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Dupin Hypersurfaces in R
5

Carlos M.C. Riveros and Keti Tenenblat

Abstract. We study Dupin hypersurfaces in R
5 parametrized by lines of curvature, with four distinct

principal curvatures. We characterize locally a generic family of such hypersurfaces in terms of the

principal curvatures and four vector valued functions of one variable. We show that these vector

valued functions are invariant by inversions and homotheties.

Introduction

Dupin surfaces were first studied by Dupin in 1822 and more recently by many au-

thors [1–6, 9–14, 16, 17], who looked at several aspects of Dupin hypersurfaces. The

class of Dupin hypersurfaces is invariant under Lie transformations [11]. Therefore,

the classification of Dupin hypersurfaces is considered up to these transformations.

The local classification of Dupin surfaces in R
3 is well known. Pinkall [12] gave

a complete classification up to Lie equivalence for Dupin hypersurfaces M3 ⊂ R
4,

with three distinct principal curvatures. Niebergall [10] and more recently Cecil and

Jensen [6] studied proper Dupin hypersurfaces with four distinct principal curva-

tures and constant Lie curvature (the cross-ratio of four principal curvatures).

In this paper we study generic Dupin hypersurfaces in R
5, parametrized by lines

of curvature, with four distinct principal curvatures. We obtain a local characteriza-

tion of a generic family of such hypersurfaces (Theorem 3.1) in terms of the principal

curvature functions and four vector valued functions of one variable. The character-

ization is based on the theory of higher-dimensional Laplace invariants introduced

by Kamran–Tenenblat [7, 8].

We consider generic hypersurfaces in the sense that suitable generic conditions on

the Laplace invariants are required. Moerover, assuming that the Dupin hypersur-

faces are parametrized by lines of curvature, we eliminate those which are Lie equiv-

alent to an isoparametric hypersurface in S5. This follows from Pinkall’s result [11],

(see also [3]), which asserts that if M is an isoparametric hypersurface in Sn with

more than two distinct principal curvatures, then M cannot be parametrized by lines

of curvature. Further, it follows from [6] that if M is a Dupin hypersurface of R5

parametrized by lines of curvature, with four distinct principal curvatures, then M is

reducible in the sense of Pinkall or it has non constant Lie curvature.

We observe that if we consider a Dupin hypersurface Mn ⊂ Rn+1, parametrized

by lines of curvature, with n distinct principal curvatures, satisfying the nongeneric

assumption that all Laplace invariants vanish, we can show that M has constant Lie

curvature. It follows from results of Pinkall [11] and Cecil–Jensen [6] that, when

n = 3 or n = 4, M is reducible. This will appear in a forthcoming paper.
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In Section 1, we recall the main definitions and results on the Laplace invariants.

In Section 2, we give some properties of Dupin hypersurfaces with distinct principal

curvatures. In Section 3, Theorem 3.1 gives a local characterization of generic Dupin

hypersurfaces in R
5 with four distinct principal curvatures. In Section 4, we show

that the vector valued functions, which appear in the characterization of Theorem

3.1 are invariant by inversions and homotheties.

The local characterization of Theorem 3.1 is given in terms of the principal cur-

vatures λr and four functions of one variable Gr(xr), 1 ≤ r ≤ 4, taking values in R5.

We observe that the principal curvatures λr change under inversions in spheres cen-

tered at the origin and under homotheties, while the functions Gr are invariant under

such transformations. On the other hand, principal curvatures are preserved under

isometries of R5, but the functions Gr are not invariant under isometries. This is

certainly expected, since parametrizations are not invariant under isometries. There-

fore, the functions Gr are not invariant under the full group of Lie transformations

of R5.

We conclude this introduction by observing that, although the theory in this pa-

per has been developped for M4 ⊂ R5, one can consider a similar theory for hy-

persurfaces Mn ⊂ Rn+1 in other dimensions n. For example, when n = 3, a sim-

ilar classification result can be obtained with the generic condition that one of the

Laplace invariants does not vanish. However, in this case one knows from Pinkall’s

result [13] that such hypersurfaces are reducible. For dimensions n ≥ 4, the proofs

get lenghthier as n increases. We observe that we do not have explicit examples in

higher dimensions, which might help the reader to develop some understanding of

the possible forms of the vector valued functions Gr . However, for some known ex-

amples, when n = 3, the functions Gr describe plane curves or points.

1 The Higher-Dimensional Laplace Invariants

In this section we briefly review the theory of higher-dimensional Laplace invariants

[7,8] which will be necessary in the following sections. We consider linear systems of

second-order partial differential equations of the form

(1) Y,kl + ak
klY,k + al

klY,l + cklY = 0, 1 ≤ k 6= l ≤ n,

where Y is a scalar function of the independent variables x1, x2, . . . , xn, and the co-

efficients a and c are smooth functions of x1, x2, . . . , xn which are symmetric in the

pair of lower indices and satisfy certain compatibility conditions, and Y,l denotes the

derivative of Y with respect to xl.

The general form of system (1) is preserved under admissible transformations

Y = ϕ(x1, x2, . . . , xn)Ȳ ,(2)

xi = fi(x̄i), 1 ≤ i ≤ n,(3)

where ϕ is a smooth and non-vanishing function and the fi ’s are smooth functions

whose derivatives do not vanish. It is easily verified that under an admissible trans-
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formation, the coefficients a and c transform according to

(4)

āl
lk = f ′

k

[

al
lk + (log ϕ),k

]

,

c̄lk = f ′

l f ′

k

[

clk + al
lk(log ϕ),l + ak

lk(log ϕ),k +
ϕ,kl

ϕ

]

, 1 ≤ k 6= l ≤ n,

and system (1) transforms into

Ȳ,kl + āk
klȲ,k + āl

klȲ,l + c̄klȲ = 0, 1 ≤ k 6= l ≤ n.

The higher-dimensional Laplace invariants of (1), introduced in [7], are the n(n − 1)2

functions given by

(5) mi j = ai
i j,i + ai

i ja
j
i j − ci j , mi jk = ak

k j − ai
i j , k 6= i, j,

for all ordered pairs (i, j), 1 ≤ i 6= j ≤ n.

