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The essentially tame local Langlands correspondence,

II: totally ramified representations

Colin J. Bushnell and Guy Henniart

Abstract

Let F be a non-Archimedean local field. Let Get
n (F ) be the set of equivalence classes of

irreducible, n-dimensional representations of the Weil group WF of F which are essentially
tame. Let Aet

n (F ) be the set of equivalence classes of irreducible, essentially tame, super-
cuspidal representations of GLn(F ). The Langlands correspondence induces a canonical
bijection L : Get

n (F ) → Aet
n (F ). We continue the programme of describing this map in

terms of explicit descriptions of the sets Get
n (F ) and Aet

n (F ). These descriptions are
in terms of admissible pairs (E/F, ξ), consisting of a tamely ramified field extension E/F
of degree n and a quasicharacter ξ of E× subject to certain technical conditions. If Pn(F )
is the set of isomorphism classes of admissible pairs of degree n, we have explicit bijections
Pn(F ) ∼= Get

n (F ) and Pn(F ) ∼= Aet
n (F ). In an earlier paper we showed that, if σ ∈ Get

n (F )
corresponds to an admissible pair (E/F, ξ), then L(σ) corresponds to the admissible pair
(E/F, µξ), for a certain tamely ramified character µ of E×. In this paper, we determine
the character µ when E/F is totally ramified.

Introduction

This paper, written in continuation of [BH05a], gives the next step towards an explicit description
of the local Langlands correspondence for essentially tame representations. Throughout, F is a
non-Archimedean local field, the residue field of which is finite and of characteristic p.

An irreducible smooth representation σ of the Weil group WF of F , of dimension n, is essentially
tame if the number t(σ) of unramified characters χ of WF , such that χ⊗σ ∼= σ, satisfies p � n/t(σ).
We write Get

n (F ) for the set of equivalence classes of n-dimensional, irreducible, essentially tame
representations of WF . Likewise, if π is an irreducible supercuspidal representation of GLn(F ), we
define t(π) to be the number of unramified characters χ of F× such that π is equivalent to the
representation χπ : g �→ χ(det g)π(g). We say that π is essentially tame if p � n/t(π), and we denote
the set of equivalence classes of such representations by Aet

n (F ). The Langlands correspondence
[LRS93, HT01, Hen00] induces a bijection

L = FLet
n : Get

n (F ) ≈−→ Aet
n (F ).

It is this map we wish to describe.
There is an explicit bijection FN n : Get

n (F ) → Aet
n (F ) [BH05a] with which we can compare FLet

n .
Given σ ∈ Get

n (F ), there is a tamely ramified field extension E/F and a quasicharacter ξ of E×
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by, l’Université de Paris-Sud. The first-named author wishes to thank King’s College London for hospitality during the
course of this work. Both authors were also partially supported by EU network ‘Arithmetical Algebraic Geometry’.
This journal is c© Foundation Compositio Mathematica 2005.

https://doi.org/10.1112/S0010437X05001363 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X05001363


C. J. Bushnell and G. Henniart

such that σ ∼= IndE/F ξ. Here, we regard ξ as a quasicharacter of WE via local class field theory,
and IndE/F denotes the operation of induction from WE to WF . One can refine this: one imposes a
condition of ‘admissibility’ on the pair (E/F, ξ) (we recall the definition below) to obtain a canonical
bijection

Pn(F ) −→ Get
n (F ),

(E/F, ξ) �−→ IndE/F ξ,
(1)

between Get
n (F ) and the set Pn(F ) of F -isomorphism classes of admissible pairs (E/F, ξ) in which

[E:F ] = n. Using the classification theory for supercuspidal representations [BK93], we constructed
in [BH05a] a canonical, and explicit, bijection

Pn(F ) −→ Aet
n (F ),

(E/F, ξ) �−→ Fπξ,
(2)

of which we recall relevant details below. The bijection FN n : Get
n (F ) → Aet

n (F ) is then that induced
by (1) and (2).

If K/F is a finite field extension and 1K denotes the trivial representation of WK , we write
δK/F = det IndK/F 1K . The bijections FLet

n and FN n are related as follows [BH05a, (3.3)].

Theorem A. Let (E/F, ξ) ∈ Pn(F ) and set σ = IndE/F ξ. There exists a tamely ramified character
µ = Fµξ of E× such that L(σ) = Fπµξ.

To describe L = FLet
n therefore, we have to determine the character Fµξ. In [BH05a, (4.4)], we

dealt with a first case as follows.

Theorem B. Suppose n is odd, let (E/F, ξ) ∈ Pn(F ) and suppose that E/F is totally ramified.
Then

Fµξ = δE/F ◦ NE/F .

In the present paper, we calculate Fµξ when (E/F, ξ) ∈ Pn(F ) has E/F totally ramified and
n is arbitrary: general admissible pairs (E/F, ξ) will be treated in the next paper of the series.
We assume that n is even, and we let K/F be the unique quadratic sub-extension of E/F . We set
ρ = Kπξ ∈ Aet

n/2(K), and we let π = AK/F ρ ∈ Aet
n (F ) be the representation that is automorphically

induced by ρ (see [HH95, HL05]). There is a tamely ramified character µ = K/Fµξ
of E× such that

(E/F, µξ) ∈ Pn(F ) and π = Fπµξ (see [BH05a, (3.4)]). A key step is then given by Corollary 3.3
below:

Fµξ = K/Fµξ
· Kµξ.

Inductively, we can assume that Kµξ is known, and we have to determine K/Fµξ
.

To do this, we use the automorphic induction equation. We view E as embedded in Mn(F ) and
we set Σ = Gal(K/F ). We then have the character relation [HH95, HL05]

Ξκπ (h) = cδ(h)
∑
σ∈Σ

tr ρσ(h), (3)

valid for all elliptic regular elements h of GLn(F ) which commute with K. Here, δ(h) is the transfer
factor ∆2(h)/∆1(h) of [HH95] and c is a certain non-zero constant (of which nothing is known a
priori). The function Ξκπ is the κ-twisted trace of π, formed relative to the non-trivial character κ
of F× vanishing on norms from K×.

By evaluating both sides of (3) at prime elements � of E, we get the following theorem [BH05a,
(4.3)].
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Theorem C. The tamely ramified character K/Fµξ
satisfies K/Fµξ

| F× = δ
n/2
K/F and, for every

prime element � of E,

K/Fµξ
(�) = εF εKcδ(�). (4)

Here, εF and εK are constants, with values ±1, determined by details of the internal structure of
(E/F, ξ) and (E/K, ξ), respectively. (We recall the definition below, in ‘Background’.) The major
step in this paper calculates both sides of (3) at elements h = 1 +�, where, again, � is a prime
element of E. This gives an expression for cδ(�) in terms of quadratic Gauss sums and Kloosterman
sums. (The arguments and results in this part hold in greater generality.)

Some labour is then required to evaluate these trigonometric sums and the sign εF εK . The final
form of Fµξ is given as Theorem 2.1. The character Fµξ has order dividing 4. The formula for
its values is quite complex and depends, with a considerable degree of sensitivity, on the internal
structure of ξ. The result is not the same as that predicted conjecturally by [Rei91] (which builds
on [How77], [Moy86] and [BF83]). In § 2.2, we discuss briefly the approach of [Rei91] and give
an example illustrative of the discrepancy between the predictions of that paper and the reality
established here.

We have also included a result (§ 2.3) describing the (surprisingly simple) behaviour of the
character Fµξ with respect to unramified base change. This generalizes Theorem 4.6 of [BH05a]
which is, however, used in its proof.

Notation
Throughout, F is a non-Archimedean local field; the discrete valuation ring in F is oF , the maximal
ideal of oF is pF , while the residue field kF = oF /pF has q elements and characteristic p. We write
UF = o×F and Un

F = 1 + pn
F , n � 1. Thus UF = µF ×U1

F , where µF is the group of roots of unity in
F of order prime to p. We let υF be the normalized additive valuation F× → Z.

We use analogous notation relative to a finite extension field E/F ; we denote by NE/F and
TrE/F the relative norm and trace, respectively.

If V is a finite-dimensional F -vector space and A is a hereditary oF -order in A = EndF (V ), we
write UA = A× and Un

A = 1 + Pn, n � 1, where P is the Jacobson radical of A. We write KA for
the group of x ∈ G = AutF (V ) such that x−1Ax = A.

If [A, l, 0, β] is a simple stratum in A, we define compact open subgroups Hm(β,A), m � 1, and
Jn(β,A), n � 0, of G as in [BK93, ch. 3]. Let ψF be a character of F , trivial on pF but non-trivial
on oF . As in [BK93], C(A, β, ψF ) is the set of simple characters of H1(β,A) attached to [A, l, 0, β]
and ψF .

Background

For convenience, we recall some of the basic ideas of [BH05a]. First, consider a pair (E/F, ξ)
consisting of a finite, tamely ramified field extension E/F and a quasicharacter ξ of E×. Let K range
over the fields such that F ⊂ K ⊂ E. We say that (E/F, ξ) is admissible if ξ does not factor through
the norm NE/K when K �= E, while if ξ | U1

E factors through NE/K , then E/K is unramified. We
write Pn(F ) for the set of F -isomorphism classes of admissible pairs (E/F, ξ) such that [E:F ] = n.

We recall briefly the definition [BH05a, §§ 2.3 and 4.1] of the representation Fπξ ∈ Aet
n (F ) when

(E/F, ξ) ∈ Pn(F ) and E/F is totally ramified. We view E as embedded in A = Mn(F ); there is then
a unique hereditary oF -order A in A such that E× ⊂ KA. There is a simple stratum [A, l, 0, β] in A,
such that E = F [β], and a simple character θ ∈ C(A, β, ψF ), such that θ | U1

E = ξ | U1
E . We write

H1 = H1(β,A), J1 = J1(β,A), J0 = J(β,A) = µFJ
1 and J = E×J1. Let η denote the unique

irreducible representation of J1 such that η | H1 is a multiple of θ.
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Consider the finite p-group J = J1/Ker θ. The group E× acts on this group by conjugation,
and the subgroup F×U1

E acts trivially. Write Γ = E×/F×U1
E , so that Γ is cyclic of order n. There

is then a unique irreducible representation η̃ of the semi-direct product Γ � J such that η̃ | J ∼= η
and det η̃ | Γ = 1. There is a constant εF = ±1 such that tr η̃(γ) = εF , for every generator γ of Γ.
Finally, there is a unique irreducible representation Λ of J such that

Λ | J1 ∼= η and tr Λ(x) = εF ξ(x),

for every x ∈ E× such that υE(x) is prime to n. We then have

Fπξ = c-IndG
J Λ,

where G = GLn(F ).

1. Invariants of admissible pairs

We take an admissible pair (E/F, ξ) ∈ Pn(F ) in which E/F is totally ramified : in particular, p � n.
In order to state our main results, we have to define certain invariants of the pair (E/F, ξ). These
will only depend on the restriction ξ | U1

E.
We also recall the definition and elementary properties of the Langlands constant λE/F attached

to the extension E/F , since it allows us to express our results more neatly.
Throughout, we work relative to a fixed character ψF of F which is of level one: thus ψF is trivial

on pF but not on oF . If K/F is a finite, tamely ramified field extension, we set ψK = ψF ◦ TrK/F .
Thus ψK is a character of K of level one.

1.1 Let l be the greatest integer such that ξ | U l
E is non-trivial. For each integer i � 0, there is

a unique subfield Ei/F such that ξ | U i+1
F factors through NE/Ei

, and which is minimal for this
property [BH05a, (A.1)]. Thus E0 = E while Ei = F for i � l + 1.

We put di = [Ei:F ]. We say that i � 1 is a jump of (E/F, ξ) if di �= di−1. We denote by S(ξ) the
set of jumps of ξ.

Let α ∈ E, and suppose that υE(α) = −i < 0. Let j be an integer, j < i+ 1 � 2j. We define a
character ψE,α of U j

E by

ψE,α : 1 + x �−→ ψE(αx), x ∈ p
j
E .

