Resolving actions of compact Lie groups

M.J. Field

Abstract

A general process for the desingularization of smooth actions of compact Lie groups is described. If G is a compact Lie group, it is shown that there is naturally associated to any compact G manifold M a compact $G \times(Z / 2)^{p}$ manifold on which G acts principally. Here $Z / 2$ denotes the cyclic group of order two and $p+1$ is the number of orbit types of the G action on M.

1. Introduction

Let G be a compact Lie group. In this note we show that there is naturally associated to any compact G manifold M a compact $G \times(Z / 2)^{p}$ manifold \hat{M} on which G acts principally. Here $Z / 2$ denotes the cyclic group of order two and $p+1$ is the number of orbit types of the action of G on M (see §2). We call \hat{M} a resolution of (the G action on) M. Our method of construction of \hat{M} is a modification of the familiar "blowing up" transformation of algebraic geometry and is closely related to the polar coordinate transformation as used, for example, by Ruelle and Takens in [4].

Our process of resolution is basic to a study of ours on the linearizations, modulo G, of equivariant diffeomorphisms close to the identity map and the construction of a maximal family of slices for a G action. However, we feel that our results on resolutions may be of wider interest, with possible applications to the classification theory of smooth actions, and so we are presenting them separately.

Received 5 January 1978.

2. Blowing up G manifolds

We start by recalling some facts about smooth (that is C^{∞}) actions of a compact Lie group on a compact differential manifold. We refer to Bredon's text [2], especially Chapter 6, for full details and proof's.

Given a compact connected differential manifold M and the action of a compact Lie group G on M, we let $G(x)$ denote the G orbit through x and G_{x} the isotropy subgroup of G at $x, x \in M . G(x)$ is equivariantly diffeomorphic to the homogeneous space G / G_{x}. The isotropy subgroup at $g x, g \in G$, is conjugate to that at x and indeed is obviously equal to $g G_{x} g^{-1}$. We say that $x, y \in M$ are of the same orbit type if G_{x} and G_{y} are conjugate subgroups of G or, equivalently, if $G(x)$ and $G(y)$ are equivariantly diffeomorphic. The equality of orbit type partitions M into points of the same orbit type. If M is compact, this partition is finite. We write

$$
M=\underset{i \in I}{U} M_{i}
$$

where M_{i} are the equivalence classes of points of the same orbit type. We define orb $: M \rightarrow I$ by $\operatorname{orb}(x)=i, x \in M_{i}$.

There is defined a natural partial order on I by $i<j$ if there exist $x \in M_{i}, y \in M_{j}$, such that $G_{x} \supset G_{y}$ (strict inclusion). We say that x is of minimal orbit type if there does not exist $y \in M$ such that $\operatorname{orb}(y)<\operatorname{orb}(x)$. The finiteness of I implies there exists at least one minimal orbit type. We may similarly define a maximal orbit type. In this case it may be shown that there exists precisely one maximal orbit type, say N, and that M_{N} is an open dense subset of M (connected if G is connected).

For convenience we shall label orbit types by integers and write

$$
M=\bigcup_{l \leq i \leq N} M_{i},
$$

where $\operatorname{orb}(x)<\operatorname{orb}(y)$ implies that if $x \in M_{i}$ and $y \in M_{j}$ then $i<j$ (the converse need not be true: if $i<j$ (as integers) then G_{x} and G_{y}
need not be related. For example, M_{1} and M_{2} may both be minimal orbit types). We shall say that the action is principal if there exists only one orbit type and that it is free if $G_{x}=\{e\}$ for all $x \in M$.

Let ξ be a riemannian metric on M. Averaging over G using Haar measure we may assume that ξ is G invariant. We call M, together with a G action and equivariant riemannian metric, a riemannian G manifold. In the sequel, we assume M is a riemannian G manifold. Apart from the notation introduced above, we let $\operatorname{diff}_{G}^{k}(M)$ denote the space of C^{k} equivariant diffeomorphisms of $M, 1 \leq k \leq \infty$. In case $k<\infty$, we give $\operatorname{diff}_{G}^{k}(M)$ the C^{k} topology ([1], [3]).