Lemma 1.1 The higher-dimensional Laplace invariants of a compatible system (1)

satisfy the following relations: for 1 ≤ i, j, k, l ≤ n, with i, j, k, l distinct,

(6)

mi jk + mk ji = 0,

mi jk,k − mi jkm jki − mk j = 0,

mi j,k + mi jkmik + mik j mi j = 0,

mi jk − mi jl − ml jk = 0,

mlik, j + mi jlmkil + ml jkmki j = 0.

The functions mi j , mi jk are invariant under pure rescalings (2). The expression of

a system (1) in terms of its higher-dimensional Laplace invariants is given in the

following result proved in [8].

Theorem 1.2 Given any collection of n(n− 1)2, n ≥ 3 smooth functions of x1, x2, . . . ,
xn, mi j , mi jk, 1 ≤ i, j, k ≤ n, with i, j, k distinct, satisfying the constraints (6), there

exists a linear system (1) whose higher-dimensional Laplace invariants are the given

functions mi j , mi jk. Any such system is defined up to rescaling (2). A representative is

given by

(7)

Y,i j + AY, j − mi jY = 0,

Y,ik + (A + m jik)Y,k − mikY = 0,

Y, jk + mik jY, j + mi jkY,k = 0,

Y,lk + miklY,l + milkY,k = 0,

where (i, j) is a fixed (ordered) pair, 1 ≤ i, j, k, l ≤ n are distinct and A is a function

which satisfies

(8) A, j = m ji − mi j A,k = −m jki,i .
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2 Properties of Dupin Hypersurfaces with Distinct Principal
Curvatures

We consider the Euclidean space R
n endowed with the Euclidian metric 〈 , 〉. Let Ω

be an open subset of R
n and x = (x1, x2, . . . , xn) ∈ Ω.

Definition 2.1 An immersion X : Ω ⊂ R
n → R

n+1 is a parametrized Dupin hyper-

surface if each principal curvature is constant along its corresponding lines of cur-

vature. If the multiplicity of the principal curvatures is constant then the Dupin

submanifold is said to be proper.

Remark 2.2 Let X : Ω ⊂ R
n → R

n+1 be a proper Dupin hypersurface parametrized

by lines of curvature, with distinct principal curvatures λi, 1 ≤ i ≤ n and N : Ω ⊂
R

n → R
n+1 a unit normal vector field of X. Then

(9)
〈X,i, X, j〉 = δi jgii 1 ≤ i, j ≤ n,

N,i = −λiX,i, λi,i = 0.

Moreover,

X,i j − Γ
i
i jX,i − Γ

j
i jX, j = 0, 1 ≤ i 6= j ≤ n,(10)

Γ
i
i j =

λi, j

λ j − λi

, 1 ≤ i 6= j ≤ n,(11)

where Γ
k
i j are the Christoffel symbols.

We now consider the higher-dimensional Laplace invariants of the system of equa-

tions (10), defined by (5).

(12)
mi j = −Γ

i
i j,i + Γ

i
i jΓ

j
i j ,

mi jk = Γ
i
i j − Γ

k
k j , k 6= i, j, 1 ≤ k ≤ n.

As a consequence of (11) and Lemma 1.1, we obtain for 1 ≤ i, j, k, l ≤ n, i, j, k, l

distinct,

(13)
mi j = 0, mi jk + mk ji = 0, mi jk,k − mi jkm jki = 0,

mi jk − mi jl − ml jk = 0, mlik, j + mi jlmkil + ml jkmki j = 0.

We now consider the effect on the principal curvatures and on the higher-dimen-

sional Laplace invariants of a Dupin hypersurface under an inversion or a homothety.

Let X : Ω ⊂ R
n → R

n+1 − {0}, n ≥ 2, be a proper Dupin hypersurface parametrized

by lines of curvature with distinct principal curvatures λi, 1 ≤ i ≤ n. Consider an

inversion

(14)

In+1 : R
n+1 − {0} → R

n+1 − {0}

X → In+1(X) =
X

〈X, X〉
.
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Denoting In+1(X) = X̃, we have that

Ñ = −2
〈X, N〉

〈X, X〉
X + N

is a unit vector field normal to X̃. Then X̃ is a Dupin hypersurface parametrized by

lines of curvature, with distinct principal curvatures given by

λ̃i = 〈X, X〉λi + 2〈X, N〉 , 1 ≤ i ≤ n.

Moreover, X̃ satisfies the system

X̃,kl − Γ̃
k
klX̃,k − Γ̃

l
klX̃,l = 0, 1 ≤ k 6= l ≤ n, k 6= i, j,

and since X̃ is a rescaling of X, we conclude that for n ≥ 3, an inversion does not

change the higher-dimensional Laplace invariants i.e., m̃i j = mi j = 0 and m̃i jk =

mi jk.

Similarly, let X : Ω ⊂ R
n → R

n+1, n ≥ 2 be a proper Dupin hypersurface parame-

trized by lines of curvature with distinct principal curvatures λi, 1 ≤ i ≤ n. Consider

the homothety

(15)
D : R

n+1 → R
n+1

X → D(X) = aX, a ∈ R, a 6= 0.

Denoting X̄ = D(X), we have that N̄ = N is a unit vector field normal to X̄. Then

X̄ is a Dupin hypersurface parametrized by lines of curvature, with distinct principal

curvatures given by λ̄i = λi/a, 1 ≤ i ≤ n . Moreover, since X̄ satisfies the system

X̄,kl − Γ̄
k
klX̄,k − Γ̄

l
klX̄,l = 0, 1 ≤ k 6= l ≤ n, k 6= i, j,

and X̄ is a rescaling of X, for n ≥ 3 the higher-dimensional Laplace invariants do not

change, i.e., m̄i j = mi j = 0 and m̄i jk = mi jk.

The following result provides some properties which are satisfied by the principal

curvatures of a Dupin hypersurface in R
n+1 parametrized by lines of curvature. Its

proof is a straightforward computation which follows from (13).

Lemma 2.3 Let λr : Ω ⊂ R
n → R, n ≥ 3, be smooth functions distinct at each point,

such that λr,r = 0. Consider functions mi jk defined by (11) and (12). Then for i, j fixed,

1 ≤ i 6= j ≤ n, the following properties hold

[ λk − λ j

λ j − λi

m jki

]

,i
= −m jki,i ,(16)

[ λk − λ j

λ j − λi

m jki

]

, j
= 0,(17)

[ λk − λ j

λ j − λi

m jki

]

,l
=

[ λl − λ j

λ j − λi

m jli

]

,k
,(18)

where 1 ≤ k 6= l ≤ n are distinct from i and j.
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The next result is a straightforward application of Theorem 1.2.