Let i, 1 � i � l, be a jump of ξ, and consider ξ | U1
E . We may write

ξ | U1
E = φi ⊗ χi ◦ NE/Ei

,

for a character χi of U1
Ei

and a non-trivial character φi which is trivial on U i+1
E . Since φi | U i

E factors
through NE/Ei−1

, we may write

φi | U i
E = ψE,αi ,

for some αi ∈ Ei−1 with υE(αi) = −i. The coset αi + p1−i
Ei

= αiU
1
Ei

is uniquely determined by φi

and, by definition, we have Ei−1 = Ei[α′], for any α′ ∈ αiU
1
Ei−1

.

Proposition 1.1.

(1) We have di−1/di = n/gcd(idi, n).
(2) The coset αi + p1−i

E does not depend on the choice of character χi.

Proof. The coset αiU
1
Ei−1

has the property that Ei−1 = Ei[α′], for any α′ ∈ αiU
1
Ei−1

. Since Ei−1/Ei

is totally tamely ramified, this is equivalent to υEi−1(αi) being relatively prime to di−1/di =
e(Ei−1|Ei). This gives part (1), and part (2) follows since the coset αiU

1
E contains no element

of Ei.
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Note, however, that αiU
1
E does depend on the choice of ψF .

1.2 We suppose now that n = [E:F ] is even (so, in particular, p �= 2). Let i be the least jump
of ξ such that n/di = [E:Ei] is even. Thus the integer [E:Ei−1] = n/di−1 is odd; according to
Proposition 1.1, part (1), n/di−1 = (i, n/di), whence i is odd. Every jump j > i is divisible by n/di

and so is even. We conclude that i is the largest odd jump of ξ. It will be useful to have some
standard notation

Notation. Suppose that n = [E:F ] is even. Define:

(1) i+ = the largest odd jump of ξ;

(2) d+ = di+ = [Ei+ :F ];

(3) i+ = the least jump j of ξ such that dj is odd

Summarizing the definitions and the preceding remarks, we have the following lemma.

Lemma 1.2.

(1) We have 1 � i+ � i+ � l; moreover, i+ = i+ if and only if i+ is odd.

(2) Let K2/F be the largest sub-extension of E/F such that [K2:F ] is a power of 2. Then

(a) i+ is the largest jump i of ξ such that K2 ⊂ Ei−1;
(b) i+ is the least jump j of ξ such that K2 ∩ Ej = F .

1.3 We consider the element α = α(ξ) = αi+ , in the notation of § 1.1. We recall that only the coset
α(ξ)U1

E is well defined.

Let � be a prime element of E. Since υE(α) = −i+, there is a unique root of unity ζ(�, ξ) ∈ µF

such that

ζ(�, ξ) ≡ �i
+
α(ξ) (modU1

E).

Remark 1.3. Suppose we have a subfield F0 of F such that the extension F/F0 is ramified quadratic,
and such that the pair (E/F0, ξ) is admissible. Replacing F by F0 then does not affect the jump i+

or the root of unity ζ(�, ξ), but it may change i+ and d+.

1.4 We write q = |kF |, and use the Legendre symbol

x �−→
(
x

q

)
, x ∈ k×

F ,

to denote the quadratic character of k×
F . We regard this equally as a character of µF .

If ψ is a non-trivial character of kF , we may form the classical Gauss sum

g(ψ) =
∑

x∈k×F

(
x

q

)
ψ(x). (1.4.1)

This is a complex number of absolute value q1/2. It is useful to have a notation for the normalized
version:

w(ψ) = q−1/2g(ψ). (1.4.2)

Our character ψF defines, by reduction, a non-trivial character ψ0
F of kF ; we write w(ψF ) = w(ψ0

F ).
Thus w(ψF ) is a fourth root of unity in C.

983

https://doi.org/10.1112/S0010437X05001363 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001363


C. J. Bushnell and G. Henniart

1.5 Suppose, for the moment, that σ is a finite-dimensional, Φ-semisimple, smooth representation
of the Weil–Deligne group of F . We form the Langlands–Deligne local constant ε(σ, s, ψF ) of σ,
relative to a complex variable s and the character ψF .

Let K/F be a finite, separable field extension and set ψK = ψF ◦ TrK/F . Let

RK/F = IndK/F 1K , δK/F = detRK/F ,

where 1K denotes the trivial representation of WK . We view δK/F as a character of F×. We define

λK/F = λK/F (ψF ) =
ε(RK/F ,

1
2 , ψF )

ε(1K ,
1
2 , ψK)

. (1.5.1)

If F ⊂ K ⊂ E, we have the relation

λE/F = λE/Kλ
[E:K]
K/F , (1.5.2)

where λE/K = λE/K(ψK).

For tamely ramified extensions K/F , we have the following table of values (see, for example,
[BF83, § 10] or [Tat79, § 3.2]).

Lemma 1.5. Let E/F be tamely ramified of degree n.

(1) If E/F is unramified, then λE/F = (−1)n−1.

(2) Suppose that n is odd and that E/F is totally ramified. The character δE/F is then unramified
and

δE/F (�) =
( q
n

)
= λE/F ,

for every prime element � of F .

(3) Suppose that n = 2 and that E/F is totally ramified; then

λE/F = w(ψF ).

2. Main theorems

Let (E/F, ξ) ∈ Pn(F ). Following the procedures of [BH05a, § 2] (see also the ‘Background’ section
above), we get the irreducible supercuspidal representation Fπξ ∈ Aet

n (F ). On the other hand,
we can form the irreducible representation Fσξ = IndE/F ξ of WF , and then the representation
L(Fσξ) ∈ Aet

n (F ), where L is the Langlands correspondence.

2.1 We know from [BH05a] (see Theorem A in the ‘Introduction’ above) that L(Fσξ) is of the form
Fπµξ , for a character µ = Fµξ of E× such that (E/F, µξ) ∈ Pn(F ) and

µ | U1
E = 1, µ | F× = δE/F . (2.1.1)

Our main result identifies the character Fµξ when E/F is totally ramified. We use the notation
introduced in § 1.

Theorem 2.1. Let (E/F, ξ) ∈ Pn(F ), and suppose that E/F is totally ramified.

(1) Suppose that n is odd; then

Fµξ(�) =
( q
n

)
= λE/F ,

for every prime element � of E.
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(2) Suppose that n is even; then

Fµξ(�) =
(
ζ(�, ξ)
q

)(
−1
q

)(i+−1)/2 (
d+

q

)
λE/F ,

for every prime element � of E.

We first observe that Fµξ is determined uniquely by (2.1.1) plus the identity of the theorem.
Indeed, given (2.1.1), the character Fµξ is determined completely by the identities of the theorem
at a single prime element �.

Part (1) of the theorem follows from Lemma 1.5, part (2) and [BH05a, § 4.4]. We therefore
concentrate on the case where n is even.

Remark 2.1.1. The bijection Get
n (F ) → Aet

n (F ), induced by (E/F, ξ) �→ IndE/F ξ and (E/F, ξ) �→
Fπξ, (E/F, ξ) ∈ Pn(F ), is algebraic, in the sense that it respects the natural (external) action of
Aut C on representations, while the Langlands correspondence is not [BH05a, Remarks 3.1 and 3.3].
It is in the presence of the irrationality λE/F in Theorem 2.1, part (2) that this phenomenon first
manifests itself.

Remark 2.1.2. Elaborating our notation to indicate the dependence on ξ, the parameters ζ(�, ξ),
d+(ξ) and i+(ξ) appearing in the expression for µ are essentially independent and random, in the
following sense. We fix the extension E/F , totally tamely ramified of even degree n, and a prime
element � of E. We choose a root of unity ζ ∈ µF , a positive divisor d+ of n/2, and an odd
positive integer i+. There is then a pair (E/F, ξ) ∈ Pn(F ) such that ζ(�, ξ) = ζ, d+(ξ) = d+ and
i+(ξ) = i+.

Remark 2.1.3. The character Fµξ is necessarily independent of the choice of ψF . In the expression
for Fµξ in the even-degree case, however, the first and last factors do vary with ψF .

2.2 Example
We choose odd prime numbers p �= l; we put F = Qp and we let E/F be totally ramified of degree
2l. We next choose integers k and m with 0 < k < m; the integer k is to be odd, while m is to be
even but not divisible by l. There is then an admissible pair (E/F, ξ) ∈ P2l(F ) for which k and m
are the jumps of ξ. The field K = Ek is of degree l over F ; the pair (E/K, ξ) is admissible and k is
its only jump. We consider the character Fµξ. According to Theorem 2.1, we have

Fµξ(�) =
(
ζ(�)
p

)(
−1
p

)(k−1)/2 (
l

p

)
λE/F ,

for every prime element � of E.
The recipe in [Rei91] gives a conjectured value for Fµξ equal to what we would call Kµξ.

This character satisfies

Kµξ(�) =
(
ζ(�)
p

)(
−1
p

)(k−1)/2

λE/K .

We have λE/K = λE/F from (1.5.2), so

Kµξ(�) =
(
l

p

)
Fµξ(�).

We can surely choose l and p to achieve Kµξ �= Fµξ.
This example is, to a degree, typical: the approach of [Rei91] (incorporating [Moy86] and anal-

ogous work on representations of division algebras [BF83]) does not take sufficient account of the
effect of the larger jumps. This is intrinsic to the method.

985

https://doi.org/10.1112/S0010437X05001363 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001363


C. J. Bushnell and G. Henniart

To give a brief summary, the approach of [Rei91] is based on a conjecture (or ‘working hypo-
thesis’) equivalent to Theorem A. For (E/F, ξ) ∈ Pn(F ), the construction of π = Fπξ in [Rei91] is
equivalent to the one we have given in [BH05a]. The next step involves comparing the Godement–
Jacquet local constants of ξ and π. This gives partial information on Fµξ. When the pair (E/F, ξ)
is minimal, in the sense that it has only one jump, this process determines Fµξ completely and
correctly. In particular, the tables of [Rei91] give Fµξ correctly when n is prime.

In the general situation, one can interpret the arguments of § 1 above as showing that an
admissible pair (E/F, ξ) is ‘glued’ from a collection of minimal pairs (Ei−1/Ei, ξi). The characters
µi = Eiπξi

are known. The value for Fµξ, as conjectured in [Rei91], is then obtained by glueing
the µi in a process analogous to that for the pairs. The local constant comparisons provide only an
approximate guide: [Rei91] chooses the simplest solution to all ambiguities.

For totally ramified pairs, the discrepancy between Fµξ and the version conjectured in [Rei91] is
just as in the example above: it is unramified of order at most 2. As we shall see in the next paper
of the series, the discrepancy can be ramified for more general admissible pairs.

2.3 Before starting the proof of Theorem 2.1, we derive a consequence of it. If F ′/F is a finite cyclic
extension, we denote by bF ′/F the operation of base change, on irreducible smooth representations
of groups GLn(F ), in the sense of [AC89] and [HL05].

We describe how the correspondence (E/F, ξ) �→ Fπξ behaves under unramified base change, in
the case where E/F is totally ramified.

Corollary 2.3. Let (E/F, ξ) ∈ Pn(F ), and suppose that E/F is totally ramified. Let L/F be
unramified of degree d and write ξL = ξ ◦ NLE/E. Let ν denote the unramified character of LE×

such that

ν(�) = (−1)(n−1)(d−1),

for every prime element � of LE. The pair (LE/L, νξL) is then admissible and

bL/F (Fπξ) = LπνξL
.

Proof. Write σ = IndE/F ξ ∈ Get
n (F ); then IndEL/L ξL = σL = σ | WL ∈ Get

n (L). If we put
π = L(σ) and πL = L(σL), where L denotes the Langlands correspondence, we have πL = bL/Fπ.
Abbreviating µ = Fµξ and µL = LµξL

, we therefore have to show that

µL = ν ⊗ µ ◦ NEL/E. (2.3.1)

We have δEL/L = δE/F ◦ NL/F so the relation (2.3.1) certainly holds in the case where n is odd. In
general, it is valid on L×U1

EL. We may therefore assume n is even, and we need only verify (2.3.1)
at a single prime element � of EL. Indeed, we may take � to be a prime element of E.