DEFINITION. A resolution of M consists of a $G \times(Z / 2)^{N-1}$ manifold \hat{M} and a C^{∞} map $\pi: \hat{M} \rightarrow M$ and homomorphism $\phi: \operatorname{diff}_{G}^{\infty}(M) \rightarrow \operatorname{diff}^{\infty}(\hat{M})$ such that:
(1) if we give M the trivial $(Z / 2)^{N-1}$ action, π is $G \times(Z / 2)^{N-1}$ equivariant;
(2) the generators f_{1}, \ldots, f_{N-1} of the $(2 / 2)^{N-1}$ action on \hat{M} may be indexed so that

$$
\begin{aligned}
\pi^{-1}\left(M_{j}\right) & =\operatorname{fix}\left(f_{j}\right) \backslash \underset{i<j}{\cup} \operatorname{fix}\left(f_{i}\right), \quad 1 \leq j \leq N-1 \\
& =\text { free part of the }(z / 2)^{N-1} \text { action, } j=N
\end{aligned}
$$

(3) G acts principally on \hat{M};
(4) for all $f \in \operatorname{diff}_{G}^{\infty}(M), \phi(f)$ is a $C^{\infty} G \times(z / 2)^{N-1}$ invariant map covering f.
REMARK. It follows from (2) of the definition that $\pi / \pi^{-1}\left(M_{N}\right)$ is a 2^{N-1} fold covering map of M_{N}.

THEOREM A. Every compact G manifold has a resolution. Moreover, for the resolution we construct we may require that the extension map
$\phi: \operatorname{diff}_{G}^{\infty}(M) \rightarrow \operatorname{diff}^{\infty}(\hat{M})$ extends to a continuous map

$$
\phi: \operatorname{diff}_{G}^{k+N-1}(M) \rightarrow \operatorname{diff}^{k}(\hat{M}), \quad r \geq 0
$$

Before starting the proof of Theorem A, we prove a simple and presumably well known result which is special to actions by finite groups of odd order.

THEOREM B. Let G be a finite group of odd order acting on M. Then there exists a principal G manifold \tilde{M} and a C^{∞} equivariont map $\pi: \tilde{M} \rightarrow M$ such that $\pi^{-1}\left(M_{N}\right)$ is open and dense in \tilde{M} and π maps $\pi^{-1}\left(M_{N}\right)$ diffeomorphically onto M_{N}.

Proof. We shall successively blow up the submanifolds M_{1}, \ldots, M_{N-1}. The techniques we use are well known and standard in equivariant differential topology and so we only outline the main details. Let $E_{1} \rightarrow M_{1}$ denote the normal bundle of M_{1} and choose $r>0$ so that the disc bundle $E_{1}(r)=\left\{v \in E_{1}:\|v\|<r\right\}$ is embedded as a tubular neighbourhood $Q(r)$ of M_{1} by the exponential map. Choosing r smaller if necessary, we may also require that $\partial Q(r)$ is a codimension one submanifold of M equivariantly diffeomorphic to the unit sphere bundle $S\left(E_{1}\right)$ of E_{1}. Define $\gamma: S\left(E_{1}\right) \times R \rightarrow R \quad$ by $\gamma(\theta, t)=\exp (t \theta) . \quad Z / 2$ acts freely on $S\left(E_{1}\right) \times R$ as multiplication by -1 (on both factors) and this action commutes with γ. If X is any $Z / 2$ invariant subset of R, we let $P\left(E_{1}, X\right)$ denote the orbit space of the induced $Z / 2$ action on $S\left(E_{1}\right) \times X . \quad \gamma$ restricts to a C^{∞} diffeomorphism of $P\left(E_{I},\{-r,+r\}\right)$ with $\partial Q(r)$ and, in the usual way, we may form the G manifold

$$
\tilde{M}_{1}=(M \backslash Q(r)) \underset{\gamma}{\cup} P\left(E_{I},[-r,+r]\right)
$$

