) that P? = mjyUjju = myiT;ju. Using this relation
in the expression above, we obtain (55). [ |
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Lemma 3.4 The solution of (34) is given by
7 1 F 1 1 F -
(75) J—m”‘ /Qk ) g, + Gulx m” /Ql ) g+ G

Proof Using (13) and (38), we have that

(76) (A + Mjir — ]lm) = MjiyMj;j, r= kv L
r

mjir
The substitution of (76) in the first two equations of (34), gives
[W’,ﬁ + (A+ mj;, — J’”) WJ} =0, r=kl
’ M jir o

Therefore, we have that

(77) Wi+ (A mja = 2D W — L,
’ Mg

and
i Mjip i ;

(78) W]l + (A + mji — jil, ) Wi = LNx;, xp).

Mjip
From (77), (78) and (25), we conclude that

1

(79) wi =
Uijn

(L' — ).

Differentiating W/, using (13) and the following derivatives

M ik ki M i ik
Uij,j =0, Ujjux = —Uiju, Uijg = —=Uiju,
mji mjik
we get
; U; ikl,i 1
(80) Wi= gy 1 1R
’ Uijn) Uiin
; MigMiix 1 1
(81) (L L § J ) (PR
’ mjii Uijk Uiji
; migmij; 1 1
(82) R s L} ) 1 RS o
’ mjik  Ujju Uijn
i Vo Uiwi o rmye | omig Mg Uik
(83) Wi = Ly sz —_ = — 3
: Ui ™ (Uin)* mjii  Uiju mji (Uijn)
X mjik[Ll —Lk] — W*[U _Lk].i
mji Ujju '
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(84) wi — 1+ Uijui [mklj mi; Mg Uijui }
= i i -
' Uiju (Uijn)? miix ~ Uiju mjix (Ujjn)?
1 kg My 1 g
x mjy[l' — L] — —————[L' = L] ;
miix  Uiju

m;m;
e Lkl Ly gy 4 Ik,

mjxmjip 1 Il MMk 1
& i
Uijn mjix  Uiju mji Ujju

(85) W]lk =2

The substitution of (79) and (80) in (77) and (78), gives

(86) (A + i — jiki Ukl,l) [Ll - Lk] + [Ll . Lk] L= Uijlek;
Mijik Uijn '
ji j
87) (A= D2 R (1 - 14 = Ul
mjip Uiju ’
ji j
Using (79), (81) and (83) in the first equation of (34), as a consequence of (86), we
get
88) L.+ (A oy — 2R —) 1+ Bk T = 0.
’ m ’ mji1
Similarly, it follows from (79), (82), (84) substituted in the second equation of
(34), as a consequence of (87), that

U,'jlek =0.

mijip,; Uijkl,i)Lﬁ L itk il
jik

(89) L’V+(A+m~l———
o ! Mijil Uiju
The expressions (81), (82) and (85) substituted in the third equation of (34) provide
an identity.
The Laplace invariant 17, of equation (88) is given by

Miiki Ui MMk
- T Uijki-

My = (A+mjik_ -
jil

mijik Uiju
Using (39), (13) and the relation

Uiju,i

ijki

Uijk,ik = Uijkl,k(U + ) + mjiemig;Uiju

we obtain
g = 0.
Therefore, the solution of equation (88) is given by
ef (A+m]‘,‘k) dx,F(xl)

L (xi, ) = mjigUsjuge™ ] Armm) {/ ——————dxi + G(xi) |
mjixUiju
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where F(x;) and Gi(x;) are vector valued functions in R®.
Similarly, we compute the Laplace invariant #1; of equation (89),

Mijil i Uijkl,i) ik il
]

my = (A +miji —
mijil Uiju Mijik

Uiju-

Using (39), (13) and the relation

Uijk,i
Uiju

Uijni = _Uijkl.l(Uijkl - ) + mjumi;Uiju

we obtain
my; = 0.

We conclude that the solution of (89) is given by,

64[ (A+mj,-)) dx; F(xl)

L¥(xi, x1) = mjUsjge™ I Armin & [ / dx; + Gi(x) |

m;iUijn
where F(x;) and Gi(x;) are vector valued functions in R°.

Asin the proof of the previous lemma, we show that F(x;) = F(x;). Differentiating
L' and L* with respect to x; we obtain respectively

(90) L= = (At mj — S - SR [ F(x,),

jiti  Uijii -
(91) Lf{»:—(A+m]'i1— Wit _ i)Lk-i-F(xi).
From (90), (91) and (86) we conclude that
F(xi) = F(x;).