Lemma 2.4 Let X : Ω ⊂ R
n → R

n+1, n ≥ 3, be a proper Dupin hypersurface parame-

trized by lines of curvature, with n distinct principal curvatures λr, 1 ≤ r ≤ n. For i, j, k

fixed, 1 ≤ i 6= j 6= k ≤ n, the transformation

(19) X = V X̄, where V =
e

∫ λk−λ j
λ j −λi

m jki dxk

λ j − λi

,

transforms system (10) into

(20)

X̄,i j + AX̄, j = 0,

X̄,ir + (A + m jir)X̄,r = 0,

X̄, jr + mir j X̄, j + mi jrX̄,r = 0,

X̄,rl + milrX̄,r + mirlX̄,l = 0,

where l and r are such that 1 ≤ r 6= l 6= i 6= j ≤ n and

(21) A = −

∫

m jki,i dxk.

Moreover,

(22) A, j = 0, A,r = −m jri,i ,

Remark 2.5 For subsequent use, we will compute the derivatives of the function V

given by (19). It follows from Lemma 2.3 that,

(23)
V,i =

(

A + Γ
j
ji

)

V, V, j = Γ
i
i jV,

V,k = Γ
i
ikV, V,l = Γ

i
ilV,

where A is given by (21) and l is distinct from i, j, k.

3 A Characterization of Dupin Hypersurfaces in R
5

In this section, we prove our main result which provides a local characterization of

generic Dupin hypersurfaces in R
5, with four distinct principal curvatures. We start

by introducing some functions that will be useful in what follows. Considering the

higher-dimensional Laplace invariants, satisfying (13), for 1 ≤ i 6= j 6= k 6= l ≤ 4

fixed we introduce the following functions admitting that m jik 6= 0, m jil 6= 0 and

mkil 6= 0,

Ti jkl = m jil +
[

log
( m jik

mkil

)]

,i
,(24)

Ui jkl = mkil +
[

log
( m jik

m jil

)]

,i
(25)

P4
j = m jikTi jkl, P4

k = m jikUi jkl, P4
l = m jilUi jkl.(26)
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Theorem 3.1 Let X : Ω ⊂ R
4 → R

5, be a proper Dupin hypersurface, parametrized

by lines of curvature, with four distinct principal curvatures λr. For i, j, k, l distinct fixed

indices, suppose m jkl 6= 0, ml jk 6= 0 and Ti jkl 6= 0 then

(27) X = V
[

B4
j − B4

k + B4
l

]

,

where

(28) V =
e

∫ λk−λ j
λ j−λi

m jki dxk

λ j − λi

, B4
s =

1

Q4
s

[

∫

Q4
s Gi(xi)

P4
s

dxi + Gs(xs)
]

, s 6= i,

P4
s are defined by (26), Gr(xr), 1 ≤ r ≤ 4, are vector valued functions of R

5, A =

−
∫

m jki,i dxk, and

(29) Q4
s =

{

e
∫

A dxi if s = j,

e
∫

(A+m jis)) dxi if s = k, l.

Moreover, considering

(30) αi
=

(

A +
λ j,i

λi − λ j

)

M + M,i, αs
=

λi,s

λs − λi

M + M,s, s 6= i,

where M = B4
j −B4

k + B4
l , the functions Gr(xr) satisfy the following properties in Ω, for

1 ≤ r 6= t ≤ 4:

(a) αr 6= 0,
(b) 〈αr, αt〉 = 0, r 6= t,

(c) λr =
〈αr

,r , αi × α j × αk × αl〉

V |αr|2 |αi| |α j | |αk| |αl|
.

Conversely, let λr : Ω ⊂ R
4 → R, r = 1, . . . , 4 be real functions, distinct at each point,

such that λr,r = 0. Assume that the functions mrts defined by

(31) mrts =
λr,t

λt − λr

−
λs,t

λt − λs

, 1 ≤ r 6= t 6= s ≤ 4,

satisfy (13), and for i, j, k, l distinct fixed indices, m jkl 6= 0, ml jk 6= 0, Ti jkl 6= 0.

Then for any vector valued functions Gr(xr) satisfying properties (a), (b), (c) where αr

is defined by (30), the function X : Ω ⊂ R
4 → R

5 given by (27) describes a Dupin

hypersurface, parametrized by lines of curvature, whose principal curvatures are the

functions λr.

Before proving this theorem, we observe that Ti jkl = 0 if and only if Ui jkl = 0. In

fact, using the relation mkil + mm jik = m jil (see (13)) twice, it follows from (24) and

(25) that mi jkmkilTi jkl = Ui jkl. Hence, the hypothesis of Theorem 3.1 implies that

P4
s 6= 0, for s 6= i.

For the proof of Theorem 3.1 we will need three lemmas.
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Lemma 3.2 Let X be a Dupin hypersurface as in Theorem 3.1, then

(32) X =
V

m jik

[

W k −W j
]

,

where W k(xi , x j , xl) and W j(xi , xk, xl) satisfy the following systems of equations,

(33)

W k
,i j +

(

A −
m jik,i

m jik

)

W k
, j + mk jim jikW

k
= 0,

W k
,il +

(

A + m jil −
mkil,i

mkil

)

W k
,l + milkmkilW

k
= 0,

W k
, jl +

m jlkmkil

m jik

W k
, j +

ml jkm jik

mkil

W k
,l = 0.

(34)

W
j
,ik +

(

A + m jik −
m jik,i

m jik

)

W
j
,k + mik j m jikW

j
= 0,

W
j
,il +

(

A + m jil −
m jil,i

m jil

)

W
j
,l + mil jm jilW

j
= 0,

W
j
,kl +

m jlkm jil

m jik

W
j
,k +

m jklm jik

m jil

W
j
,l = 0.

Proof From Remark 2.2, we have,

(35) X,sr − Γ
s
srX,s − Γ

r
srX,r = 0, 1 ≤ s 6= r ≤ 4.