$\pi_{1}: \tilde{M}_{1} \rightarrow M$ is defined to be the identity on $M \backslash Q(r)$ and γ on $P\left(E_{1},[-r,+r]\right)$. Clearly π_{1} is a diffeomorphism of $\pi_{1}^{-1}\left(M_{1}\right)$. Since G is of odd order, it does not contain any $Z / 2$ subgroups. Hence the orbit types of G on $P\left(E_{1},[-r,+r]\right)$ are the same as those of G on
$S\left(E_{1}\right) \times[-r,+r]$, which in turn are a subset of the orbit types 2, ..., N. Hence no orbit of type 1 appears in \tilde{M}_{1}. Iterating this process we may remove orbits of types 2 up to $N-1$. //

Proof of Theorem A. As in the proof of Theorem B, we form the unit sphere bundle $S\left(E_{1}\right)$ of the normal bundle E_{1} of M_{1} and choose $r>0$ so that exp embeds the disc bundle of radius r^{2} as a tubular neighbourhood $Q(r)$ of M_{1} with smooth boundary $\partial Q(r)$. Let $\gamma: S\left(E_{1}\right) \times R \rightarrow M$ be the map $(\theta, t) \mapsto \exp \left(t^{2} \theta\right)$. γ is $G \times(Z / 2)$ invariant if we take the $Z / 2$ action on $S\left(E_{1}\right) \times R$ defined by $(\theta, t) \rightarrow(\theta,-t)$ and the trivial $Z / 2$ action on M. We define \hat{H}_{1} to be

$$
(M Q(r)) \underset{\gamma_{-}}{\cup}\left(S\left(E_{1}\right) \times[-r,+r]\right) \underset{\gamma_{+}}{\cup}(M Q(r))
$$

where $\quad \gamma_{ \pm}=\gamma \mid S\left(E_{1}\right) \times\{ \pm r\}$ identifies $\partial Q(r)=\partial(M \backslash Q(r))$ to $S\left(E_{1}\right) \times\{ \pm r\}$. The $Z / 2$ action on $S\left(E_{1}\right) \times[-r,+r]$ extends in the Obvious way to \hat{M}_{1} and, since γ is $G \times(Z / 2)$ invariant, we see that \hat{M}_{1} is a $G \times(z / 2)$ manifold. $\pi_{1}: \hat{M}_{1} \rightarrow M$ is defined to be the identity on either of the components $M \backslash Q(r)$ and γ on $S\left(E_{1}\right) \times[-r,+r]$. Set

$$
M_{1}^{ \pm}=S\left(E_{1}\right) \times(0, \pm r] \underset{\gamma_{ \pm}}{\cup}(M Q Q(r))
$$

π_{1} restricts to an equivariant diffeomorphism $\pi_{1}^{ \pm}$of $M_{1}^{ \pm}$onto $M M_{1}$. The only orbit types that can occur for the G action on \hat{M}_{l} are $2, \ldots, N$. If we let α_{1}^{l} be the involution generating the $2 / 2$ action on \hat{M}_{1}, α_{1} is C^{∞}, equivariant and has fixed point set $\pi_{1}^{-1}\left(M_{1}\right)$.

Let $f \in \operatorname{diff}_{G}^{k}(M)$. Then $f\left(M_{j}\right)=M_{j}, j=1, \ldots, N$. We define $\hat{f}_{1}: \hat{M}_{1}^{ \pm} \rightarrow M_{1}^{ \pm}$by

$$
\hat{f}_{1}=\left(\pi_{1}^{ \pm}\right)^{-1} f \pi_{1}^{ \pm}
$$

Clearly f_{1} is C^{k} on $M_{1}^{ \pm}$. Choose $s>0$ so that $f(Q(s)) \subset Q(r)$.