We have to consider the invariants of the pair (EL/L, ξL). One sees straight away that, in the
notation of § 1, we have (EL)i = EiL for all integers i � 0. Thus the pairs (E/F, ξ) and (EL/L, ξL)
have the same invariants i+ and d+, while

ζ(�, ξ) = ζ(�, ξL),

when � is a prime element of E. Therefore, by Theorem 2.1,

µL(�) =
(
ζ(�)
qd

)(
−1
qd

)(i+−1)/2 (
d+

qd

)
λEL/L.

On the other hand, NEL/E(�) = �d, so

µ(NEL/E(�)) =
(
ζ(�)
qd

)(
−1
qd

)(i+−1)/2 (
d+

qd

)
λd

E/F .
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We use (1.5.2) and Lemma 1.5 to get

λEL/L = λEL/Lλ
n
L/F = λEL/F = λEL/Eλ

d
E/F = (−1)d−1λd

E/F ,

whence the result follows

It is interesting to note how the simplicity of this result fails to hint at the complexity of
Theorem 2.1.

3. Quadratic automorphic induction

In this section, we take (E/F, ξ) ∈ Pn(F ), with E/F totally ramified and n = 2m even. We let
K/F be the unique quadratic sub-extension of E/F . Thus (E/K, ξ) ∈ Pm(K), and we may form
the representation ρ = Kπξ ∈ Aet

m(K). We state results comparing Fπξ with the representation
AK/F ρ ∈ Aet

n (F ) which is automorphically induced by ρ. We then deduce Theorem 2.1.

3.1 Here, we treat the case where n = 2m, with m odd.

Theorem 3.1. Suppose that n = 2m, with m odd. Let K/F be the quadratic subfield of E/F . Set
ρ = Kπξ and let π = AK/F ρ. There is then a tamely ramified character µ = K/Fµξ

of E×, such

that π = Fπµξ. The character K/Fµξ
satisfies

K/Fµξ
| F× = δm

K/F , (3.1.1)

and, for every prime element � of E:

K/Fµξ
(�) =

(
−1
q

)(i+−1)/2+(d+−1)/2 (
d+

q

)(
ζ(�)
q

)
w(ψF )m/d+

. (3.1.2)

These conditions determine it uniquely.

The existence of the character µ = K/Fµξ
, satisfying (3.1.1), is given by [BH05a, § 3.4]. Since µ |

F×U1
E is already prescribed, the condition (3.1.2) determines µ completely. Indeed, µ is determined

uniquely once (3.1.2) holds for one prime element �.
In the present case, the character δK/F is ramified and of order 2. Thus µ | UF has order 2, and

the unramified character µ2 satisfies µ2(�) =
(−1

q

)
, for any prime element � of E.

3.2 We now consider the case where n = 2m, with m even.

Theorem 3.2. Suppose that n = 2m, with m even. Let K/F be the quadratic subfield of E/F ,
write ρ = Kπξ and π = AK/F ρ. There is then a tamely ramified character µ = K/Fµξ

of E× such

that π = Fπµξ. The character µ satisfies µ | F× = δm
K/F = 1 and

K/Fµξ
(�) =



(
−1
q

)n/4 (
2
q

)
if i+ is even,

(
−1
q

)n/4

if i+ is odd,

(3.2.1)

for every prime element � of E.

In this case, we note that µ is unramified and µ2 = 1. Again, µ is uniquely determined by (3.2.1).
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3.3 We can now give the critical inductive step.

Corollary 3.3. Let n be even, let (E/F, ξ) ∈ Pn(F ), and suppose that E/F is totally ramified.
Let K/F be the unique quadratic sub-extension of E/F . We then have

Fµξ = K/Fµξ
· Kµξ.

Proof. We put σK = IndE/K ξ and σ = IndE/F ξ = IndK/F σK . We then have

KL(σK) = Kπξ′ , FL(σ) = Fπξ′′ ,

where ξ′ = Kµξ · ξ and ξ′′ = Fµξ · ξ. However,

FL(σ) = AK/F (KL(σK)) = Fπµ′ξ′ ,

where µ′ = K/Fµξ′ (cf. [BH05a, § 3.2, Proposition 6]). Theorems 3.1 and 3.2 show that the character

K/Fµξ′ depends only on ξ′ | U1
E , so µ′ = K/Fµξ

. We deduce that the admissible pairs (E/F, Fµξ)
and (E/F,K/Fµξ

· Kµξ · ξ) are isomorphic, that is, the characters Fµξ and K/Fµξ
· Kµξ · ξ are

F -conjugate. This conjugation fixes ξ | U1
E and, since (E/F, ξ) is admissible, it must be trivial. The

result follows.

3.4 The proofs of Theorems 3.1 and 3.2 occupy the remainder of the paper, starting in the next
section. Here, we use them to prove Theorem 2.1, part (2).

We first treat the case where m = n/2 is odd. Let K/F be the quadratic sub-extension of E/F .
By Corollary 3.3, we have Fµξ = K/Fµξ

· Kµξ. If � is a prime element of E, then

Kµξ(�) =
( q

m

)
.

On the other hand,

K/Fµξ
(�) =

(
ζ(�)
q

)(
−1
q

)(i+−1)/2+(d+−1)/2 (
d+

q

)
w(ψF )m/d+

.

We use the reciprocity relation (
d+

q

)
=

(
−1
q

)(d+−1)/2 ( q

d+

)
to get

Fµξ(�) =
(

q

m/d+

)(
−1
q

)(i+−1)/2 (
ζ(�)
q

)
w(ψF )m/d+

.

We temporarily write L = Ei+ and use the relation λE/F = λE/LKλ
m/d+

LK/Lλ
n/d+

L/F . The first factor is

λE/LK =
(

q

m/d+

)
,

while λLK/L = w(ψL). As character of kL = kF , we have ψL = ψF ◦ d+, so

w(ψF ) =
(

d+

q

)
λLK/L.

Finally, λL/F = ±1 and n/d+ is even so, altogether, we get

Fµξ(�) =
(
−1
q

)(i+−1)/2 (
d+

q

)(
ζ(�)
q

)
λE/F ,

as required.
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We now proceed inductively. We assume n ≡ 0 (mod 4) and let K/F be the quadratic sub-
extension of E/F . The extensions E/K and E/F have the same invariants i+ and ζ(�), while (in
the obvious notation) d+(E/F ) could be d+(E/K) or 2d+(E/K). Inductively,

Kµξ(�) =
(
−1
q

)(i+−1)/2 (
d+(E/K)

q

)(
ζ(�)
q

)
λE/K .

If d+(E/F ) = d+(E/K), the invariant i+ of E/F is odd and we are in the second case of § 3.2.
We have

λ
n/2
K/F =

(
−1
q

)n/4

,

and the result follows. We work similarly in the other case, where d+(E/F ) = 2d+(E/K) and i+

is even.

3.5 As the first step towards the proofs of Theorems 3.1 and 3.2, we interpret the constructions of
§ 1 in terms of simple strata and characters.

Let [A, l, 0, β] be a simple stratum in A = Mn(F ). For an integer i, 0 � i � l− 1, we may choose
a simple stratum [A, l, i, γ] equivalent to [A, l, i, β] (see [BK93, § 2.4.2]). The integer di = di(β,A) =
[F [γ]:F ] is then independent of choices. We set di = 1, for i � l. We thus have 1 � di � [F [β]:F ],
and di divides di−1, i � 1 (again see [BK93, § 2.4.2]).

We say that i is a jump of β (relative to A) if di �= di−1. We denote by S(β,A) this set of jumps.

3.6 Let (E/F, ξ) ∈ Pn(F ) and assume, for simplicity, that E/F is totally ramified. As in [BH05a,
§ 1], there is a simple stratum [A, l, 0, β] in A and a simple character θ ∈ C(A, β, ψF ) with the
following properties. First, the field F [β] is F -isomorphic to E. Identifying E with F [β] (and
so embedding E in A), we have H1(β,A) ∩ E× = U1

E , and θ | U1
E = ξ. The conjugacy class

in G = GLn(F ) of the simple character θ with these properties is uniquely determined by the
F -isomorphism class of (E/F, ξ) (see [BH05a, § 1]).

Proposition 3.6. Let (E/F, ξ) ∈ Pn(F ) and suppose that E/F is totally ramified. Let θ ∈
C(A, β, ψF ) be associated to (E/F, ξ) as above.

(1) We have S(ξ) = S(β,A), for all choices of [A, l, 0, β].
(2) One may choose [A, l, 0, β] with the following additional properties (after identifying F [β] with

E):

(a) for each i ∈ S(ξ), there is a simple stratum [A, l, i, γi] in A, equivalent to [A, l, i, β], such
that F [γi] = Ei;

(b) for each i ∈ S(ξ), we have β − γi ≡ αi (mod p1−i
E ), where αi is defined in § 1.1.

Proof. We first remark that if we have simple strata [A, li, 0, βi] in A, and characters θi ∈ C(A, βi, ψF )
which intertwine in G, for i = 1, 2, then S(β1,A) = S(β2,A), as follows from [BK93, (3.5.1) and
(3.5.11)].

We view E as embedded in A, and we let A be the unique hereditary oF -order in A which is
stable under conjugation by E×.

We proceed by induction on |S(ξ)|. Suppose first that |S(ξ)| = 1. Replacing ξ by ξ ⊗ χ ◦ NE/F ,
for a suitable character χ of F×, we can assume that S(ξ) = {l}. We then have gcd(l, n) = 1. We
choose an element β ∈ E such that ξ | U [l/2]+1

E = ψE,β. Since l is the only jump of ξ, we have
E = F [β], for any choice of β here. Since l = −υE(β) is relatively prime to n = e(E|F ), the stratum
[A, l, l− 1, β] is simple, whence so is [A, l, 0, β]. There exists θ ∈ C(A, β, ψF ) extending ξ | U1

E . Since
[A, l, l − 1, β] is simple, we have S(β) = {l}, as required.
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We now assume that |S(ξ)| � 2, and we let i be the least element of S(ξ). Write K = Ei; we
factorize ξ as in § 1:

ξ | U1
E = φ⊗ χ ◦ NE/K ,

φ | U [i/2]+1
E = ψE,α,

for a quasicharacter χ of K× and an element α ∈ E of valuation −i. For any such choices, we have
E = K[α] and −i = υE(α) is relatively prime to e = e(E|K) = [E:K].

The pair (K/F,χ) is admissible and S(ξ) = {i} ∪ {ej : j ∈ S(χ)}. The pair (K/F,χ) gives a
simple stratum [A0, l/e, 0, γ] in A0 = Mn/e(K) and a simple character τ0 ∈ C(A0, γ, ψF ) such that
F [γ] = K and τ0 | U1

K = χ. Inductively, S(γ,A0) = S(χ) and property (2)(b) holds for χ.
The element γ ∈ E gives a simple stratum [A, l, 0, γ] in A and there is a simple character

τ ∈ C(A, γ, ψF ) which is endo-equivalent to τ0. If B denotes the A-centralizer of K and B = B ∩A,
then τ | U1

B = χ ◦ detB .
The stratum [B, i, i−1, α] in B is simple andK[α] = E. There is a tame corestriction sγ : A→ B,

relative to K/F , which is the identity map on B (see [BK93, (1.3.8)]). Set β = γ + α. We deduce
from [BK93, (2.2.3)] that [A, l, 0, β] is simple with E = F [β], and that

S(β,A) = {i} ∪ S(γ,A) = {i} ∪ {ej : j ∈ S(γ,A0)}
= {i} ∪ {ej : j ∈ S(χ)} = S(ξ).

We have H1(β,A) = U1
EH

[i/2]+1(γ,A); the character

θ : xh �−→ φ(x)τ(h), x ∈ U1
E , h ∈ H [i/2]+1(γ,A),

lies in C(A, β, ψF ) and θ | U1
E = ξ, as required.

4. Representations in finite classical groups

The proofs of Theorems 3.1 and 3.2 rest on calculations requiring a number of elementary properties
of the representations, linear, orthogonal and symplectic, of a finite cyclic group over a finite field. We
collect in this section the results and notation we shall need. The proofs are either straightforward
exercises or parallel to arguments in [BF83]. We have therefore omitted them.

Throughout, Γ denotes a cyclic group of order n and k a finite field of q elements and charac-
teristic p. We always assume that p � n and, for much of the time, that p �= 2.