Now using (26) and (29) we have that

4
o) = g [ [ F5 s+ Gt
4F : _
LM, 1) = Q {/ QIP;X) dx; +Gz(XJ)} :

Substituting the last two expressions in (79) we get

— QiF(xi) QF() , . -
wi = o { o { o dx; + Gk(xk)} ar { o dx; + Gl(xl)} }
Finally we obtain (75), using (26). -
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We can now prove our main result
Proof of Theorem 3.1 It follows from Lemmas 3.2-3.4 that a Dupin hypersurface

is given by (32), where WX and W/ are given for (55) and (75), respectively. Differ-
entiating (55) with respect to x; and using (73), we obtain

<>[ [ a1

L M ( Mgl / Q}G;(xi)
A+m ey dxi + Gl(xl)] .
Ql My p}
Differentiating (75) with respect to x;, we get
i ji ji 1 F i
(93) wi = ik (A oy — Ik / % (x dx; + Gk(xk)]
’ Qk Mjik
1 F(xi
O (- ) [ [ 4 “¢i+cuﬂ
Q mil

The substitution of (55), (75), (92) and (93) into equation (44), gives

Mt (mﬂ [log(mﬂk /Q4G i(xi) dx; +G1(x1)}

Q4 M)

mijil

F(xi
_ . (mjil M+ [10g ]lk Ql (X
Q

m]ll

Gz(xz)} :
From (24) and (25), we get
Q; Gi(xi) QF(x;) -
mkilTijkl[/ ZT? dx; + Gl(xl)} = mjilUijkl[/ IP? dx; + Gl(xl)}
and it follows from (73), that

4 (o 4 .
(94) /géﬁﬁwﬁGmn=/0i9%m+Gmy
1 1

Differentiating (94) with respect to x;, we get

Gi(x;) = F(xi),

and therefore
Gi(x) = Gilxy).
The substitution of these two equalities in (55), (75) and in (43), gives

v 1 4 4 4
X = - [mj,kB My By — mjikBk + mj',‘]Bl} ,
jik
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where we have used (28). It follows from the fourth equation of (13) that
X =B} - B, +B,
which substituted into (36), implies (27).

Considering o' and o, s = 7, k, I defined by (30), it follows from (16)—(18), (22)
and (12) that

(95) X,=Vao', r=ijkl
Differentiating (95), we have

(96) Xp=V, o' +Vad, r=ijkl
It follows from (95) that the metric of X, is given by

(97) gr= (V2|)?, g =0,r#t.

A unit vector field normal to X is given by

ol x ol x ok x o

98 N = - - .
©8) o] T o] o]

Since X is a Dupin hypersurface parametrized by orthogonal curvature lines, with A,
as principal curvature we have, for 1 <r #s<4

era N
<N7 X.r5> = 07 /\s = g
&rr
Hence from (96) and (98) we obtain for r = i, j, k, I,
k

(o, ' X o) X «

\ x o)
T VierPlad] ad] ok o] |
Therefore, we conclude that conditions (a), (b) and (c) are satisfied.

Conversely, let A, be real functions distinct at each point, such that A, = 0.
Assume that the functions m,, defined by (31), satisfy (13) and suppose G,(x;), 1 <
r < 4, are vector valued functions satisfying properties (a), (b) and (c). Defining X by
(27), it follows from Lemma 2.3 and properties (a) and (b), that X is an immersion,
whose coordinates curves are orthogonal. Moreover, the induced metric is given by
(97) and a unit normal vector field by (98).

Differentiating (95) with respect to x;, using Lemma 2.3, the expressions (13), (23)
and (30) we obtain
Art " At r t)

: + : t.
D v e vl R
From (98), it follows that (X ,,N) = 0. Hence the second fundamental form is
diagonal and therefore the coordinates curves are lines of curvature. Moreover, it
follows from (96)—(98) and from property (c) that for r =1, j, k, I,

X, = V(

(X, N) (a,a xal xaxa) \
gr Via'Plad] o] [of] [of] "

which concludes the proof. ]
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4 Properties

In this section, we show that the vector valued functions which appear in Theorem 3.1
are invariant by inversions and homotheties.