Suppose $s<r$. Then for $0<|t|<\boldsymbol{s}$, we see that, relative to the coordinates on \hat{M}_{1} given by $S\left(E_{1}\right) \times[-r,+r]$,

$$
\hat{f}_{1}(t, \theta)=\left\{\frac{\exp ^{-1}\left(f \exp \left(t^{2} \theta\right)\right)}{\left\|\exp ^{-1}\left(f \exp \left(t^{2} \theta\right)\right)\right\|}, \operatorname{sign}(t)\left\|\exp ^{-1}\left(f \exp \left(t^{2} \theta\right)\right)\right\|^{\frac{1}{2}}\right\}
$$

\hat{f}_{1} is certainly $G \times(Z / 2)$ invariant. We claim that \hat{f}_{1} extends as a $C^{k-1} G \times(Z / 2)$ invariant map across $\pi_{1}^{-1}\left(M_{1}\right)$. For this it is clearly enough to show that there exists a $C^{k-1} \operatorname{map} g: S\left(E_{1}\right) \times(-s,+s) \rightarrow E_{1}$ such that $g \neq 0$ and

$$
\exp ^{-1}\left(f \exp \left(t^{2} \theta\right)\right)=t^{2} g(\theta, t), \quad t \neq 0, \quad \theta \in S\left(E_{1}\right)
$$

Fix a C^{∞} embedding of M into some R^{n}. Such an embedding induces an embedding of $T M$ in $R^{2 n}$ and, by restriction, of E_{1} into $R^{2 n}$. For $\theta \in S\left(E_{1}\right)$, consider the map $\rho_{\theta}:(-s,+8) \rightarrow R^{2 n}$ defined by

$$
\rho_{\theta}(t)=\exp ^{-1}(f \exp (t \theta))
$$

Then

$$
\begin{aligned}
\rho_{\theta}\left(t^{2}\right) & =\int_{0}^{1} \frac{\partial}{\partial u}\left(\rho_{\theta}\left(u t^{2}\right)\right) d u \\
& =t^{2} \int_{0}^{1} \rho_{\theta}\left(u t^{2}\right) d u
\end{aligned}
$$

Therefore, if we define $g(\theta, t)=\int_{0}^{1} \rho_{\theta}\left(u t^{2}\right) d u, g$ will satisfy our requirements. Moreover, it is easily verified that if $\left(f_{n}\right)$ is a convergent sequence in the c^{k} topology, the corresponding sequence $\left(g_{n}\right)$ will be convergent in the c^{k-1} topology. In other words the map $\operatorname{diff}_{G}^{k}(M) \rightarrow \operatorname{diff}^{k-1}\left(\hat{M}_{1}\right) ; f \rightarrow \hat{f}_{1}$ is continuous. The map is obviously a homomorphism.

Suppose inductively that we have performed j successive polar blow ups to obtain a $G \times(Z / 2)^{j}$ manifold \hat{M}_{j} with G orbit types $j+1, \ldots, N, j+1<N$. Denote the generators of the $(2 / 2)^{j}$ action by $\alpha_{j}^{1}, \ldots, \alpha_{j}^{j}$. As above we choose an equivalent riemannian metric on \hat{M}_{j} and polar blow up the set of points of orbit type $j+1$ to obtain a new G manifold \hat{M}_{j+1}. We set $\alpha_{j+1}^{i}=\hat{\alpha}_{j}^{i}, 1 \leq i \leq j$, and let α_{j+1}^{j+1} denote the generator of the $Z / 2$ action originating from the polar blow up of \hat{M}_{j}. Now since α_{j}^{i} is G invariant α_{j+1}^{i} commutes with α_{j+1}^{j+1}, $1 \leq i \leq j$. Also α_{j+1}^{i} and α_{j+1}^{k} commute for $1 \leq i, k \leq j$ since the lifting map is a homomorphism. Hence we have a $G \times(2 / 2)^{j+1}$ action of \hat{M}_{j+1} with $\alpha_{j+1}^{1}, \cdots, \alpha_{j+1}^{j+1}$ generators of the $(z / 2)^{j+1}$ action. Similarly, if we have shown inductively that a $C^{k} G$ diffeomorphism f of M lifts to a $C^{k-j} G \times(2 / 2)^{j}$ diffeomorphism \hat{f}_{j} of \hat{M}_{j}, then \hat{f}_{j} lifts to a c^{k-j-1} diffeomorphism \hat{f}_{j+1}. of \hat{M}_{j+1}. Hence the inductive step is completed and we may take $\hat{M}=\hat{M}_{N-1}, \phi(f)=\hat{f}_{N-1}$. The generators of the $(Z / 2)^{N-1}$ action on \hat{M} are $\alpha_{N-1}^{j}, 1 \leq j \leq N-1$. //