4.1 Let k/k be an algebraic closure of k, and write Ω = Gal(k/k). Let Γ̂ = Hom(Γ,k×). Thus Ω
acts on Γ̂: we denote this action by ω : χ �→ ωχ, ω ∈ Ω, χ ∈ Γ̂.

To χ ∈ Γ̂ we attach a kΓ-module Vχ as follows: the underlying vector space Vχ is the field
extension k[χ]/k generated by the values of χ, and Γ acts via the character χ : Γ → k[χ]×.

Lemma 4.1. The kΓ-module Vχ is simple, and its isomorphism class depends only on the Ω-orbit

of χ. The process χ �→ Vχ induces a bijection between the set of Ω-orbits in Γ̂ and the set of
isomorphism classes of simple kΓ-modules.

In particular, we have

kΓ =
⊕

χ∈Ω\Γ̂
Vχ.

It will be useful to have some standard Γ-submodules of kΓ. First, let a be a positive divisor of n;
thus Γa is the subgroup of Γ of order n/a, and we identify the group ring k[Γ/Γa] with the set
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of Γa-fixed points in kΓ. There is a unique Γ-submodule Ik(Γ; a, n) of kΓ such that

kΓ = k[Γ/Γa] ⊕ Ik(Γ; a, n).

Explicitly,

k[Γ/Γa] =
⊕

χ∈Ω\Γ̂,
χa=1

Vχ, Ik(Γ; a, n) =
⊕

χ∈Ω\Γ̂,
χa �=1

Vχ.

More generally, if a | b | n, we define Ik(Γ; a, b) by

k[Γ/Γb] = k[Γ/Γa] ⊕ Ik(Γ; a, b).

4.2 We shall use these notions in the following context. We have a simple stratum [A, l, 0, β] in
Mn(F ) with E = F [β]/F totally tamely ramified of degree n (so, in particular, p � n). The order A

is then principal; we put P = radA. The quotient ring A/P is isomorphic to kF × · · · × kF = kn
F as

kF -algebra.
The group Γ = E×/F×U1

E is cyclic of order n; it acts, by conjugation, on A/P by permuting
simple components. Thus we have an isomorphism A/P ∼= kF Γ of Γ-modules, taking indecomposable
idempotents of A/P to elements of Γ. This isomorphism is determined up to translation by an
element of Γ, and is adequately unique for our purposes.

It follows that, for a dividing n, A/P has a unique Γ-submodule IA(a, n) isomorphic to
IkF (Γ; a, n). If K/F is the sub-extension of E/F such that [E:K] = a and if AK is the A-centralizer
of K, then AK/PK is the set of K×-fixed points in A/P. We have

A/P = AK/PK ⊕ IA(a, n).

More generally, we may set IA(a, b) ∼= IkF (Γ; a, b).

4.3 We return to the general notation of § 4.1. Let U be some finite kΓ-module; the linear dual
U∗ = Homk(U,k) is then a kΓ-module in the natural way, and (Vχ)∗ = Vχ−1 . We use this to divide
the simple kΓ-modules into three classes.

Definition 4.3. Let U = Vχ be a simple kΓ-module, for some χ ∈ Γ̂. We say that:

(1) U is non-self-dual (nsd) if U �∼= U∗ or, equivalently, if Ωχ−1 �= Ωχ;
(2) U is trivially self-dual (tsd) if χ = χ−1 or, equivalently, χ2 = 1;
(3) U is non-trivially self-dual (ntsd) if U ∼= U∗ but χ2 �= 1.

In case (3), we have χ �= χ−1 but Ωχ−1 = Ωχ. This case arises as follows. First, the degree
[k[χ]:k] = 2d is even. Let k1/k have degree d, and let T denote the kernel of the norm map Nk[χ]/k1.
We then have χ(Γ) ⊂ T .

4.4 Until further notice, we assume p �= 2. Let (V, h) be an orthogonal representation of Γ over
k. Thus V is a finite kΓ-module and h : V × V → k is a non-degenerate, symmetric bilinear form
satisfying

h(γv1, γv2) = h(v1, v2), vi ∈ V, γ ∈ Γ. (4.4.1)
Any such representation can be written as an orthogonal sum

(V, h) = (V1, h1) ⊥ (V2, h2) ⊥ · · · ⊥ (Vr, hr),

in which the factors (Vj , hj) are indecomposable orthogonal representations of Γ. Such a decompo-
sition is unique up to Γ-isometry and permutation of the factors. It is a simple matter to classify
the indecomposable orthogonal representations, as follows.
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Lemma 4.4. Let (V, h) be an indecomposable orthogonal representation of Γ over k. Exactly one of
the following holds:

(1) V is a simple kΓ-module of tsd type;

(2) (V, h) is isometric to (U ⊕ U∗, hU ), where U is a simple kΓ-module of nsd type and

hU ((u1, u
∗
1), (u2, u

∗
2)) = 〈u1, u

∗
2〉 + 〈u2, u

∗
1〉, ui ∈ U, u∗i ∈ U∗,

where 〈 , 〉 is the canonical pairing U × U∗ → k;

(3) V = Vχ is ntsd and the form h is given, up to Γ-isometry, by

h : (x, y) �−→ Trk[χ]/k(xȳ),

where x �→ x̄ is the non-trivial automorphism of k[χ]/k of order 2.

If V is a finite k-vector space and h : V × V → k is a non-degenerate symmetric bilinear form,
the isometry class of h is determined by the quantity deth modulo k×2. When (V, h) is also an
orthogonal representation of Γ, one can compute the discriminant deth (mod k×2), as follows.

Proposition 4.4. Using the notation of Lemma 4.4, we have

(
deth
q

)
=



(
−1
q

)dimV/2

in case (2),

−
(
−1
q

)dimV/2

in case (3).

In case (1) of the lemma, deth is arbitrary.

In cases (2) and (3), therefore, the orthogonal kΓ-module (V, h) is uniquely determined by the
underlying kΓ-module V .

4.5 We take a finite k-vector space V and a quadratic form Q : V → k. Let ψ be some non-trivial
character of k, and consider the Gauss sum

g(Q,ψ) =
∑
v∈V

ψ(Q(v)).

In particular, if V = k and Q(x) = x2, we get

g(Q,ψ) =
∑
x∈k

ψ(x2) =
∑
y∈k×

(
y

q

)
ψ(y).

In this case, we write
g(Q,ψ) = g(ψ).

In general, we may write Q(v) = h(v, v), where h is the symmetric bilinear form

h(v1, v2) = 1
2(Q(v1 + v2) −Q(v1) −Q(v2)).

Thus Q is non-degenerate if and only if deth �= 0; in this case, we put detQ = deth (and think of
this as an element of k×/k×2). In general, we may write Q as an orthogonal sum Q = Q0 ⊥ Qnd,
where Q0 is null and Qnd is non-degenerate. We obtain the following proposition.

Proposition 4.5. Let |k| = q. We have

g(Q,ψ) =
(

detQnd

q

)
g(ψ)dim QndqdimQ0 .
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Remark 4.5. Let (V, h) be an orthogonal representation of kΓ; the quadratic form Q : v �→ h(v, v) is
then (by definition) non-degenerate and Γ-invariant. Let V2 denote the subspace of V fixed by Γ2.
We have an orthogonal decomposition V = V2 ⊥ V ′

2 ; the discriminant deth, and hence the Gauss
sum g(Q,ψ), is determined by the kΓ-module V and the restriction of h to V2 (cf. § 4.4).

4.6 The group ring kΓ carries the standard Γ-invariant quadratic form QΓ for which the group
elements γ ∈ Γ form an orthonormal basis. Thus QΓ is non-degenerate and detQΓ = 1.

Let εΓ : kΓ → k be the augmentation map, and let x �→ x̄ be the k-linear involution on kΓ such
that γ̄ = γ−1, γ ∈ Γ. We then have QΓ(x) = εΓ(xx̄), x ∈ kΓ.

In the context of § 4.2, there are parallel structures on the ring A/P. The algebra trace trA on
A = Mn(F ) reduces to the algebra trace A/P → kF . Under the isomorphism A/P ∼= kF Γ of § 4.2,
the quadratic form QΓ then corresponds to the form x �→ trA(x2) on A/P.

Let a be a positive divisor of n. Consider the restriction of QΓ to k[Γ/Γa] ⊂ kΓ:

QΓ | k[Γ/Γa] = a−1nQΓ/Γa , det(QΓ | k[Γ/Γa]) = (a−1n)a. (4.6.1)

Therefore
det(QΓ | Ik(Γ; a, n)) = (a−1n)a. (4.6.2)

4.7 We may now allow the possibility p = 2, but the base field k is replaced by the field Fp of p
elements.

Let (V, h) be a symplectic representation of Γ over Fp; thus V is a finite FpΓ-module and
h : V × V → Fp is a non-degenerate, alternating, Γ-invariant bilinear form. Again, any symplectic
representation of Γ can be written as an orthogonal sum of indecomposable symplectic representa-
tions.

If U is a finite FpΓ-module, we can define the hyperbolic space H(U) = (V, h), where V = U⊕U∗

and
h((u1, u

∗
1), (u2, u

∗
2)) = 〈u1, u

∗
2〉 − 〈u2, u

∗
1〉, ui ∈ U, u∗i ∈ U∗.

With this notation, we have the following lemma.

Lemma 4.7. Let (V, h) be an indecomposable symplectic representation of Γ over Fp. Exactly one
of the following holds:

(1) (V, h) = H(U), where U is tsd or nsd;
(2) V ∼= Vχ is ntsd and, up to Γ-isometry, h is given by

h : (x, y) �−→ TrFp[χ]/Fp
(xαȳ),

where x �→ x̄ is the automorphism of Fp[χ]/Fp of order 2 and α ∈ Fp[χ]× satisfies ᾱ = −α.

In all cases, the Γ-isometry class of (V, h) is determined by the isomorphism class of the underlying
FpΓ-module V .

In case (2), we recall, the character χ takes values in the group T of elements of the form x̄/x,
x ∈ Fp[χ]×.

Following [BF83], we define an invariant tΓ(V, h) of a symplectic representation (V, h) of Γ
over Fp. Since the isometry class of (V, h) is determined by the isomorphism class of V , we usually
write tΓ(V, h) = tΓ(V ).

This invariant satisfies

tΓ((V1, h1) ⊥ (V2, h2)) = tΓ(V1, h1) ⊥ tΓ(V2, h2),

so we need only define tΓ for indecomposable symplectic representations.
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Definition 4.7. Let (V, h) be an indecomposable symplectic FpΓ-module, and let γ be a generator
of Γ. Then we have the following.

(1) If (V, h) ∼= H(Fp), where Γ acts trivially on Fp, then tΓ(V ) = p.
(2) Suppose (V, h) ∼= H(U), for some non-trivial, simple FpΓ-module U . Then tΓ(V ) is the signature

of the permutation of U induced by the action of γ.

(3) Suppose that (V, h) is anisotropic, V ∼= Vχ, say. Take T ⊂ Fp[χ]× as above; then

tΓ(V ) =

{
−1 if χ(Γ) ⊂ T 2,
+1 otherwise.

Using only elementary arguments, one obtains the following properties of the invariant tΓ.

Proposition 4.7. Let (V, h) be a finite symplectic FpΓ-module.

(1) Suppose that Γ has only the trivial fixed point in V and that V ∼= H(U), for some Γ-module
U . Then tΓ(V ) is the signature of the permutation of U induced by the action of γ, for any
generator γ of Γ.

(2) Let ∆ be the 2-Sylow subgroup of Γ, and assume that ∆ has only the trivial fixed point on V .
Then tΓ(V ) = t∆(V ).

4.8 The trace invariant tΓ appears in the following context. Let G be a finite, extra-special p-group
of class 2, with cyclic centre Z, and write V = G/Z. Let θ be a faithful character of Z. The group V
is an elementary abelian p-group, and the commutator pairing hθ : (x, y) �→ θ(xyx−1y−1) induces a
non-degenerate alternating bilinear form on V, with values in the group of pth roots of unity. There
is a unique irreducible representation η of G such that η | Z contains θ.

