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Abstract.We explore the properties of sound and human sound recognition as a means to enhance
and accelerate visual-only data analysis methods. The aim of this work is to enable and improve
the analysis of large data sets, data requiring rapid analysis, multi-dimensional data, and signal
detection in data with low signal-to-noise ratio. We present a prototype tool, StarSound, to
sonify data such as astronomical transient light curves, spectra, and power spectra. Stereophonic
sound is used to ‘visualise’ and localise the data under examination, and 3-D sound is discussed in
conjunction with virtual reality technology, as a means to enhance analysis efficiency and efficacy,
including rapid data assessment and training machine learning software. In addition, we explore
the use of higher-order harmonics as a means to examine simultaneously multi-dimensional data
sets. Such an approach can allow the data to be interpreted in a holistic manner and facilitates
the discovery of previously unseen connections and relationships. Furthermore, we exploit the
capability of the human brain for selective or focused hearing that enables the identification of
desired signals in noisy data, or amidst similar or more significant signals. Finally, we provide
research examples that benefit directly from data sonification. The work presented here aims
to help tackle the challenges of the upcoming era of Big Data and help optimise, speed up and
expand aspects of data analysis requiring human interaction.

Keywords. Methods: data analysis, miscellaneous, techniques: sociology of astronomy

1. Introduction

Effective analysis and interpretation of Big Data is particularly relevant in astron-
omy, where advances in technology are leading to ever larger data sets. For example, the
Square Kilometre Array will produce, per unit of time, an amount of radio astronomy
data that will far surpass the current global internet traffic§. Present-day technologies
are simply not up to the task of gathering, processing and making sense of such large
volumes of information in real time. In an attempt to address this problem, some technol-
ogy companies, e.g., IBM, have proposed the use of cognitive systems, defined as systems
capable of learning from their interaction with data and humans, while continuously
programming themselves. However, it is unclear whether cognitive systems can evolve
sufficiently, or appropriately, to emulate the complex functioning of human cognition

† Australian Research Council Future Fellow,

‡ Australian Research Council Centre of Excellence for Gravitational Wave Discovery
§ https://protect-au.mimecast.com/s/bg3FClxwjxs2m70ziGgRzu?domain=skatelescope.org
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during decision-making, especially when faced with uncertainty or equal-valued choices.
Automated analysis, recognition algorithms and objective parameters are typically based
on known behaviour and phenomena and, thus, are not capable of recognising or evalu-
ating objects or events properly outside expectations. As a result, humans will continue
to perform key roles in data identification and interpretation for the foreseeable future,
such as identifying unexpected objects and events, recognising the importance of out-
liers, training machine-learning software, and ultimately deciding what is relevant and
important in the data.

The interaction of researchers with their data is limited by factors such as the available
numerical data analysis packages, human eye physiology, and display resolution and
design. Consequently, large data sets, along with the demands of real-time analysis,
require exploration into new or enhanced human-based analysis techniques and tools.
Common data analysis approaches involve searching for spatial and temporal coherence,
i.e., identifying relationships between signals at different points in space or moments in
time. The Modality Precision or Modality Appropriateness hypothesis (Welch & Warren
1986) states that discrepancies are always resolved in favour of the more precise or more
appropriate modality. In spatial tasks, the visual modality usually dominates because of
its higher precision in determining spatial information. However, for temporal judgments
sound usually dominates over vision as the more appropriate modality (Shams 2000).

Recent ventures into data sonification or audification include studies of ionosphere
plasma bubbles and dwarf novæ (Dı́az-Merced et al. 2008; Tutchton et al. 2012), as well
as the presentation of gravitational wave signals and fast radio bursts. Through care-
fully designed perception experiments, Diaz-Merced showed that the use of sound as an
adjunct to visual display increases sensitivity to events in noisy 1-D data that other-
wise would have remained unnoticed by the human eye (Dı́az-Merced 2013). Moreover,
Schwartz et al. (2005) find evidence that attention task load in the periphery of the visual
field hinders perception in the centre, and vice-versa, demonstrating that the centre and
the periphery interfere (Posner & Dehaene 1994; Inhoff et al. 2006; Martinez-Conde et al.
2006; Rucci et al. 2007). For data that are time sensitive, complex, cluttered, etc., visual
perception of signal at the periphery of the visual field may be compromised. These efforts
have explored only a fraction of the advantages sound can provide in data analysis (see
Hermann et al. 2011, for a comprehensive review).

In this Workshop we (1) presented our proto-type software interface designed to con-
duct conventional 1-D data analysis and sonically augment visual analyses for faster, more
accurate assessments, (2) described simultaneous many-parameter analyses exploiting
higher-order harmonics that define tone quality, and (3) explored rapid signal identifi-
cation in noisy data, exploiting human selective hearing. We discussed future directions,
including the use of 3-D sound and virtual reality modalities. We note that an estimated
1 in ∼200 people are blind (Bourne et al. 2017)†. Data sonification greatly enhances the
productivity of vision-impaired researchers and enables the sighted or vision-impaired
public to participate, and to participate more effectively, in citizen-science programmes.