REMARKS. In the sequel we shall refer to the resolution of M constructed in Theorem A as the polar resolution of M. We call the manifold \hat{M}_{j} obtained in the proof of Theorem A after j successive polar blow ups the j-fold polar blow up of M. We denote the i th orbit type of \hat{M}_{j} by $\left(\hat{M}_{j}\right)_{i}$. Thus we will have $\left(\hat{M}_{j}\right)_{i}=\emptyset, 1 \leq i \leq j$, and $\hat{M}_{N-1}=\left(\hat{M}_{N-1}\right)_{N-1}=\hat{M}$.

EXAMPLE. Take the circle action on S^{3} induced from scalar multiplication on C^{2} by $\left(e^{p i \phi}, e^{q i \phi}\right), p, q \in Z^{+}$. If $p=q$, the action on s^{3} is principal. If $p \mid q$ or $q \mid p, p \neq q$, then there are two orbit types with corresponding isotropy subgroups $2 / p, 2 / q$. Suppose that $q>p$. Then the minimal orbit type consists of a single
S^{1} orbit with isotropy subgroup Z / q. Resolving, we find

$$
\hat{S}^{3}=D^{2} \times S^{1} \bigcup_{\text {id }} D^{2} \times s^{1}=s^{2} \times s^{1}
$$

The circle action on $D^{2} \times S^{l}$ is $(z, y) \mapsto\left(z e^{i q \phi}, y e^{i p \phi}\right), z \in D^{2}$, $y \in S^{1} \subset C$, and the involution is reflection in $\partial D^{2} \subset S^{2}$ with fixed set $\partial D^{2} \subset S^{1}=T^{2}$.

Finally suppose $p\|q, q\| p$. There are now three orbit types with isotropy subgroups $Z / p, Z / q, Z / m$, where m is the highest common factor of p and q. In this case $\hat{S}^{3}=T^{3}$ and the circle action on
 the involutions are

$$
\begin{aligned}
& f_{1}(\alpha, \beta, \gamma)=(\alpha, \beta, \bar{\gamma}) \\
& f_{2}(\alpha, \beta, \gamma)=(\alpha, \beta,-\bar{\gamma})
\end{aligned}
$$

LEMMA C. Up to $G \times(2 / 2)^{j}$ diffeomorphism, the manifolds \hat{M}_{j} constructed in the proof of Theorem A are independent of choices of riemannian metrics on M, \ldots, \hat{M}_{j-1}.

Proof. It is enough to prove this for $j=1$, since the general case follows by iteration. Let M have equivariant riemannian metrics ξ and ξ^{\prime}. Following the notation and assumptions of the proof of Theorem A, we define

$$
\gamma_{1}: S\left(E_{1}\right) \times[-r,+r] \rightarrow S\left(E_{1}\right)^{\prime} \times R
$$

by

$$
\gamma_{1}(\theta, t)=\left(H\left(t^{2} \theta\right) /\left\|H\left(t^{2} \theta\right)\right\|^{\prime}, \operatorname{sign}(t)\left(\left\|H\left(t^{2} \theta\right)\right\|^{\prime}\right)^{\frac{7}{2}}\right)
$$

where $H\left(t^{2} \theta\right)=(\exp)^{-1}\left(\exp \left(t^{2} \theta\right)\right)$ and $\exp ^{\prime},\| \|^{\prime}$, and $S\left(E_{1}\right)^{\prime}$ are the exponential norm and unit sphere bundle corresponding to ξ^{\prime}. As in Theorem A, γ_{1} is C^{∞}. Taking r smaller if necessary, we may assume that the image of γ_{1} lies in $S\left(E_{1}\right)^{\prime} \times\left[-r^{\prime},+r^{\prime}\right]$. We extend γ_{1} to a
$G \times(2 / 2)$ diffeomorphism of \hat{M}_{1} by setting $\gamma_{1}=\left(\pi_{1}\right)^{ \pm}\left(\pi_{1}\right)^{ \pm}$outside $S\left(E_{1}\right) \times[-r,+r] . \quad / /$

COROLLARY. The polar resolution of M is independent of the choice of metrics up to $G \times(2 / 2)^{N-1}$ diffeomorphism.