Let Γ be a cyclic group of automorphisms of G, of order n. We assume that p � n, and that
Γ fixes Z. It follows that Γ fixes the pairing hθ, so (V, hθ) afford a symplectic representation of Γ
over Fp.

Further, Γ fixes η and we may apply the Glauberman correspondence [Gla68]. Let η̃ be the
unique representation of Γ � G such that η̃ | G ∼= η and det η̃ | Γ = 1.

The group GΓ has centre Z and, since p � n, one sees easily that GΓ/Z = VΓ. Moreover, VΓ

is a non-degenerate subspace of V. Thus there is a unique irreducible representation ζ of GΓ such
that ζ | Z contains θ. It follows readily that ζ is the Glauberman correspondent of η, and there is
a constant εΓ = εΓ(G, η) = ±1 such that

tr η̃(γx) = εΓ tr ζ(x),

for all x ∈ GΓ and all generators γ of Γ.
From [BF83, (8.6.1)] or [Wil89], we have the following proposition.

Proposition 4.8. The Glauberman sign εΓ is given by

εΓ = tΓ(V)/|tΓ(V)|.

In the notation of the ‘Background’ section, we will apply Proposition 4.8 to the case G = J =
J1/Ker θ, acted on by Γ = E×/F×U1

E . The proposition then gives εF = tΓ(J ).

5. Character values at special 1-units

In this section, we take an admissible pair (E/F, ξ) ∈ Pn(F ) in which E/F is totally ramified. In
particular, p � n. We form the representation π = Fπξ of G = GLn(F ) and derive an expression
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for the value of the character trπ at elements of the form 1 + �, where � is a prime element of
E. In the next section, we will use this to get an expression for the quantity cδ(�) appearing in
Theorem C of the ‘Introduction’.

Ultimately, therefore, we shall only be interested in the case where n is even and hence p �= 2.
There is no need to impose such a restriction at the beginning.

5.1 Let A = Mn(F ). As in [BH05a] or the summary in the ‘Background’ section above, the pair
(E/F, ξ) gives rise to a simple stratum [A, l, 0, β] in A, such that E = F [β], and a simple character
θ ∈ C(A, β, ψF ) which agrees with ξ on U1

E . We abbreviate H1 = H1(β,A), and similarly for
J1 and J0. Let η denote the unique irreducible representation of J1 which contains θ. We set
J = E×J0 = E×J1. There is a unique irreducible representation Λ of J such that Λ | J1 ∼= η and
π = c-IndG

J Λ.
Let � be a prime element of E. The character value trπ(1 +�) is given by

trπ(1 +�) =
∑

x∈G/J

tr Λ(x−1(1 +�)x) (5.1.1)

(see [BH96, Appendix]). To calculate it, we must first determine the set of x ∈ G for which x−1(1+
�)x ∈ J .

Lemma 5.1. Let x ∈ G and suppose that x−1(1 +�)x ∈ J . Then

(1) x ∈ KA,
(2) x−1�x ∈ KA, and

(3) x−1(1 +�)x ∈ J1.

Proof. The element x−1(1 +�)x of J is pro-unipotent, so it lies in J1. In particular, x−1�x lies in
P = rad A. Since υF (det x−1�x) = 1, this element must generate P as A-module, and so lies in KA.

Since � generates a field and is minimal over F , the fact x−1�x ∈ KA implies that F [x−1�x]× ⊂
KA. Thus conjugation by x can be viewed as providing another F -embedding of E in A taking E×

into KA. At this point, we break off to point out an elementary fact.

Exercise 5.1. Let B be a hereditary oF -order in A and let L/F be a subfield of A with L× ⊂ KB.
An element x ∈ G then satisfies xL×x−1 ⊂ KB if and only if x ∈ KBZG(L×).

Hint. Let Λ be the lattice chain attached to B, so that KB is the group of x ∈ G such that xΛ = Λ.
In particular, Λ′ = xΛ is L×-stable if and only if xL×x−1 ⊂ KB. On the other hand, Λ′ is isomorphic
to Λ as oF -lattice chain, and is L×-stable if and only if Λ′ = yΛ, for some y ∈ ZG(L×).

In the present case, ZG(E×) = E× ⊂ KA, so x ∈ KA, as required. The proof of Lemma 5.1 is
complete.

Since KA = E×UA and J = E×J1, we can rewrite the expansion (5.1.1) as

trπ(1 +�) =
∑

x∈KA/J

tr Λ(x−1(1 +�)x)

=
∑

x∈UA/J1

tr η(x−1(1 +�)x).
(5.1.2)

In particular, the series (5.1.2) has only finitely many terms, so there are no convergence difficulties.
Also, tr η(x−1(1 +�)x) = 0 unless x−1(1 +�)x ∈ H1. We therefore have to determine the set of
x ∈ UA for which x−1(1 +�)x ∈ H1.
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5.2 Let r1 < r2 < · · · < rt be the jumps of ξ (or β). We define fields Ei as in § 1.1, and we let Ai

be the A-centralizer of Ei. We put Ai = Ai ∩ A and Pi = rad Ai. We have

F = Ert ⊂ Ert−1 ⊂ · · · ⊂ Er1 ⊂ E0 = E,

A = Art ⊃ Art−1 ⊃ · · · ⊃ Ar1 ⊃ A0 = oE ,

P = Prt ⊃ Prt−1 ⊃ · · · ⊃ Pr1 ⊃ P0 = pE ,

with all containments strict.
With this notation, Proposition 3.6 implies that the oF -orders H = H(β,A) and J = J(β,A) of

[BK93, ch. 3] are given by

H = oE +
t∑

i=1

P[ri/2]+1
ri

, J = oE +
t∑

i=1

P[(ri+1)/2]
ri

.

(We recall that, for example, H1 = 1 + H ∩ P.) We define a third oF -order M = M(β,A) by

M = oE +
t∑

i=1

P[ri/2]
ri

.

We define groups Mk = 1 + M ∩ Pk, k � 1. In particular, we have

H1 ⊂ J1 ⊂M1 ⊂ U1
A,

and H1 and J1 are normal subgroups of M1.

Remark 5.2. Because of the containment relations between the Eri , these assertions are obvious.
In the general situation of [BK93], where E/F can be wildly ramified, considerably more effort is
required even to deal with the groups H1 and J1.

Since E/F is totally tamely ramified, the subfieldEi of E is determined by the degree di = [Ei:F ].
It follows that the lattices H, J and M are completely determined by the field E and the sequence
of integers {di}.

We will need a larger group. Consider the G-normalizer NG(E×
1 ) and G-centralizer ZG(E×

1 )
of the field E1. By Exercise 5.1, we have NG(E×

1 ) ⊂ KAZG(E×
1 ) = UAZG(E×

1 ). Thus NG(E×
1 ) =

NUA(E×
1 )ZG(E×

1 ).
The quotient NG(E×

1 )/ZG(E×
1 ) is isomorphic to the group Aut(E1|F ) of F -automorphisms of

the field E1. This finite group has order prime to p and U1
A is a pro-p-group, so

NG(E×
1 ) ∩ U1

A = ZG(E×
1 ) ∩ U1

A ⊂ H1,

NUA(E×
1 )/ZUA(E×

1 ) ∼= Aut(E1|F ).

We define

M = NUA(E×
1 )M1. (5.2.1)

Note that, in the case r1 > 1, we have E1 = E.
The group NUA(E×

1 ) normalizes each field Ei, i � 1, since Ei/F is the unique sub-extension
of E1/F of degree di. It follows that the group M normalizes both H1 and J1. Its significance is
indicated by the following proposition.

Proposition 5.2. Let x ∈ UA. Then x−1(1 +�)x ∈ H1 if and only if x ∈M .

The proof occupies the next two sections. Observe, however, that 1+� ∈ H1 and M normalizes
H1, so the sufficiency of the condition is immediate.
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5.3 To prove Proposition 5.2, we need to first recall some machinery from [BK93, ch. 1]. Let
sE : A→ E be the tame corestriction on A, relative to E/F , which is the identity on E (see [BK93,
(1.3.8)]). We let a
 : x �→ �x−x� be the adjoint map. It will also be useful to have the normalized
version a
(x) = �x�−1 − x. We have an exact sequence

· · · a�−−→ A
sE−→ A

a�−−→ A
sE−→ · · · .

Lemma 5.3. Let L be an oE-lattice in A, invariant under conjugation by E×. Suppose that sE(L) =
L ∩ E. Then L = L ∩ a
(A) ⊕ L ∩ E and the sequence

· · · a�−−→ L
sE−→ L

a�−−→ L
sE−→ · · ·

is exact.

Proof. The kernel of the map sE : L → sE(L) is L ∩ a
(A), so we have the decomposition L =
sE(L)⊕L∩a
(A) = L∩E⊕L∩a
(A). Therefore a
 maps L∩a
(A) isomorphically onto a
(L),
that is, a
(L) = L ∩ a
(A), as required.

The hypotheses of Lemma 5.3 apply, in particular, to the lattices Pk, Mk = M ∩ Pk and Hk.
We now prove Proposition 5.2 under the additional hypothesis that x ∈ U1

A. We have to show
that x−1(1 + �)x ∈ H1 implies x ∈ M1. We write x = 1 + y. Nothing is changed if we replace
y by y + z with z ∈ pE , so we may as well assume y ∈ a
(P). Set k = υA(y) (meaning that
y ∈ Pk � Pk+1); we therefore take y ∈ a
(Pk). If k � [l/2], we have x ∈ M1 and there is nothing
to prove. We therefore assume the contrary and work by induction on the integer k � 1.

We write (1 + y)−1 = 1 + ȳ; thus we have y + ȳ + yȳ = y + ȳ + ȳy = 0. Using such elementary
identities, we get

x−1(1 +�)x = (1 + ȳ)(1 +�)(1 + y)
= 1 + ȳ +� + ȳ� + y + ȳy +�y + ȳ�y

≡ 1 +� + a
(y) (mod P2k+1).

It follows from Lemma 5.3 that y ∈ Mk + Pk+1 and then that x ∈ Uk+1
A Mk. We write x = ab,

with a ∈ Uk+1
A and b ∈ Mk. Since Mk normalizes H1, we have x−1(1 + �)x ∈ H1 if and only if

a−1(1 +�)a ∈ H1 and Proposition 5.2 follows, by induction, in this case.

5.4 To complete the proof of Proposition 5.2, we have to take u ∈ UA such that u−1(1+�)u ∈ H1

and show that u ∈M . We first make a simplification.
There exists a prime element �E of E such that �n

E ∈ F and �E ≡ � (modU1
E). Suppose that

the result holds for �E . Given any other prime element � of E, we can write �E =
∑

j�1 αj�
j ,

with αj ∈ µF ∪ {0}. Any element of UA which conjugates 1 + � into H1 then surely conjugates
1 +�E into H1 and so lies in M . In other words, we may proceed on the hypothesis that �n is a
prime element of F . In this situation, the following holds.

Lemma 5.4. There is a subgroup µA of UA satisfying these conditions:

(1) UA = µA � U1
A;

(2) µA is stable under conjugation by �;

(3) µA ∼= µn
F , the factors µF being permuted cyclically under conjugation by �.

We therefore have

KA = 〈�,µA〉 � U1
A.
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We write u = ζu1, with ζ ∈ µA and u1 ∈ U1
A. Consider the element u−1�u of P. We have

u−1�u ≡ ζ−1�ζ (mod P2).

We have two cases:

H1 + P2 =

{
P1 + P2 if r1 = 1,
pE + P2 otherwise.

We set �1 = �[E:E1] in the first case, and �1 = � in the second. The element ζ−1�ζ + P2 of
P/P2 lies in the image of H1 if and only if it commutes with �1: this follows from Lemma 5.3.
However, �1 and ζ−1�ζ both lie in the group 〈�,µA〉 ∼= Z � µA; they commute if and only if their
images in KA/U1

A commute. In the second case, this is equivalent to ζ−1�ζ ∈ �µF , or ζ ∈ M . In
the first case, ζ−1�ζ commutes with �1 if and only if ζ�1ζ

−1 commutes with �; this is equivalent
to ζ�1ζ

−1 ∈ E, that is, ζ�1ζ
−1 ∈ E1. This is equivalent to demanding ζ ∈M .