2. Sonification Techniques

2.1. One-dimensional data

Conceived in late August 2017, the StarSound prototype is a sonification tool designed
to assist both sighted and non-sighted researchers in identifying and interpreting quickly
trends in complex data sets. Developed using MaxMSP (Puckette 1988, 1991), a graph-
ical programming environment often employed in the development of real-time musical
applications, StarSound consists of a single interface through which sighted users can

† see also: World Health Organization, Global Data on Visual Impairments 2010, 2012
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Figure 1. Image of the StarSound graphical user interface in an example configuration. Across
the top, from left to right, the interface offers the following menu options; loading a data set,
viewing and clearing a data set, and loading a configuration file. Below that is the scanning
slider and two tabs for switching between the 16 available sonification modules. Each sonification
module consists of a tone generator or musical instrument selection. A predefined pitch table
is provided for mapping and listening to data quickly. From there, users may wish to fine-tune
or define their own pitch range. Once a data and configuration file is loaded, the Play feature
can be used to listen to the results of the data sonification from start to finish. Alternatively,
the GoTo option can be used to jump directly to a point of interest, or the user can scan the
data manually with the left/right keys on a computer keyboard or the scanning slider, which
can be mapped directly to a stereo panning algorithm including external mouse or trackpad
input. Further options include turning on the Voice accessibility for reporting the sonified data
index – a pulsing option which acts like a metronome for repeated listening.

tailor, but also fine-tune their sonification environment (see Figure 1). Acknowledging
that most non-sighted users may find the interface difficult to navigate, an important
design feature is that it also allows direct interaction with the software, in real-time, via
the editing of a text-based configuration file. The configuration file lists every feature and
mappable parameter within the application. One advantage of this technique is that any
text-based editor can be used and consequently does not require any specialist knowledge
to use. The software also features a Voice accessibility option for reporting the index of
the currently sonified data point.

A common 1-D application is the sonification of astronomical transient or variable
source light-curves (brightness vs. time; Section 3). One option for presentation is to
assign pitch to the brightness of the object (holding volume constant), such as higher
pitch for brighter magnitude, as it is often intuitive to attribute a higher pitch to an
upward direction, so typical light-curves present brighter magnitudes toward the top of
the plots. The light-curve data are then heard as an even succession of tones in time, as
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the time of the observations are assigned to the elements of the time series. For example,
a light-curve representing an object rising and falling in brightness over time is heard as
sound rising and falling in pitch over time. The data are presented as a sped-up (time-
lapse) version of the data acquisition, which can also be designed to be reflective of data
acquired in unevenly-spaced epochs. Other examples of standard 1-D sonification analysis
are the power spectra (power vs. frequency) and electromagnetic spectra (intensity vs.
time) of astrophysical objects (Dı́az-Merced et al. 2008).

To assess better the data and to help visualise the corresponding 1-D data as typically
plotted, StarSound has an option to present the tones in stereo, a slidebar or trackpad-
activated control to move back and forth through the data, and an ability to mark data
point locations. These capabilities aid the listener to the data location, spatially, on an
imaginary plot in the mind and help to enable more rapid and more natural interrogation
of the data, as the user can move directly to the location of specific data points of
interest. Finally, the combination of data sonification with visual plots enables quicker
classification of data exhibiting similar behaviour, enhances data quality assessments,
and helps discriminate aspects of the data that are difficult to discern using visual cues
alone.

2.2. Multi-parametric data

The presentation of data on 2-D plots is central to the analysis and interpretation of
astronomical data and the communication of results. Often several parameters are anal-
ysed and the results are presented in a number of 2-D plots or, in some cases, 3-D plots
(with or without animation). Capturing multi-parametric information is challenging, and
is typically done by varying symbol size, colour, and shape and/or presenting the param-
eters, two at a time, against each other on multiple plots. That mode of presentation
becomes bulky and inefficient when dealing with more than a few parameters. Moreover,
such data presentations have the weakness of obscuring or over complicating connections
between the multiple parameters where the ability to recognise these connections lies at
the core of understanding and appreciating the underlying physics.