For fixed distinct indices i, j, k, we consider the transformation

(36) X = V X̄,

as in Lemma 2.4, where V is given by (19). Then system (35) reduces to

(37)

X̄,i j + AX̄, j = 0,

X̄,ir + (A + m jir)X̄,r = 0,

X̄, jr + mir j X̄, j + mi jrX̄,r = 0,

X̄,kl + milkX̄,k + miklX̄,l = 0,

where r = k, l and k 6= l,

(38) A, j = 0, A,r = −m jri,i .

It follows from the third and second equations of (13) and (38), that

(39) (A + m jir),r = 0, r = k, l.
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Using (38) and (39) in the first two equations of (37), we have that

X̄,i + AX̄ = W j(xi , xk, xl),(40)

X̄,i + (A + m jik)X̄ = W k(xi , x j , xl),(41)

X̄,i + (A + m jil)X̄ = W l(xi , x j , xk).(42)

where W j ,W k and W l are functions that do not depend on x j , xk and xl, respectively.

Since m jik 6= 0, from (40) and (41) we have

(43) X̄ =
1

m jik

[W k −W j].

Therefore, it follows from (36) that X is given by (32).

We will now obtain the differential equations that W k and W j must satisfy, by

using (37), (40)–(42).

The substitution of X̄ and X̄,i into (40), (41) and (42), gives

(

A −
m jik,i

m jik

)

[W k −W j] + [W k −W j],i = m jikW
j ,(44)

(

A + m jik −
m jik,i

m jik

)

[W k −W j] + [W k −W j],i = m jikW
k,(45)

(

A + m jil −
m jik,i

m jik

)

[W k −W j] + [W k −W j],i = m jikW
l.(46)

Substituting X̄, j and X̄,i j into the first equation of (37), it follows from (13), that

W k
,i j +

(

A−
m jik,i

m jik

)

W k
, j −mi jk

{(

A+m jik−
m jik,i

m jik

)

[W k−W j]+[W k−W j],i

}

= 0.

Using (45) in this equation, we conclude that W k satisfies the first equation of (33).

Similarly, substituting X̄,k and X̄,ik in the second equation of (37) for r = k, and

using (13) we obtain that

W
j
,ik +

(

A + m jik −
m jik,i

m jik

)

W
j
,k

+ mik j

{(

A −
m jik,i

m jik

)

[W k −W j] + [W k −W j],i

}

= 0.

It follows from (44) that this equation reduces to the first equation of (34).

Now substituting X̄,l and X̄,il in the second equation of (37) with r = l, and using

(13) we obtain a relation equivalent to (46). The substitution of X̄, j , X̄,k and X̄, jk in

the third equation of (37) with r = k, gives an identity.

Using X̄, j , X̄,l and X̄, jl in the third equation of (37) with r = l, and using (13), we

have that

(47) W k
, jl +

m jlkmkil

m jik

W k
, j + ml jk

{

−[W k −W j],l +
mkl jm jil

m jik

[W k −W j]
}

= 0.
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From (40), (41) and (42) we get,

(48) W k −W j
=

m jik

mkil

[W l −W k].

Differentiating (48) with respect to xl, and using (13), we obtain

(49) [W k −W j],l =
mkl j m jil

m jik

[W k −W j] −
m jik

mkil

W k
,l ,

which substituted into (47), provides the third equation of (33).

Similarly, substituting X̄,k, X̄,l and X̄,kl in the last equation of (37), and using (13),

we have that

(50) W
j
,kl +

m jlkm jil

m jik

W
j
,k + mlk jW

k
,l − mlk jW

j
,l +

mlk jm jlkmkil

m jik

[W k −W j] = 0.

From (49) we get,

W k
,l =

mkil

m jil
W

j
,l +

mkilmkl j

m jik
[W k −W j].

Using this relation into (50), we obtain the third equation of (34).

Differentiating the first equation of (33) with respect to xl and using the third

equation of (33), we get

(51) W k
,i jl +

[(

A −
m jik,i

m jik

)

,l
−

(

A −
m jik,i

m jik

) m jlkmkil

m jik

]

W k
, j

+
[

mk jim ji −
(

A −
m jik,i

m jik

) ml jkm jik

mkil

]

W k
,l + (mk jim jik),lW

k
= 0.

Differentiating the third equation of (33) with respect to xi , it follows from the first

equation of (33), that

(52) W k
, jli +

[( m jlkmkil

m jik

)

,i
−

(

A −
m jik,i

m jik

) m jlkmkil

m jik

]

W k
, j +

( ml jkm jik

mkil

)

,i
W k

,l

+
ml jkm jik

mkil

W k
,li + m jlkmkilmi jkW

k
= 0.

Since ml jk 6= 0 and W k
, jli = W k

,i jl , from (51), (52), (38) and (13), we obtain the

second equation of (33).

Similar computations provide the second equation of (34). In fact, differentiating

the first equation of (34) with respect to xl, and using the third equation of (34), we

get

(53) W
j
,ikl +

[(

A + m jik −
m jik,i

m jik

)

,l
−

(

A + m jik −
m jik,i

m jik

) m jlkm jil

m jik

]

W
j
,k

+
[

mik jm jik −
(

A + m jik −
m jik,i

m jik

) m jklm jik

m jil

]

W
j
,l + (mik j m jik),lW

j
= 0.
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Differentiating the third equation of (34) with respect to xi and using the first equa-

tion of (34), we obtain

(54) W
j
,kli +

[( m jlkm jil

m jik

)

,i
−

(

A + m jik −
m jik,i

m jik

) m jlkm jil

m jik

]

W
j
,k

+
( m jklm jik

m jil

)

,i
W

j
,l +

m jklm jik

m jil

W
j
,li + mkl jm jilmik jW

j
= 0.

Since m jkl 6= 0 and W
j
,ikl = W

j
,kli , from (53), (54), (38), and (13), we obtain the

second equation of (34). Which concludes the proof of Lemma 3.2.

The solutions of the systems of equations (33) and (34) are given in the following

two lemmas.

Lemma 3.3 The solution of (33) is given by

(55) W k
=

m jik

Q4
j

[

∫

Q4
j Gi(xi)

P4
j

dxi + G j(x j)
]

−
mkil

Q4
l

[

∫

Q4
l Gi(xi)

P4
l

dxi + Gl(xl)
]

.