Thus the condition ζ−1u−1
1 (1 +�)u1ζ ∈ H1 implies ζ ∈M and hence

u−1
1 (1 +�)u1 ∈ H1.

We proved in § 5.3 that this implies u1 ∈M1, so we have completed the proof of Proposition 5.2.

5.5 As in § 5.4, we can write M = µM �M1, for a certain subgroup µM of µA: indeed, µM is the
µA-normalizer of E×

1 . We note that J = µF × J1. Thus, writing θτ for the character h �→ θ(τhτ−1)
of H1 and with the commutator convention [x, y] = x−1y−1xy, we have

tr π(1 +�) = dim Λ
∑

τ∈µM/µF

θτ (1 +�)
∑

u∈M1/J1

θτ [1 +�,u]. (5.5.1)

We can expand further.

Theorem 5.5. Suppose that p �= 2 and let � be a prime element of E. There is a non-zero constant
GF (�,ψF ) such that

trπ(1 +�) = GF (�,ψF ) dim Λ
∑

τ∈µM/µF

ε(τ,�)θτ (1 +�), (5.5.2)

where ε(τ,�) = ±1 and ε(1,�) = 1.

Remark 5.5.1. We shall specify the constant GF (�,ψF ) in the course of the proof (§ 5.7 below). It
is a product of classical quadratic Gauss sums and hence, since p �= 2, it is non-zero. The case p = 2
would require further analysis, for which we will have no direct need: we therefore exclude it. The
signs ε(τ,�) are of no enduring interest.

Remark 5.5.2. Let κ be a tamely ramified character of F× which is trivial on NE/F (E×). Thus
κ ◦ det is trivial on J , and we may form the κ-twisted trace of π,

Ξκπ (g) =
∑

x∈G/J

κ(detx)−1 tr Λ(x−1gx),

for suitable elements g ∈ G (see [BH96, § 15.8 and Appendix]). An argument identical to the proof
of the theorem yields

Ξκπ (1 +�) = GF (�,ψF ) dim Λ
∑

τ∈µM /µF

κ(det τ)ε(τ,�)θτ (1 +�), (5.5.3)

with the same signs ε(τ,�) as before.
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5.6 As the first step in the proof of Theorem 5.5, we have the following proposition.

Proposition 5.6. Let S denote the set of integers i for which ri is an odd jump of ξ and ri � 3.
Set ri = 2si + 1, i ∈ S. We have

trπ(1 +�) = dimΛ
∑

τ∈µM /µF

θτ (1 +�)
∏

i

∑
yi
θτ [1 +�, 1 + yi], (5.6.1)

where i ranges over S and 1 + yi over M si/JsiM si+1.

Proof. We note here that, for τ ∈ µM , [A, l, 0, βτ ] is a simple stratum and θτ ∈ C(A, βτ , ψF ), while
H1(βτ ,A) = H1(β,A)τ = H1, since τ ∈M . Moreover, βτ has the same jumps as β.

For the rest of the proof, we use the symbol ϑ to denote any of the characters θτ . Every coset
of M1/J1 contains an element

∏
i∈S(1 + yi), with yi ∈ Psi

ri
. We expand the commutator[

1 +�,
∏
i∈S

(1 + yi)
]

in the standard way, using the rule [a, bc] = [a, c] · c−1[a, b]c. The element (1 + yi) stabilizes ϑ on
Hsj+1, for j > i, by [BK93, (3.3.2)], so we have

ϑ[1 +�, 1 + y] =
∏
i∈S

ϑ[1 +�, 1 + yi]. (5.6.2)

We deduce that ∑
1+y∈M1/J1

ϑ[1 +�, 1 + y] =
∏
i∈S

∑
yi
ϑ[1 +�, 1 + yi],

where 1 + yi ranges over M si/JsiM si+1, and the result follows.

5.7 We make a preliminary evaluation of the innermost terms of (5.6.1). As before, if ri � 3 is
an odd jump of ξ, we take a simple stratum [A, l, ri, γri ] equivalent to [A, l, ri, β] with F [γri ] = Eri

(see § 3.6). We choose a simple stratum [Ai, ri, ri − 1, αi] equivalent to [Ai, ri, ri − 1, β − γri ] with
F [γi, αi] = Eri−1.

We write ψA = ψF ◦ trA, where trA : A→ F is the trace map.

Lemma 5.7.1. Let i ∈ S and τ ∈ µM . We have

θτ [1 +�, 1 + y] = ψA(ατ
i a
(y)y), y ∈ Msi . (5.7.1)

Proof. Let y ∈ Msi . The commutator [1+�, 1+y] lies in Hsi+1 and so, directly from the definition
of simple character in [BK93, (3.2)], we get

θ[1 +�, 1 + y] = ψA(αi([1 +�, 1 + y] − 1)). (5.7.2)

The right-hand side of (5.7.2) depends only on the coset [1 +�, 1 + y]U ri+1
A , since αi ∈ P−ri . We

expand the commutator, using the notation (1 + y)−1 = 1 + ȳ. Thus, for example, y + ȳ + ȳy = 0.
We obtain

[1 +�, 1 + y] ≡ 1 + �̄ȳ + ȳ� + �̄ȳ� + �̄ȳy + ȳ�y (modU ri+1
A ).

As αi commutes with � and �̄, this reduces to θ[1 +�, 1 + y] = ψA(αia
(y)y).
We now replace θ by θτ , τ ∈ µM . This has the effect of replacing αi by ατ

i in (5.7.2). Since
ri � 3, the element ατ

i lies in E1 ⊂ E and so it commutes with �. We can therefore use the same
calculation to get the desired result.

We may usefully re-interpret the formula (5.7.1). Taking i ∈ S as before, the abelian group
M si/JsiM si+1 is a Γ-module, where Γ = E×/F×U1

E . In the notation of § 4.2, we have our next
lemma.
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Lemma 5.7.2. Let i ∈ S and let � be a prime element of E. The map 1 + y �→ �−siy induces a
Γ-isomorphism

M si/JsiM si+1 ∼= IA(n/dri−1, n/dri). (5.7.3)

It will be easier to write

Mi = IA(n/dri−1, n/dri), i ∈ S.

Consider the function on Mi given by (5.7.1),

x �−→ θτ [1 +�, 1 +�six].

If we write ατ
i ≡ ζi(�, τ)�−ri (modU1

E), for some ζi(�, τ) ∈ µF , this reduces to

x �−→ ψF (ζi(�, τ)q
(i)
F (x)),

where q
(i)
F : Mi → kF denotes the Γ-invariant quadratic form

x �−→ trA((x−�−1x�) ·�six�−si) (mod pF ).

As in § 4.5, we write

g(ζq(i)
F , ψF ) =

∑
x∈Mi

ψF (ζq(i)
F (x)), ζ ∈ µF .

This is just a classical quadratic Gauss sum and, since p �= 2, it is non-zero. We further have the
relation

g(ζq(i)
F , ψF ) =

(
ζ

q

)t

g(q(i)
F , ψF ), ζ ∈ µF ,

where t is the rank of q
(i)
F . To summarize, we can write all this as follows.

Proposition 5.7. Let i ∈ S, and suppose p �= 2.

(1) There is a unique ζi(�) ∈ µF such that αi�
ri ≡ ζi(�) (modU1

E).

(2) There is a Γ-invariant quadratic form q
(i)
F : Mi → kF such that

θ[1 +�, 1 +�six] = ψF (ζi(�)q(i)
F (x)), x ∈ Mi.

In particular, ∑
y∈Msi/JsiMsi+1

θ[1 +�, y] = g(ζi(�)q(i)
F , ψF ),

and this quantity is non-zero.

(3) Let τ ∈ µM . There are constants εi(τ,�) = ±1, with εi(1,�) = 1, such that∑
y∈Msi/JsiMsi+1

θτ [1 +�, y] = εi(τ,�)g(ζi(�)q(i)
F , ψF ).

We extend our notation by setting

GF (�,ψF ) =
∏
i∈S

g(ζi(�)q(i)
F , ψF ), ε(τ,�) =

∏
i∈S

εi(τ,�). (5.7.4)

We then have ∑
y∈M1/J1

θτ [1 +�, y] = ε(τ,�)GF (�,ψF ), (5.7.5)
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and
trπ(1 +�) = dimΛ · GF (�,ψF )

∑
τ∈µM/µF

ε(τ,�)θτ (1 +�),

as required for Theorem 5.5.

Remark 5.7. We note that the expression (5.5.2) for the function � �→ trπ(1+�) depends only on
the element β or, equivalently, on ξ | U1

E . The same applies to the twisted trace formula (5.5.3).

6. Automorphic induction

We continue in the situation of § 5, but we introduce a further element of structure. We let K/F
be a cyclic sub-extension of E/F of prime degree d. (This restriction is not necessary for much of
the time; we are, moreover, only really interested in the case d = 2.) The pair (E/K, ξ) is then
admissible, so we can form the representation ρ = Kπξ ∈ Aet

n/d(K). We write Σ = Gal(K/F ), and
we choose a character κ of F× which generates the group of characters of F× which are trivial on
NK/F (K×).

6.1 We recall that we regard the field E as embedded in A = Mn(F ); we let AK denote the
A-centralizer of K and put GK = A×

K . We set AK = A ∩ AK . The quadruple [AK , l, 0, β] is then
a simple stratum in AK . We have H1

K = H1(β,AK) = H1 ∩GK , and so on [BH96]. The character
θK = θ | H1

K lies in C(AK , β, ψK), where ψK = ψF ◦ TrK/F , and θK occurs in ρ. Indeed, there is a
unique irreducible representation ΛK of the group JK = E×J1

K such that ΛK | H1
K is a multiple of

θK and ρ ∼= c-Ind ΛK .
We define subgroups M1

K ⊂MK ⊂ GK , exactly as in § 5.2. We observe that any jump of β over
K is a jump of β over F . On the other hand, since d is prime, there exists at most one jump of β
over F which is not a jump of β over K.

Lemma 6.1. Suppose that K ⊂ E1. Let σ ∈ Σ, and suppose that tr ρσ(1 +�) �= 0, for some prime
element � of E. Then σ extends to an automorphism of E1/F .

Proof. Recall that r1 denotes the least jump of β over F . Thus r1 � 1, while r1 � 2 if and only if
E1 = E.

Suppose first that r1 � 2. We choose tσ ∈ G such that σ(h) = tσht
−1
σ , h ∈ GK . If 1 + σ(�)

lies in the support of tr ρ, there exists x ∈ GK such that the element h = xtσ(1 + �)t−1
σ x−1 lies

in JK . Since h is pro-unipotent, it lies in J1
K and in the support of tr ΛK , whence it lies in H1

K . In
particular, we have h ∈ H1 so, by Proposition 5.2, we have xtσ ∈ E×M = NG(E×)M1. However, by
definition, xtσ ∈ NG(K×), whence xtσ ∈ NG(E×)M1 ∩ NG(K×) = NG(E×)(M1 ∩NG(K×)). The
group NG(K×)/GK = Σ has finite order prime to p and M1 is a pro-p-group; thus M1∩NG(K×) =
M1 ∩GK = M1

K and xtσ ∈ NG(E×)M1
K . The coset M1

Kxtσ thus contains an element of NG(E×),
and the lemma follows in this case.

Suppose that r1 = 1. The same argument as before gives us

xtσ ∈ E×NUA(E×
1 )M1 ∩NG(K×) = E×(NUA(E×

1 ) ∩NG(K×))M1
K .

As K ⊂ E1, the normalizer of E1 is contained in that of K and, since K/F is Galois, the lemma
follows.

Remark 6.1. When K �⊂ E1, we have K ∩ E1 = F since d = [K:F ] is prime. Any F -automorphism
of K extends by triviality to one of E1.
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6.2 By Theorem 5.5, we have

tr ρ(1 +�) = GK(�,ψK) dim ΛK

∑
τ∈µMK

/µF

εK(τ,�)θτ (1 +�),

for signs εK(τ,�) with εK(1,�) = 1, and a constant GK(�,ψK) defined as in § 5.7. We apply
Lemma 6.1 to get∑

σ∈Σ

tr ρσ(1 +�) = GK(�,ψK) dim ΛK

∑
τ∈µM/µF

εK(τ,�)θτ (1 +�), (6.2.1)

for various signs εK(τ,�).