3. Blowing down G manifolds

It is not hard to prove a converse to Theorem A and in this final section we shall indicate how this may be done.

DEFINITION. A G sphere bundle is a quadruple (X, E, Σ, ρ) consisting of a riemannian G vector bundle $\pi: E \rightarrow \Sigma$, where Σ is a principal G manifold, and an equivariant diffeomorphism $\rho: S(E) \rightarrow X$, where $S(E)$ is the unit sphere bundle of E. We usually refer to the " G sphere bundle X ".

Let $\pi: E \rightarrow \sum$ be a riemannian G vector bundle and $N(S(E))$ denote the normal bundle of $S(E)$ in E. Clearly $N(S(E))$ is a trivial line bundle over $S(E)$. $N(S(E))$ has a natural $2 / 2$ action induced by scalar multiplication by -1 in the fibres and the action has fixed set $S(E)$ the zero section of $N(S(E))$. Since the $Z / 2$ action commutes with the G action on $N(S(E))$, we see that $N(S(E))$ has the structure of a $G \times(Z / 2)$ bundle over $S(E)$. If we take the product of the standard $2 / 2$ action on R with the G action on $S(E)$, then $S(E) \times R$ and $N(S(E))$ are isomorphic as $G \times(2 / 2)$ bundles.

PROPOSITION. Let N be a compact connected $G \times(Z / 2)$ manifold and f be the generator of the $2 / 2$ action on N. Suppose that
(1) fix (f) is a G sphere bundle; that is fix(f) is associated to a quadmple $(f i x(f), E, \Sigma, \rho)$;
(2) $\rho^{*}(N(f i x(f)))$ and $N(S(E))$ are isomorphic as $G \times(Z / 2)$ bundles,
(3) $\quad W \backslash f i x(f)$ has two connected components N_{1}, N_{2}, and $f\left(N_{1}\right)=N_{2}$.

Then there exists a unique, up to G diffeomorphism, G manifold M such that N is $G \times(Z / 2)$ diffeomorphic to the polar blow up of M
along a minimal orbit type.
Proof. Essentially a reversal of the argument of Theorem A. Fix $a>0$ and give N an equivariant riemannian metric. Since $S(E) \times R$ and $\rho^{*} N(f i x(f))$ are isomorphic as $G \times(z / 2)$ bundles, there exists a $G \times(Z / 2)$ diffeomorphism γ of $S(E) \times(-a,+a)$ onto a tubular neighbourhood Q of $\operatorname{fix}(f)$. Here we suppose that Q has smooth boundary which is the image of a sphere bundle of $N(f i x(f))$ by the exponential map. Regarding Σ as the zero section of E, the normal bundle of Σ is isomorphic to E as a G bundle and consequently, polar blown up along Σ is $G \times(Z / 2)$ diffeomorphic to Q. We now construct the required manifold M by identifying the boundaries of $N_{1} \backslash Q$ and the disc bundle of E of radius a using the map γ. //

Suppose (X, E, Σ, ρ) is a G sphere bundle. We may resolve the G space X to \hat{X} as in Theorem A. If X has r orbit types, this will require $r-1$ steps and \hat{X} will be a $G \times(z / 2)^{r-1}$ manifold on which G acts principally. We call \hat{X} the "resolved G sphere bundle (X, E, Σ, ρ) ". We let $\widehat{N(S(E))}$ and $\widehat{S(E)}$ denote the polar resolutions of $N(S(E))$ and $S(E)$ respectively. Since $N(S(E)) \cong S(E) \times R$ $N(\widehat{S(E)}) \cong \widehat{S(E)} \times R$ and $\widehat{S(E)}$ is of codimension one in $N(\widehat{S(E)})$. In case we have a $(2 / 2)^{q}$ action on (X, E, Σ, ρ) which commutes with G, we shall refer to X as a resolved $G \times(z / 2)^{q}$ sphere bundle, it being understood that we do not resolve the $(z / 2)^{q}$ action.