Proof Using equations of (13) and (38), we have that

(

A −
m jik,i

m jik

)

, j
= m jikmk ji ,(56)

(

A + m jil −
mkil,i

mkil

)

,l
= mkilmilk.(57)

Substituting (56) in the first equation of system (33), we get

[

W k
,i +

(

A −
m jik,i

m jik

)

W k
]

, j
= 0 ,

whose integration with respect to x j , provides

(58) W k
,i +

(

A −
m jik,i

m jik

)

W k
= D j(xi , xl).

Using (57) in the second equation of system (33), we obtain

[

W k
,i +

(

A + m jil −
mkil,i

mkil

)

W k
]

,l
= 0 .

Therefore, integrating with respect to xl, we get

(59) W k
,i +

(

A + m jil −
mkil,i

mkil

)

W k
= Dl(xi , x j).

https://doi.org/10.4153/CJM-2005-052-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-052-1


1302 C. M. C. Riveros and K. Tenenblat

From (58), (59) and (24), we conclude that

(60) W k
=

1

Ti jkl

[Dl − D j].

Differentiating W k, using (13) and the following derivatives

Ti jkl, j =
m jikml jk

mkil
Ti jkl Ti jkl,k = 0 Ti jkl,l =

mkilm jlk

m jik
Ti jkl,

we have

W k
,i = −

Ti jkl,i

(Ti jkl)2
[Dl − D j] +

1

Ti jkl

[Dl − D j],i(61)

W k
, j = −

ml jkm jik

mkil

1

Ti jkl

[Dl − D j] +
1

Ti jkl

Dl
, j(62)

W k
,l = −

m jlkmkil

m jik

1

Ti jkl

[Dl − D j] −
1

Ti jkl

D
j
,l(63)

(64) W k
,i j =

1

Ti jkl

Dl
, ji −

Ti jkl,i

(Ti jkl)2
Dl

, j −
[ ml jk

mkil

+
mk ji

Ti jkl

−
ml jk

mkil

Ti jkl,i

(Ti jkl)2

]

× m jik[Dl − D j] −
ml jkm jik

mkil

1

Ti jkl
[Dl − D j],i

(65) W k
,il = −

1

Ti jkl

D
j
,li +

Ti jkl,i

(Ti jkl)2
D

j
,l −

[ mkl j

m jik

+
milk

Ti jkl

−
m jlk

m jik

Ti jkl,i

(Ti jkl)2

]

× mkil[Dl − D j] −
m jlkmkil

m jik

1

Ti jkl

[Dl − D j],i

(66) W k
, jl =

2m jlkml jk

Ti jkl

[Dl − D j] −
mkilm jlk

m jik

1

Ti jkl

Dl
, j +

ml jkm jik

mkil

1

Ti jkl

D
j
,l.

The substitution of (60) and (61) into (58) and (59), gives

(

A −
m jik,i

m jik

−
Ti jkl,i

Ti jkl

)

[Dl − D j] + [Dl − D j],i = Ti jklD
j ,(67)

(

A + m jil −
mkil,i

mkil

−
Ti jkl,i

Ti jkl

)

[Dl − D j] + [Dl − D j],i = Ti jklD
l.(68)
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Substituting (60), (62), (64) in the first equation of system (33), and using (67), we

obtain

(69) Dl
, ji +

(

A −
m jik,i

m jik
−

Ti jkl,i

Ti jkl

)

Dl
, j +

mk jlm jik

mkil
Ti jklD

l
= 0.

Similarly, using (63) and (65) in the second equation of system (33), and using

(68), we get

(70) D
j
,li +

(

A + m jil −
mkil,i

mkil

−
Ti jkl,i

Ti jkl

)

D
j
,l +

m jlkmkil

m jik

Ti jklD
j
= 0.

The substitution of (62), (63) and (66) in the third equation of (33) gives an identity.

Next we compute the Laplace invariant m̄ ji of equation (69),

m̄ ji =

(

A −
m jik,i

m jik

−
Ti jkl,i

Ti jkl

)

, j
−

mk jlm jik

mkil

Ti jkl.

Using (38), (13) and the relation

Ti jkl,i j = Ti jkl, j

(

Ti jkl +
Ti jkl,i

Ti jkl

)

+ m jikmk jiTi jkl

we conclude that

m̄ ji = 0.

Therefore, the solution of equation (69) is given by,

Dl(xi , x j) = m jikTi jkle
−

∫

A dxi

[

∫

e
∫

Adxi Gi(xi)

m jikTi jkl

dxi + G j(x j)
]

.

where Gi(xi) e G j(x j) are vector valued functions in R
5.

Let us compute the Laplace invariant m̃li of equation (70):

m̃li =

(

A + m jil −
mkil,i

mkil

−
Ti jkl,i

Ti jkl

)

,l
−

m jlkmkil

m jik

Ti jkl.

Using (39), (13) and the relation

Ti jkl,il = −Ti jkl,l

(

Ti jkl −
Ti jkl,i

Ti jkl

)

+ mkilmilkTi jkl

we obtain

m̃li = 0.

Therefore, the solution of equation (70) is given by,

(71) D j(xi , xl) = mkilTi jkle
−

∫

(A+m jil) dxi

[

∫

e
∫

(A+m jil) dxi Ḡi(xi)

mkilTi jkl

dxi + Gl(xl)
]

.
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where Ḡi(xi) and Ḡl(xl) are vector valued functions in R
5.

We will now show that Gi(xi) = Ḡi(xi). Differentiating Dl and D j with respect to

xi , we obtain, respectively

Dl
,i = −

(

A −
m jik,i

m jik

−
Ti jkl,i

Ti jkl

)

Dl + Gi(xi),

D
j
,i = −

(

A + m jil −
mkil,i

mkil
−

Ti jkl,i

Ti jkl

)

D j + Ḡi(xi).

Therefore

[Dl − D j],i = Gi(xi) − Ḡi(xi) −
(

A −
Ti jkl,i

Ti jkl

)

[Dl − D j]

+
m jik,i

m jik

Dl +
(

m jil −
mkil,i

mkil

)

D j .

It follows from (67), that

Gi(xi) = Ḡi(xi).

Now using (26) and (29) we get

(72) Dl(xi , x j) =
P4

j

Q4
j

[

∫

Q4
j Gi(xi)

P4
j

dxi + G j(x j)
]

.

On the other hand, from equations (13) we obtain,

(73) mkilTi jkl = m jilUi jkl.