6.3 We set π = AK/F ρ = Fπµξ, where µ = K/Fµξ
. The expression (5.5.3) gives the value of the

κ-trace Ξκπ (1 +�) (cf. Remark 5.7). We apply the automorphic induction equation

Ξκπ (1 +�) = cδ(1 +�)
∑
σ∈Σ

tr ρσ(1 +�)

and (6.2.1) to get

GF (�,ψF ) dim Λ
∑

τ∈µM /µF

ε(τ,�)κ(det τ)θτ (1 +�)

= cδ(1 +�)GK(�,ψK) dim ΛK

∑
τ∈µM/µF

εK(τ,�)θτ (1 +�).

6.4 We give the first of two useful simplifications. In this section, we assume that r1 > 1, so that
E1 = E and µM/µF = Aut(E|F ).

Proposition 6.4. Suppose that r1 > 1. We then have

GF (�,ψF ) dim Λ = cδ(1 +�)GK(�,ψK) dim ΛK .

Proof. Let u ∈ U2
E; we then have (1 + �)u = 1 + �v, for some v ∈ U1

E . From the definition, we
have ε(τ,�v) = ε(τ,�) for all τ , and similarly for the base field K; likewise for the factors GF

and GK . Further, directly from the definition of the transfer factor, δ(1 +�v) = kδ(�v) = kδ(�)
for some positive constant k.

Since r1 > 1, the admissibility of (E/F, ξ) implies that the characters ξα, α ∈ Aut(E|F ), are
distinct on U2

E (cf. [BH05a, Lemma A.1]). In the identity of § 6.3, we may therefore replace 1 +�
by (1 +�)u, multiply by ξ(u)−1 = θ(u)−1, and integrate over U2

E to get the result.

6.5 Let us now assume r1 = 1. We may therefore write θ = θ1ψα1 , where ψα1 denotes the function
1 + x �→ ψF (trA(α1x)) and θ1 ∈ C(A, γ1, ψF ). Let µ1 denote the µM -centralizer of E1. Since
E1 = F [γ1], we have θτ

1 = θ1, and hence θτ (1 +�) = θ(1 +�)ψα1 [τ, 1 +�], for τ ∈ µ1/µF .

Proposition 6.5. Suppose that r1 = 1, and let µ1 denote the µM -centralizer of E1. Then:

(1) ε(τ,�) = εK(τ,�) = 1, for every τ ∈ µ1;

(2) the characters ψτ
α1

, τ ∈ µ1/µF , are distinct on H1;

(3) the characters ξτ | U2
E , τ ∈ µM/µ1, are distinct;
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(4) we have

GF (�,ψF ) dim Λ
∑

τ∈µ1/µF

κ(det τ)ψα1 [τ, 1 +�]

= cδ(1 +�)GK(�,ψK) dim ΛK

∑
τ∈µ1/µF

ψα1 [τ, 1 +�].

Proof. Since τ ∈ µ1 commutes with E1, it commutes with every αi, i ∈ S. The first assertion
follows from the definition. The second assertion follows from the admissibility of (E/F, ξ), as does
the third. The fourth is then given by an argument identical to that of Proposition 6.4.

6.6 In light of Proposition 6.5, we introduce some new notation in the case r1 = 1:

KF (α1,�, ψF ) =
∑

τ∈µ1/µF

ψα1 [τ, 1 +�],

KκF (α1,�, ψF ) =
∑

τ∈µ1/µF

κ(det τ)ψα1 [τ, 1 +�].

Remark 6.6. When one writes them out explicitly, one finds that the quantities KF and KκF are
Kloosterman or Salié sums, analogous to those considered in [Duk92] and [Sal32].

Proposition 6.6. Suppose that r1 = 1 and p �= 2; the quantities KF (α1,�, ψF ) and KκF (α1,�, ψF )
are then both non-zero and

KκF (α1,�, ψF )GF (�,ψF ) dim Λ = cδ(1 +�)KF (α1,�, ψF )GK(�,ψK) dim ΛK . (6.6.1)

Proof. The identity (6.6.1) follows from Proposition 6.5. Since p �= 2, the factors GF and GK are
non-zero.

The quantities ψα1 [τ, 1 +�] are pth roots of unity, while the order of µ1/µF divides (q − 1)n.
Thus, if ℘ denotes the prime divisor of p in the field Q[11/p] of pth roots of unity, we have

KF (α1,�, ψF ) ≡ |µ1/µF | �≡ 0 (mod℘).

Therefore, KF (α1,�, ψF ) �= 0, and the result follows from Proposition 6.5.

We can now sum up, to get the main result of the section.

Theorem 6.6. Assume that p �= 2. There are positive constants k such that

K/Fµξ
(�) =


εF εK

GF (�,ψF )
GK(�,ψF )

k if r1 > 1,

εF εK
GF (�,ψF )
GK(�,ψF )

KκF (α1,�, ψF )
KF (α1,�, ψF )

k if r1 = 1,

for every prime element � of E.

Proof. From [BH05a, Theorem 4.3], we have K/Fµξ
(�) = εF εKcδ(�). We have noted that

δ(1 +�) = kδ(�), for some k > 0. The theorem now follows from Propositions 6.4 and 6.6.

To prove Theorems 3.1 and 3.2, we have to evaluate the expressions appearing in the preceding
theorem. This we do in the following sections.
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7. Glauberman signs

We compute the product εF εK of signs occurring in Theorem 6.6. We use the notation introduced
in the opening paragraphs of §§ 5 and 6. In particular, Γ = E×/F×U1

E , and we assume throughout
that d = [K:F ] = 2. (Thus p �= 2.)

7.1 We write J = J1/H1; thus J is a finite-dimensional Fp-vector space and it carries the non-
degenerate alternating form hθ induced by (x, y) �→ θ[x, y], x, y ∈ J1. This form is invariant under
the conjugation action of Γ on J and so (J , hθ) provides a symplectic representation of Γ over Fp.
Moreover, Γ has only the trivial fixed point in J . From § 4.8, we have εF = tΓ(J ), so we can apply
the machinery of § 4.7; similarly over K.

We now collect some basic facts.

Lemma 7.1.

(1) The natural inclusion of J1
K in J1 induces a Γ-embedding JK → J which identifies JK with

the set of K×-fixed points in J .

(2) The restriction of hθ to JK is equal to hθK
and is, in particular, non-degenerate. Thus

J = JK ⊥ K,
for a uniquely determined symplectic FpΓ-submodule K of J .

(3) The group K× acts on J as the unique subgroup Γ2 of Γ of order 2, and K is the set of all
x ∈ J such that �Kx�

−1
K = −x, where �K is a prime element of K.

For the first assertion, see [BH96]; the others are immediate.
The invariant tΓ is additive with respect to orthogonal sums, by definition; therefore Proposi-

tion 4.8 yields εF εK = tΓ(K).

7.2 For each integer j � 1, let Vj denote the image of Jj in J . From [BH05b, § 6.1], the subspace
Vj is non-degenerate. Thus there is a unique non-degenerate Γ-subspace J j of J such that Vj =
J j ⊥ Vj+1. We have the following lemma.

Lemma 7.2.

(1) The space J j is zero unless 2j is a jump of β.

(2) Let j = 2s be an even jump of β. The quotient map Vs → Vs/Vs+1 induces a Γ-isomorphism
Js/HsJs+1 ∼= J s. We have a Γ-isomorphism

J s ∼= IA(n/d2s−1, n/d2s).

(3) The inclusion of Jj
K in Jj identifies J j

K with the set of K×-fixed points in J j. Setting Kj =
K ∩ J j , we have

J j = J j
K ⊥ Kj , K =

⊕
j

Kj .

Proof. The first and last assertions are immediate. The second follows from [BH05b, § 6.3].

As in § 1.2, let i+ be the greatest odd jump of β over F , and d+ = di+ . In particular, all jumps
of β greater than i+ are even. If, on the other hand, 2s < i+ is a jump of β, we have J s = J s

K . We
need therefore only ever consider even jumps greater than i+.

From part (2) of Lemma 7.2 we get⊕
2s>i+

J s ∼= IkF (Γ;n/d+, n). (7.2.1)
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Therefore we obtain the next proposition.

Proposition 7.2. The Γ-space K is isomorphic to the space of x ∈ IkF (Γ;n/d+, n) on which the
subgroup Γ2 of Γ of order 2 acts via its non-trivial character.

7.3 In this section we assume that m = n/2 is odd. Thus Γ2 is the 2-Sylow subgroup ∆ of Γ, and
∆ acts on K via its non-trivial character. It follows that ∆ has only the trivial fixed point on K. By
Proposition 4.7, therefore,

εF εK = tΓ(K) = t∆(K).

Proposition 7.3. Suppose that m = n/2 is odd. Then

εF εK =
(
−1
q

)(d+−1)/2

.

Proof. From Proposition 7.2, we have dimkF K = m−m/d+. Writing q = |kF | = pf , the symplectic
Fp∆-module K is isometric to H(U), where U has Fp-dimension fm(d+ − 1)/2d+ = δ, say, and ∆
acts on U via its non-trivial character. Therefore

t∆(K) = (−1)(p
δ−1)/2.

However, d+ is odd in this case and therefore m(d+ − 1)/2d+ ≡ (d+ − 1)/2 (mod 2). So

(pδ − 1)/2 ≡ (q(d
+−1)/2 − 1)/2 (mod 2)

and

t∆(K) =
(
−1
q

)(d+−1)/2

,

as required.

7.4 We turn to the case where m = n/2 is even. We recall (§ 1.2) that i+ is the least jump j of β
(over F ) such that dj is odd. Thus i+ � i+, with equality if and only if i+ is odd.

Proposition 7.4. Suppose that d = 2 and that m = n/2 is even. Then

εF εK =


1 if i+ is odd,(
−1
q

)n/4 (
2
q

)
if i+ is even.

Proof. Again let ∆ denote the 2-Sylow subgroup of Γ and Γ2 its subgroup of order 2. The group
Γ2 acts on K with only the trivial fixed point, hence the same applies to ∆ and therefore

εF εK = t∆(K).

Let 2a be the exact power of 2 dividing n.
We first treat the case where i+ is odd. It follows that d+ is odd. The kF -dimension of K is

m −m/d+, which is divisible by 2a. Thus, as Fp∆-module, K is isomorphic to a direct sum of an
even number of copies of the symplectic module IFp(∆; 2a−1, 2a), whence t∆(K) = +1, as required.

We therefore assume that i+ is even, and so i+ > i+. Thus d+ is even. By definition, i+ is the
least jump j of β such that K �⊂ Ej . Therefore, if 2s < i+ is a jump of β, we have J s = J s

K and so

K = IkF (Γ;n/d+, n) ∩ IkF (Γ;n/2, n),

where d+ = di+−1. Both d+ and n/d+ are even, so

IkF (Γ;n/d+, n) = K ⊕ IkF (Γ;n/d+, n/2).
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Therefore K has dimension n/2 and, as kF ∆-module, it is isomorphic to the sum of an odd number
of copies of IkF (∆; 2a−1, 2a). The result therefore follows from the next lemma.

Lemma 7.4. Let ∆ be cyclic of order 2a, a � 2. Then

t∆(IFp(∆; 2a−1, 2a)) =
(
−1
p

)2a−2 (
2
p

)
.

Proof. We abbreviate I2(∆) = IFp(∆; 2a−1, 2a).
Suppose first that p ≡ 1 (mod 4). In this case, we observe, ∆ has no anisotropic (i.e., of ntsd type)

symplectic modules over Fp. For, let k = Fpr for some r and let k′/k be the quadratic extension.
The kernel T of the norm from k′ to k has order pr + 1 ≡ 2 (mod 4). It therefore has no subgroup
of order divisible by 4, so any character ∆ → T has image contained in {±1}, and this cannot
generate k′ as Fp-algebra.

In this case, therefore, I2(∆) is hyperbolic, and a maximal totally isotropic subspace has dimen-
sion 2a−2 over Fp. The required sign is therefore

t∆(I2(∆)) = (−1)r(a), r(a) = (p2a−2 − 1)/2a.