Theorem 4.1 Let X: Q C R* — R be a proper Dupin hypersurface, with four dis-
tinct principal curvatures \,, parametrized by lines of curvature as in Theorem 3.1. Then
the vector valued functions G,(x,),1 < r < 4 are invariants by inversions (assuming
without loss of generality that 0 ¢ X(2)) and homotheties.

Proof (a) Let X = I°(X) be the immersion obtained by composing X with the
inversion defined in (14). From Remark 2.2, we have that X is a Dupin hypersurface
parametrized by lines of curvature, with distinct principal curvatures given by

(99) A= (XN +2(X,N), 1<r<4.

Using Theorem 3.1 for X, we have for i, j, k, I fixed distinct indices

where
- 1 QiGi(x:) ~ .
B! = @[/de1+Gs(Xs)}7 s # i,
NN
(100) . e i jk"”’
YT

A= _/mjki,i dxg,

P4, Q% s # i are defined by (26) and (29), in terms of the higher-dimensional Laplace
invariants 7 and G,(x,), 1 < r < 4 are vector valued functions in R”.

From Remark 2.2, X and X have the same higher-dimensional Laplace invariants.
Therefore, it follows that

(101) A=A, Q'=Q!) P'=P #0 r#i.

Substituting (99) in (100), we have

(102) a—
- {XX)
On the other hand,
- X
(103) X = "X
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We will show that G,(x,) = G,(x,)r # i. It follows from (102) and (103) that

(104) Bj — B} — (B; — By) + B — B} =0.

We observe that

Gi(xi)
V)
P;

4 4

This fact follows from the equalities

Q}l',i = AQ}*; Q?,i =

Gi(x;)

P;l )

(A+ mjis)Qf, s= k, L.

Therefore differentiating (104) with respect to x;, we get

— A(BS = B) + (A ma) (B = BE) — (A +myu) (Bt = BY)

- 1 1 1
+(Gi—Gi){ﬁ}—P—é+ﬁi
Using (104) and the fact that
1 1 1
17} — F]; + 17;1 =0,
we have
(105) mji[Bi — Bt] — mju[ B — Bf] =o.

Differentiating this relation with respect to x;, we obtain

[mjii — mji(A+mji)] [Bf — By

mjik mjip
4 p4
Pk Pl

+(Gilx) = Gilx))|

It follows from (105) and from the fact that

Mjik  Mjip

4
Py
that the expression above reduces to

[mjixi — (mji)?] [ Bt — By]

Again, using (105), we obtain the relation

(mjil — Mjip +
Mjik
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which, as a consequence of (25), reduces to
Uiju[ B — B}] =0.
Since Ujj # 0, we obtain
(106) B — B!,

Differentiating with respect to x;, we get Gi(x;) = G;(x;), hence it follows that
Gi(x;) = Gy(%). From (105) and (106), we have

(107) By = B,
and therefore Gy(x;) = Gy(xt). Substituting (106) and (107) into (104), we obtain
B4 pd

and hence Gj(xj) = Gj(x;), which concludes the proof of (a).

(b) Let X = aX be a homothety of X. From Remark 2.2, we have that X is a Dupin
hypersurface parametrized by orthogonal curvature lines, with distinct principal cur-
vatures given by

(108) X:&, 1<r<4.

Using Theorem 3.1 for X, we have for i, j, k, I distinct fixed indices

X =V[Bj - B+ B]
where
o 17 [ QGi(x) ) .
B?zﬁ[/%dxi+Gs(xs)]’ s
=5

A= _/mjki.i dx,

Pt Q% s # i are defined by (26) and (29) in terms of the higher-dimensional Laplace
invariants and G,(x,), 1 < r < 4 are vector valued functions in R>. We will show
that G,(x,) = G,(x,).

From Remark 2.2, X and X have the same Laplace invariants. Therefore, it follows
that

(110) A=A Q=qQ P=P'+#0,s#i.

https://doi.org/10.4153/CJM-2005-052-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2005-052-1

Dupin Hypersurfaces in R> 1313

Substituting (108) in (109), we have

(111) V =aV.
Since
(112) X=V[B;-Bi+B], X=V[B;-B +B],

substituting the expressions (110), (111), (112) in X = aX we have,
Bj — B} — (B{ —B}) + B/ — B} = 0.
The same argument of item (a) proves that G,(x,) = G,(x,), Vr. [ |

The results of this paper were announced in [15]. Higher dimensional generaliza-
tions of Theorem 3.1 and the non generic case will appear elsewhere.
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