Therefore from (73) and (71), we have that

D j(xi , xl) = m jilUi jkle
−

∫

(A+m jil) dxi

[

∫

e
∫

(A+m jil) dxi Gi(xi)

m jilUi jkl

dxi + Gl(xl)
]

.

Using (26) and (29) we obtain

(74) D j(xi , xl) =
P4

l

Q4
l

[

∫

Q4
l Gi(xi)

P4
l

dxi + Gl(xl)
]

.

Substituting (72) and (74) into (60), we conclude that

W k
=

1

Ti jkl

{ P4
j

Q4
j

[

∫

Q4
j Gi(xi)

P4
j

dxi + G j(x j )
]

−
P4

l

Q4
l

[

∫

Q4
l Gi(xi)

P4
l

dxi + Gl(xl)
]}

.

It follows from (73) and (29) that P4
l = m jilUi jkl = mkilTi jkl. Using this relation

in the expression above, we obtain (55).
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Lemma 3.4 The solution of (34) is given by

(75) W j
=

m jik

Q4
k

[

∫

Q4
kF(xi)

P4
k

dxi + Gk(xk)
]

−
m jil

Q4
l

[

∫

Q4
l F(xi)

P4
l

dxi + Ḡl(xl)
]

.

Proof Using (13) and (38), we have that

(76)
(

A + m jir −
m jir,i

m jir

)

,r
= m jirmir j , r = k, l.

The substitution of (76) in the first two equations of (34), gives

[

W
j
,i +

(

A + m jir −
m jir,i

m jir

)

W j
]

,r
= 0, r = k, l.

Therefore, we have that

(77) W
j
,i +

(

A + m jik −
m jik,i

m jik

)

W j
= Lk(xi , xl)

and

(78) W
j
,i +

(

A + m jil −
m jil,i

m jil

)

W j
= Ll(xi , xk).

From (77), (78) and (25), we conclude that

(79) W j
=

1

Ui jkl

[Ll − Lk].

Differentiating W j , using (13) and the following derivatives

Ui jkl, j = 0, Ui jkl,k =
m jikm jkl

m jil

Ui jkl, Ui jkl,l =
m jilm jlk

m jik

Ui jkl,

we get

W
j
,i = −

Ui jkl,i

(Ui jkl)2
[Ll − Lk] +

1

Ui jkl

[Ll − Lk],i(80)

W
j
,k = −

m jklm jik

m jil

1

Ui jkl

[Ll − Lk] +
1

Ui jkl

Ll
,k(81)

W
j
,l = −

m jlkm jil

m jik

1

Ui jkl

[Ll − Lk] −
1

Ui jkl

Lk
,l(82)

(83) W
j
,ki =

1

Ui jkl

Ll
,ki −

Ui jkl,i

(Ui jkl)2
Ll

,k −
[ m jkl

m jil

+
mik j

Ui jkl

−
m jkl

m jil

Ui jkl,i

(Ui jkl)2

]

× m jik[Ll − Lk] −
m jklm jik

m jil

1

Ui jkl

[Ll − Lk],i
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(84) W
j
,li = −

1

Ui jkl

Lk
,li +

Ui jkl,i

(Ui jkl)2
Lk

,l −
[ mkl j

m jik

+
mil j

Ui jkl

−
m jlk

m jik

Ui jkl,i

(Ui jkl)2

]

× m jil[Ll − Lk] −
m jlkm jil

m jik

1

Ui jkl

[Ll − Lk],i

W
j
,lk = 2

m jlkm jkl

Ui jkl

[Ll − Lk] −
m jlkm jil

m jik

1

Ui jkl

Ll
,k +

m jklm jik

m jil

1

Ui jkl

Lk
,l.(85)

The substitution of (79) and (80) in (77) and (78), gives

(

A + m jik −
m jik,i

m jik

−
Ui jkl,i

Ui jkl

)

[Ll − Lk] + [Ll − Lk],i = Ui jklL
k,(86)

(

A + m jil −
m jil,i

m jil
−

Ui jkl,i

Ui jkl

)

[Ll − Lk] + [Ll − Lk],i = Ui jklL
l.(87)

Using (79), (81) and (83) in the first equation of (34), as a consequence of (86), we

get

(88) Ll
,ki +

(

A + m jik −
m jik,i

m jik

−
Ui jkl,i

Ui jkl

)

Ll
,k +

mlk jm jik

m jil

Ui jklL
l
= 0.

Similarly, it follows from (79), (82), (84) substituted in the second equation of

(34), as a consequence of (87), that

(89) Lk
,li +

(

A + m jil −
m jil,i

m jil

−
Ui jkl,i

Ui jkl

)

Lk
,l +

m jlkm jil

m jik

Ui jklL
k
= 0.

The expressions (81), (82) and (85) substituted in the third equation of (34) provide

an identity.

The Laplace invariant ¯̄mki of equation (88) is given by

¯̄mki =

(

A + m jik −
m jik,i

m jik

−
Ui jkl,i

Ui jkl

)

,k
−

mlk jm jik

m jil

Ui jkl.

Using (39), (13) and the relation

Ui jkl,ik = Ui jkl,k

(

U +
Ui jkl,i

Ui jkl

)

+ m jikmik jUi jkl

we obtain
¯̄mki = 0.

Therefore, the solution of equation (88) is given by

Ll(xi , xk) = m jikUi jkle
−

∫

(A+m jik) dxi

[

∫

e
∫

(A+m jik) dxi F(xi)

m jikUi jkl

dxi + Gk(xk)
]

,
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where F(xi) and Gk(xk) are vector valued functions in R
5.

Similarly, we compute the Laplace invariant ˜̃mli of equation (89),

˜̃mli =

(

A + m jil −
m jil,i

m jil

−
Ui jkl,i

Ui jkl

)

,l
−

m jlkm jil

m jik

Ui jkl.

Using (39), (13) and the relation

Ui jkl,il = −Ui jkl,l

(

Ui jkl −
Ui jkl,i

Ui jkl

)

+ m jilmil jUi jkl

we obtain
˜̃mli = 0.

We conclude that the solution of (89) is given by,

Lk(xi , xl) = m jilUi jkle
−

∫

(A+m jil) dxi

[

∫

e
∫

(A+m jil) dxi F̄(xi)

m jilUi jkl

dxi + Ḡl(xl)
]

,

where F̄(xi) and Ḡl(xl) are vector valued functions in R
5.