The ability to analyse and interpret multi-parametric data is of great potential utility
to the field of galaxy formation and evolution. For example, one area of our research
investigates the relationships between the Lyman-α transition of hydrogen and over 10
properties of high-redshift galaxies. Lyman-α has been shown in our work, and in pre-
vious work, to have direct relationships to seemingly unconnected internal and external
properties, such as galaxy colour, kinematics, age, large-scale spatial distribution, mor-
phology, gas outflows, mass, and interactions (Shapley et al. 2003; Cooke 2009; Law et al.
2012a,b; Cooke et al. 2013; Foran et al. 2018). Obtaining spectra of high-redshift galaxies
is challenging as a result of their faintness. Because Lyman-α is often their most promi-
nent spectral feature, understanding the complicated relationships between Lyman-α
and the multiple observables provides a means to probe the very early Universe and to
understand the processes of galaxy formation and evolution.

By exploiting properties of sound, data sonification may provide a way of presenting
and analysing multiple parameters simultaneously. If a trumpet or flute were to play
the same note (same frequency) at the same volume and duration, the human ear could
discriminate between the two sounds and identify the associated instrument. This is
because the instruments produce overtones, or higher-order harmonics of the fundamental
frequency, at differing strengths (for example, see Elliott et al. 2013, and their Figure 4).
The combined sound produces the tone quality, or timbre, of the instrument, and that
unique set of strengths of the higher-order harmonics is what the human ear instantly
interprets in order to identify the sound. The concept we are pursuing here is to assign a
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different data parameter to each harmonic frequency with appropriate scaling to enable
the resulting tone to carry instantaneously the full information of the multiple parameters
of an object of interest. With training, the researcher would be able to recognise the values
of the multiple parameters of each data point from a single tone. Objects can thus be
selected or vetted on their properties as a whole, or in part, based on their tonal qualities.
By that means, data sonification can enable an identification and understanding of the
multiple relationships between many parameters in an organized way, leading to clearer
insight into the underlying physical connections as a whole.

2.3. Extracting signal in noisy data

Leading-edge research often pushes the limits of technology, resulting in the need to
examine data that have a low signal-to-noise ratio (S/N). Such data, by definition, are
difficult to reduce and analyse and often too difficult for automation of the analysis
process, thus, leaving the job for human researchers. In addition, current large surveys
are producing data in large volumes that are too great to be examined by humans using
conventional methods. Data sonification can help examine low S/N data in ways that
enhance the efficiency of visual analysis on is own, speed up the analysing process, and
enable the detection of signal that can be missed when only visual inspection is employed.

Writing software to identify and classify signals in low S/N data is very difficult and, to
date, inefficient. Moreover, often the aim is to single out a specific signal in a noisy data
set of similarly significant signals. The human brain is very adept at identifying known or
recognisable sounds amidst noise – a phemonenon commonly referred to as the ‘cocktail
party’ effect (e.g., Bregman 1990). Humans are capable of selective hearing, which is
the ability to detect and focus on a desired sound in a noisy environment consisting of
similarly significant, or more significant, sounds. Moreover, humans can hear data faster
than they can visualise them, and data sonification can take advantage of human non-
linear listening (Rychtáriková et al. 2016). We aim to capitalise on these capabilities for
identifying astrophysical sources in noisy data. Efforts similar to this approach include
the sonification of fast radio-burst data, and gravitational-wave audification.

3. Applications

Data sonification has great potential utility for astronomy and other science disciplines,
as well as business, government and the military. In this Workshop we discussed the
research in which we are implementing data sonification, e.g., our multi-parameter galaxy
research (Section 2.2), and our Deeper, Wider, Faster (DWF) programme†; see p. 135.

DWF coordinates over 40 telescopes worldwide and in space, including radio to
gamma-ray facilities and particle and gravitational-wave detectors, to detect and study
fast transients with durations of milliseconds to hours. Because of the fast, and often
unknown, nature of the transient sources, DWF coordinates high-cadence simultaneous
observations of targeted fields at all wavelengths. The data are processed in real time
(seconds), producing hundreds of transient candidates every few minutes throughout an
observing run. The optical images and evolving light-curves are analysed via software
and human inspection by a team of researchers locally and worldwide. High-priority can-
didates must be confirmed within minutes after the light hits the telescopes to enable
other facilities to react and obtain deep spectroscopy or imaging before the events fade.

The urgency of the data analysis motivates research into the fastest and most accurate
methods of candidate identification and confirmation. Data sonification is being incorpo-
rated to enhance and accelerate discovery, while enabling visually-impaired researchers
and the general public to participate. The large volume of data produced by the DWF

† http://www.dwfprogram.altervista.org/
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programme, and the need for very rapid transient identification, necessitates enhanced
means of analysis. The DWF programme is a current example of the new approaches and
real-time data products that will be produced in future programmes. Lessons learned
from DWF, as well as our high-redshift galaxy research, will have direct applications to
Big Data analyses and upcoming large surveys such as the SKA and LSST. Continued
exploration into data sonification is essential for optimising and managing large and
multi-dimensional data sets, and performing the most accurate and fastest human-based
data analyses.
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