An elementary inductive argument shows that

(p2a−2 − 1)/2a ≡ (p− 1)/4 (mod 2), a � 2, p ≡ 1 (mod 4).

Therefore

t∆(I2(∆)) = (−1)(p−1)/4 =
(

2
p

)
for p ≡ 1 (mod 4),

as required.
We now assume that p ≡ 3 (mod 4). The simplest way to proceed is to construct a table. Let kj

denote the field of p2j
elements.

Suppose first that p ≡ 3 (mod 8). The field obtained by adjoining to Fp a primitive 2a-root of
unity is k1 for a = 2 or 3 and ka−2 for a � 4. Thus I2(∆) is the anisotropic space k1 when a = 2
(giving t = +1), the hyperbolic space k1 ⊕ k1 when a = 3 (giving t = −1) and the hyperbolic space
ka−2 ⊕ ka−2 when a � 4 (giving t = −1), all as required.

Suppose now that p ≡ 7 (mod 8). There is an integer b � 4 such that the field of 2a roots of
unity over Fp is k1 for 2 � a � b, and ka−b+1 for a > b. The space I2(∆) is therefore the anisotropic
space k1 when a = 2 (giving t = −1), the sum of two anisotropic spaces k1 when a = 3 (giving
t = +1), and the sum of four copies of k1 when a = 4 (giving t = +1). For a � 5, I2(∆) is a sum of
4r copies of some field, for some integer r, giving t = +1. Thus Lemma 7.4 is proved.

This completes the proof of Proposition 7.4.

8. Gauss sums

In this section, we calculate the quotient GF (�,ψF )/GK(�,ψK) of products of Gauss sums
appearing in Theorem 6.6. Throughout, we assume that d = [K:F ] = 2.

We will so prove Theorems 3.1 and 3.2 in all cases except that where i+ = i+ = r1 = 1 (in the
notation of § 1.2).

8.1 By definition (5.7.4), we have

GF (�,ψF ) =
∏
i∈S

g(ζi(�)q(i)
F , ψF ),

1006

https://doi.org/10.1112/S0010437X05001363 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001363


Tame Langlands correspondence: totally ramified representations

where, we recall, S is the set of integers i such that ri is an odd jump of β with ri � 3. Similarly,

GK(�,ψK) =
∏
i∈S

g(ζi(�)q(i)
K , ψK),

with the understanding that g(ζi(�)q(i)
K , ψK) = 1 if ri is not a jump of β relative to K.

Lemma 8.1.

(1) If i+ = 1, then GF (�,ψF ) = GK(�,ψK) = 1 and S is empty.

(2) If i ∈ S satisfies ri < i+, we have Mi = MK,i and g(ζi(�)q(i)
F , ψF ) = g(ζi(�)q(i)

K , ψK).

(3) If r1 = 1 and K ⊂ E1, then KF (α1,�, ψF ) = KκF (α1,�, ψF ).

Proof. The first two assertions follow directly from the definitions. In part (3), the character κ◦det is
trivial on the G-centralizer of E1 and, in particular, on µ1. The assertion follows from the definitions
in § 6.6.

The hypothesis of part (3) of Lemma 8.1 holds if either i+ > r1 = 1 or i+ > i+ � r1 = 1.
Consequently, we have the following proposition.

Proposition 8.1. Suppose that r1 = 1 and that KκF (α1,�, ψF ) �= KF (α1,�, ψF ). Then i+ = i+ =
r1 = 1.

We can now simplify our notation: if rj = i+ > 1, we set ζj(�) = ζ(�), q
(j)
F = qF . Therefore

GF (�,ψF )
GK(�,ψK)

=
g(ζ(�)qF , ψF )
g(ζ(�)qK , ψK)

. (8.1.1)

8.2 We assume from now on that i+ > 1. Let us write M0 rather than Mi+. With Γ = E×/F×U1
E

as before, M0 is Γ-isomorphic to the kF Γ-submodule IkF (Γ;n/d′, n/d+) of kF Γ, where d′ = di+−1.
To describe the quadratic form qF , we compare with the objects QΓ, εΓ introduced in § 4.6, via

an isomorphism A/P ∼= kF Γ as in § 4.2. We let γ denote the generator x �→ �−1x� of Γ. We write
i+ = 1 + 2s. The form qF is the restriction to M0 of x �→ εΓ((x− γx)(γsx̄)).

There is a unique Γ-submodule Y of M0 such that M0 = M0,K ⊕Y. The functions ψF ◦qF and
ψK ◦ qK agree on M0,K , so

GF (�,ψF )
GK(�,ψK)

= g(ζ(�)qF |Y, ψF ). (8.2.1)

8.3 We start with the following special case.

Proposition 8.3. Suppose that i+ > 1 and that m = n/2 is odd. The quadratic form qF |Y is
non-degenerate and has discriminant (−1)sd+.

Proof. In the notation of § 4.1, M0
∼= IkF (Γ;n/d′, n/d+) is the direct sum of the spaces Vχ, where

χ ranges over those elements of Ω\Γ̂ such that χn/d+
= 1 �= χn/d′ . The space Y is the sum of those

Vχ for which χn/2 �= 1. Since d+ is odd, we have Y ∼= IkF (Γ;n/2d+, n/d+). In particular

dimkF Y = m/d+. (8.3.1)

Let k/kF be a finite field extension. We can extend qF , by linearity, to a quadratic form qF,k :
Y ⊗k → k. The form qF is then non-degenerate on Y if and only if qF,k is non-degenerate on Y ⊗k.
In other words, to prove non-degeneracy, we can proceed as if all characters of Γ take their values
in k×

F .
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For a character χ of Γ, let

eχ = n−1
∑
γ∈Γ

χ(γ)γ−1

denote the corresponding idempotent of kF Γ. Thus Vχ = eχkF Γ. Consider first the case where χ
has order 2. Then Vχ ⊂ Y and

qF (eχ) = (−1)s2ε(eχēχ) = (−1)s2ε(eχ) = (−1)s2/n.

In particular, qF |Vχ is non-degenerate in this case.
Now let Vχ ⊂ Y, χ �= χ−1, and consider the restriction of qF to Vχ⊕Vχ−1. We set eχ = e (so that

ē = eχ−1) and α = χ(γ):

qF (xe+ yē) = ε((xe + yē)(αsxē+ α−se) − (αxe+ α−1yē)(αsxē+ α−se))

= xy(α−s + αs − α1−s − αs−1)/n.

This vanishes identically if and only if α = 1 or α2s+1 = 1; since α is a root of unity of even order,
we conclude that qF is non-degenerate on Vχ ⊕ Vχ−1. Thus qF is non-degenerate, as desired.

We return to the given base field kF . If χ2 denotes the character of Γ of order 2, the calcula-
tion above shows that qF |Vχ2 has discriminant (−1)s2/n, while QΓ|Vχ2 has discriminant 1/n. We
conclude (Proposition 4.4, Remark 4.5) that the discriminants of qF |Y, QΓ|Y differ by a factor of
(−1)s2.

We are therefore reduced to calculating the discriminant of QΓ on Y. Its discriminant on
kF [Γ/Γn/d+

] is (d+)n/d+
= 1, while on kF [Γ/Γn/2d+

] its discriminant is (2d+)n/2d+
= 2d+

(cf. (4.6.1)). The discriminant of QΓ|Y is therefore 2d+, whence the discriminant of qF on Y is
(−1)sd+ (mod k×

F
2), as required.

The kF -dimension of Y is m/d+, which is odd, so we have the corollary.

Corollary 8.3. In the case n/2 odd and i+ > 1, we have

GF (�,ψF )
GK(�,ψK)

=
(
−1
q

)(i+−1)/2 (
d+

q

)(
ζ(�)
q

)
g(ψF )m/d+

.

8.4 We now consider the case where d = 2 and n/2 is even.

Proposition 8.4. Suppose that n/2 is even and i+ > 1. Then

GF (�,ψF )
GK(�,ψK)

=


1 if i+ is even,(
−1
q

)
if i+ is odd.

Proof. In the first case, where i+ is even, all factors in the definitions of the Gauss sums are
identically equal, and the result is immediate.

Thus we assume i+ = i+ is odd; it follows that d+ is odd. In this case, we have Y ∼= IkF (Γ;n/2d+,
n/d+). From (8.2.1), we have to show that qF |Y is non-degenerate and then compute its discrim-
inant. Since n/2d+ is even, the quadratic character of Γ does not occur in Y. The proof of non-
degeneracy is then the same as in § 8.3. Further, qF and QΓ have the same discriminant on Y
(§ 4.4). It follows from (4.6.2) that this discriminant is 1. The kF -dimension of Y is n/2d+, so

GF (�,ψF )/GK(�,ψK) = g(ψF )n/2d+
=

(
−1
q

)n/4

,

as required.
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8.5 Let us prove Theorem 3.1 in the case i+ > 1. Thus n/2 is odd. The factor εF εK in Theorem 6.6
is given by Proposition 7.3. In the case r1 = 1, the factor KκF (α1,�, ψF )/KF (α1,�, ψF ) is 1, by
Proposition 8.1. The result now follows from Corollary 8.3.

We turn to Theorem 3.2. In particular, n/2 is even. Excepting the case i+ = i+ = r1 = 1, the
result follows from Propositions 8.4 and 7.4.

9. Kloosterman sums

To complete the proofs of Theorems 3.1 and 3.2, it remains only to treat the cases where i+ = i+ =
r1 = 1. In particular, we have K ∩E1 = F .

9.1 In our present situation, Theorem 6.6 reduces to

µ(�) = εF εK
KκF (α1,�, ψF )
KF (α1,�, ψF )

k, (9.1.1)

for some positive constant k. The sign εF εK is given by Proposition 7.3 (when m = n/2 is odd) or
the first case of Proposition 7.4 when m = n/2 is even.

We note that, in the present situation, we have ζ(�) = α1�.

9.2 We treat first a special case. We assume that E1 = F and β = α1. In particular, β−1 is a prime
element of E. As before, we set π = Fπµξ = AK/Fρ, ρ = Kπξ.

We consider the relation between the Godement–Jacquet local constants (see [GJ72] and [Jac79])
ε(π, s, ψF ) and ε(ρ, s, ψK), where ψK = ψF ◦TrK/F . Since β has no even jumps in this case, we have
εF = εK = 1 and π = c-IndΛ, for a quasicharacter Λ of J with Λ | E× = µξ. We use the technique
of [BF85] and [Bus87] (or see [Bus91] for a convenient summary); this approach gives

ε(π, 1
2 , ψF ) = k1µξ(β)−1ψF (TrE/F (β)),

for some k1 > 0. Similarly,

ε(ρ, 1
2 , ψK) = k2ξ(β)−1ψF (TrE/F (β)),

for some k2 > 0. However, the relation π = AK/F ρ gives [HH95] and [HL05],

ε(π, 1
2 , ψF ) = ε(ρ, 1

2 , ψK)λm
K/F

whence, by Lemma 1.5, µ(β) = k3g(ψF )−m, for some k3 > 0. Combining with (9.1.1), we therefore
have, for various k > 0 and any prime element � of E,

KκF (α1,�, ψF )
KF (α1,�, ψF )

=


k

(
α1�

q

)
g(ψF )m if m is odd,

k

(
−1
q

)m/2

if m is even.

(9.2.1)

9.3 We revert to the general case, as at the beginning of the section. Writing κ1 = κ ◦NE1/F , the
definitions of § 6.6 give

KF (α1,�, ψF ) = KE1(α1,�, ψE1), KκF (α1,�, ψF ) = Kκ1
E1

(α1,�, ψE1).

We have [E1:F ] = d+ ≡ 1 (mod 2) and ψE1 | kF = ψd
+

F | kF . If m is odd, (9.2.1) therefore says

KκF (α1,�, ψF )
KF (α1,�, ψF )

= k

(
d+

q

)(
ζ(�)
q

)
g(ψF )m/d+

,

exactly as required for Theorem 3.1.
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In the case where m is even, we get

KκF (α1,�, ψF )
KF (α1,�, ψF )

= k

(
−1
q

)n/4

,

as required for Theorem 3.2.
We have now completed the proofs of Theorems 3.1 and 3.2.
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