As in the proof of the previous lemma, we show that F(xi) = F̄(xi). Differentiating

Ll and Lk with respect to xi we obtain respectively

Ll
,i = −

(

A + m jik −
m jik,i

m jik

−
Ui jkl,i

Ui jkl

)

Ll + F(xi),(90)

Lk
,i = −

(

A + m jil −
m jil,i

m jil

−
Ui jkl,i

Ui jkl

)

Lk + F̄(xi).(91)

From (90), (91) and (86) we conclude that

F(xi) = F̄(xi).

Now using (26) and (29) we have that

Ll(xi , xk) =
P4

k

Q4
k

[

∫

Q4
kF(xi)

P4
k

dxi + Gk(xk)
]

,

Lk(xi , xl) =
P4

l

Q4
l

[

∫

Q4
l F(xi)

P4
l

dxi + Ḡl(xl)
]

.

Substituting the last two expressions in (79) we get

W j
=

1

Ui jkl

{ P4
k

Q4
k

[

∫

Q4
kF(xi)

P4
k

dxi + Gk(xk)
]

−
P4

l

Q4
l

[

∫

Q4
l F(xi)

P4
l

dxi + Ḡl(xl)
]}

.

Finally we obtain (75), using (26).
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We can now prove our main result

Proof of Theorem 3.1 It follows from Lemmas 3.2–3.4 that a Dupin hypersurface

is given by (32), where W k and W j are given for (55) and (75), respectively. Differ-

entiating (55) with respect to xi and using (73), we obtain

(92) W k
,i = −

m jik

Q4
j

(

A −
m jik,i

m jik

)[

∫

Q4
j Gi(xi)

P4
j

dxi + G j(x j)
]

+
mkil

Q4
l

(

A + m jil −
mkil,i

mkil

)[

∫

Q4
l Gi(xi)

P4
l

dxi + Gl(xl)
]

.

Differentiating (75) with respect to xi , we get

(93) W
j
,i = −

m jik

Q4
k

(

A + m jik −
m jik,i

m jik

)[

∫

Q4
kF(xi)

P4
k

dxi + Gk(xk)
]

+
m jil

Q4
l

(

A + m jil −
m jil,i

m jil

)[

∫

Q4
l F(xi)

P4
l

dxi + Ḡl(xl)
]

.

The substitution of (55), (75), (92) and (93) into equation (44), gives

mkil

Q4
l

(

m jil +
[

log
( m jik

mkil

)]

,i

)[

∫

Q4
l Gi(xi)

P4
l

dxi + Gl(xl)
]

=
m jil

Q4
l

(

m jil − m jik +
[

log
( m jik

m jil

)]

,i

)[

∫

Q4
l F(xi)

P4
l

dxi + Ḡl(xl)
]

.

From (24) and (25), we get

mkilTi jkl

[

∫

Q4
l Gi(xi)

P4
l

dxi + Gl(xl)
]

= m jilUi jkl

[

∫

Q4
l F(xi)

P4
l

d xi + Ḡl(xl)
]

and it follows from (73), that

(94)

∫

Q4
l Gi(xi)

P4
l

dxi + Gl(xl) =

∫

Q4
l F(xi)

P4
l

dxi + Ḡl(xl).

Differentiating (94) with respect to xi , we get

Gi(xi) = F(xi),

and therefore

Gl(xl) = Ḡl(xl).

The substitution of these two equalities in (55), (75) and in (43), gives

X̄ =
1

m jik

[

m jikB4
j − mkilB

4
l − m jikB4

k + m jilB
4
l

]

,
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where we have used (28). It follows from the fourth equation of (13) that

X̄ = B4
j − B4

k + B4
l ,

which substituted into (36), implies (27).

Considering αi and αs, s = j, k, l defined by (30), it follows from (16)–(18), (22)

and (12) that

(95) X,r = Vαr, r = i, j, k, l.

Differentiating (95), we have

(96) X,rr = V,rα
r + Vαr

,r, r = i, j, k, l.

It follows from (95) that the metric of X,r is given by

(97) grr = (V )2|αr|2, grt = 0, r 6= t.

A unit vector field normal to X is given by

(98) N =
αi × α j × αk × αl

|αi | |α j | |αk| |αl|
.

Since X is a Dupin hypersurface parametrized by orthogonal curvature lines, with λs,
as principal curvature we have, for 1 ≤ r 6= s ≤ 4

〈N, X,rs〉 = 0, λs =
〈X,rr, N〉

grr

.

Hence from (96) and (98) we obtain for r = i, j, k, l,

λr =
〈αr

,r, α
i × α j × αk × αl〉

V |αr|2|αi| |α j | |αk| |αl|
.

Therefore, we conclude that conditions (a), (b) and (c) are satisfied.

Conversely, let λr be real functions distinct at each point, such that λr,r = 0.

Assume that the functions mrts, defined by (31), satisfy (13) and suppose Gr(xr), 1 ≤
r ≤ 4, are vector valued functions satisfying properties (a), (b) and (c). Defining X by

(27), it follows from Lemma 2.3 and properties (a) and (b), that X is an immersion,

whose coordinates curves are orthogonal. Moreover, the induced metric is given by

(97) and a unit normal vector field by (98).

Differentiating (95) with respect to xt , using Lemma 2.3, the expressions (13), (23)

and (30) we obtain

X,rt = V
( λr,t

λt − λr

αr +
λt,r

λr − λt

αt
)

, r 6= t.

From (98), it follows that 〈X,rt , N〉 = 0. Hence the second fundamental form is

diagonal and therefore the coordinates curves are lines of curvature. Moreover, it

follows from (96)–(98) and from property (c) that for r = i, j, k, l,

〈X,rr, N〉

grr

=
〈αr

,r, α
i × α j × αk × αl〉

V |αr|2|αi| |α j | |αk| |αl|
= λr

which concludes the proof.
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4 Properties

In this section, we show that the vector valued functions which appear in Theorem 3.1

are invariant by inversions and homotheties.