Given a $G \times(z / 2)^{p}$ action on N, suppose that $\left\{f_{1}, \ldots, f_{p}\right\}$ is the set of generators for the $(z / 2)^{p}$ action. Observe that $\operatorname{fix}\left(f_{j}\right)$ is left invariant by $G \times(z / 2)^{p}$. It follows that $N\left(\operatorname{fix}\left(f_{j}\right)\right)$ has the structure of a $G \times(z / 2)^{p}$ bundle over $\operatorname{fix}\left(f_{j}\right), I \leq j \leq p$.

THEOREM D. Let N be a compact connected $G \times(z / 2)^{P}$ manifold on which G acts principally. Suppose that we can find an ordering $\left\{f_{1}, \ldots, f_{p}\right\}$ of the set of generators of the $(z / 2)^{p}$ action such that
(1) each submanifold $\operatorname{fix}\left(f_{j}\right)$ is a resolved $G \times(z / 2)^{j}$
sphere bundle $\left(X_{j}, E_{j}, \Sigma_{j}, \rho_{j}\right)$, and the generators of the $(z / 2)^{j-1}$ action are $\left(f_{1}, \ldots, f_{j-1}\right)$,
(2) $N\left(S\left(E_{j}\right)\right)$ and $N\left(\right.$ fix $\left.\left(f_{j}\right)\right)$ are isomorphic as $G \times(z / 2)^{p}$ bundles,
(3) $N \backslash \underset{i=j}{p} \operatorname{fix}\left(f_{i}\right)$ has 2^{p-j+1} connected components N_{u}^{j}, $1 \leq u \leq 2^{p-j+1}$, and $\left\{f_{j}, \ldots, f_{p}\right\}$ acts transitively on the set of components and, given $s, 1 \leq s \leq p$, each N_{u}^{j}, $j<s$, is contained wholly within some w_{k}^{s}.

Then there exists a unique, up to G diffeomorphism, G manifold M such that N is $G \times(z / 2)^{p}$ diffeomorphic to the polar resolution of M.

Proof. The proof follows straightforwardly by repeated application of the proposition and we omit details.

REMARKS. 1. If $\left(X_{j}, E_{j}, \Sigma_{j}, \rho_{j}\right)$ has less than $p-j+1$ orbit types we nevertheless resolve $p-j$ times, doubling up when the orbit type is empty.
2. Since $S(E)$ is of codimension one in $N(S(E))$, condition (2) of Theorem D implies that $\operatorname{fix}\left(f_{j}\right)$ is of codimension one, $l \leq j \leq p$.
3. We require N to be connected to avoid exceptional cases where M is a G manifold with a minimal orbit type of codimension one and trivial normal bundle. In such cases the polar resolution of M ceases to be connected. We leave the formulation of the appropriate version of Theorem D to the reader.
4. Theorem D implies that if M and M^{\prime} have $G \times(z / 2)^{p}$ diffeomorphic polar resolutions then M is G diffeomorphic to M^{\prime}.

References

[1] Ralph Abraham, Joel Robbin, Transversal mappings and flows (Benjamin, New York, Amsterdam, 1967).
[2] Glen E. Bredon, Introduction to compact transformation groups (Pure and Applied Mathematics, 46. Academic Press, New York and London, 1972).
[3] M. Golubitsky, V. Guillemin, Stable mappings and their singularities (Graduate Texts in Mathematics, 14. Springer-Verlag, New York, Heidelberg, Berlin, 1973).
[4] David Ruelle and Florio Takens, "On the nature of turbulence", Comm. Math. Phys. 20 (1971), 167-192.

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.