Theorem 4.1 Let X : Ω ⊂ R
4 → R

5 be a proper Dupin hypersurface, with four dis-

tinct principal curvatures λr, parametrized by lines of curvature as in Theorem 3.1. Then

the vector valued functions Gr(xr), 1 ≤ r ≤ 4 are invariants by inversions (assuming

without loss of generality that 0 /∈ X(Ω)) and homotheties.

Proof (a) Let X̃ = I5(X) be the immersion obtained by composing X with the

inversion defined in (14). From Remark 2.2, we have that X̃ is a Dupin hypersurface

parametrized by lines of curvature, with distinct principal curvatures given by

(99) λ̃r = 〈X, X〉λr + 2〈X, N〉, 1 ≤ r ≤ 4.

Using Theorem 3.1 for X̃, we have for i, j, k, l fixed distinct indices

X̃ = Ṽ
[

B̃4
j − B̃4

k + B̃4
l

]

,

where

(100)

B̃4
s =

1

Q̃4
s

[

∫

Q̃4
s G̃i(xi)

P̃4
s

dx1 + G̃s(xs)
]

, s 6= i,

Ṽ =
e

∫ λ̃k−λ̃ j

λ̃ j−λ̃i
m̃ jki dxk

λ̃ j − λ̃i

,

Ã = −

∫

m̃ jki,i dxk,

P̃4
s , Q̃4

s , s 6= i are defined by (26) and (29), in terms of the higher-dimensional Laplace

invariants m̃ and G̃r(xr), 1 ≤ r ≤ 4 are vector valued functions in R
5.

From Remark 2.2, X̃ and X have the same higher-dimensional Laplace invariants.

Therefore, it follows that

(101) Ã = A, Q̃4
r = Q4

r , P̃4
r = P4

r 6= 0, r 6= i.

Substituting (99) in (100), we have

(102) Ṽ =
V

〈X, X〉
.

On the other hand,

(103) X̃ =
X

〈X, X〉
.
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We will show that G̃r(xr) = Gr(xr)r 6= i. It follows from (102) and (103) that

(104) B̃4
j − B4

j − (B̃4
k − B4

k) + B̃4
l − B4

l = 0.

We observe that

B4
j,i = −AB4

j +
Gi(xi)

P4
j

, B4
s,i = −(A + m jis)B4

s +
Gi(xi)

P4
s

, s = k, l.

This fact follows from the equalities

Q4
j,i = AQ4

j , Q4
s,i = (A + m jis)Q4

s , s = k, l.

Therefore differentiating (104) with respect to xi , we get

− A
(

B̃4
j − B4

j

)

+
(

A + m jik

)(

B̃4
k − B4

k

)

−
(

A + m jil

)(

B̃4
l − B4

l

)

+ (G̃i − Gi)
[ 1

P4
j

−
1

P4
k

+
1

P4
l

]

= 0.

Using (104) and the fact that

1

P4
j

−
1

P4
k

+
1

P4
l

= 0,

we have

(105) m jik

[

B̃4
k − B4

k

]

− m jil

[

B̃4
l − B4

l

]

= 0.

Differentiating this relation with respect to xi , we obtain

[

m jik,i − m jik(A + m jik)
] [

B̃4
k − B4

k

]

−
[

m jil,i − m jil(A + m jil)
][

B̃4
l − B4

l

]

+ (G̃i(xi) − Gi(xi))
[ m jik

P4
k

−
m jil

P4
l

]

= 0.

It follows from (105) and from the fact that

m jik

P4
k

−
m jil

P4
l

= 0,

that the expression above reduces to

[

m jik,i − (m jik)2
][

B̃4
k − B4

k

]

−
[

m jil,i − (m jil)
2
][

B̃4
l − B4

l

]

= 0.

Again, using (105), we obtain the relation

(

m jil − m jik +
m jik,i

m jik

−
m jil,i

m jil

)

[

B̃4
l − B4

l

]

= 0,
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which, as a consequence of (25), reduces to

Ui jkl

[

B̃4
l − B4

l

]

= 0.

Since Ui jkl 6= 0, we obtain

(106) B̃4
l = B4

l .

Differentiating with respect to xi , we get G̃i(xi) = Gi(xi), hence it follows that

G̃l(xl) = Gl(xl). From (105) and (106), we have

(107) B̃4
k = B4

k,

and therefore G̃k(xk) = Gk(xk). Substituting (106) and (107) into (104), we obtain

B̃4
j = B4

j .

and hence G̃ j(x j) = G j(x j), which concludes the proof of (a).

(b) Let X̄ = aX be a homothety of X. From Remark 2.2, we have that X̄ is a Dupin

hypersurface parametrized by orthogonal curvature lines, with distinct principal cur-

vatures given by

(108) λ̄r =
λr

a
, 1 ≤ r ≤ 4.

Using Theorem 3.1 for X̄, we have for i, j, k, l distinct fixed indices

X̄ = V̄
[

B̄4
j − B̄4

k + B̄4
l

]

.

where

(109)

B̄4
s =

1

Q̄4
s

[

∫

Q̄4
s Ḡi(xi)

P̄4
s

dxi + Ḡs(xs)
]

, s 6= i,

V̄ =
e

∫ λ̄k−λ̄ j

λ̄ j−λ̄i
m̄ jki dxk

λ̄ j − λ̄i

,

Ā = −

∫

m̄ jki,i dxk,

P̄4
s , Q̄4

s , s 6= i are defined by (26) and (29) in terms of the higher-dimensional Laplace

invariants and Ḡr(xr), 1 ≤ r ≤ 4 are vector valued functions in R
5. We will show

that Ḡr(xr) = Gr(xr).

From Remark 2.2, X̄ and X have the same Laplace invariants. Therefore, it follows

that

(110) Ā = A Q̄4
s = Q4

s P̄4
s = P4

s 6= 0, s 6= i.
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Substituting (108) in (109), we have

(111) V̄ = aV.

Since

(112) X = V
[

B4
j − B4

k + B4
l

]

, X̄ = V̄
[

B̄4
j − B̄4

k + B̄4
l

]

,

substituting the expressions (110), (111), (112) in X̄ = aX we have,

B̄4
j − B4

j − (B̄4
k − B4

k) + B̄4
l − B4

l = 0.

The same argument of item (a) proves that Ḡr(xr) = Gr(xr), ∀r.

The results of this paper were announced in [15]. Higher dimensional generaliza-

tions of Theorem 3.1 and the non generic case will appear elsewhere.
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