
JFP 25, e12, 59 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S0956796815000118

1

Mtac: A monad for typed tactic programming
in Coq

BETA ZILIANI

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern and Saarbrücken, Germany

(e-mail: beta@mpi-sws.org)

DEREK DREYER

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern and Saarbrücken, Germany

(e-mail: dreyer@mpi-sws.org)

NEELAKANTAN R. KRISHNASWAMI

University of Birmingham, Birmingham, UK

(e-mail: n.krishnaswami@cs.bham.ac.uk)

ALEKSANDAR NANEVSKI

IMDEA Software Institute, Madrid, Spain

(e-mail: aleks.nanevski@imdea.org)

VIKTOR VAFEIADIS

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern and Saarbrücken, Germany

(e-mail: viktor@mpi-sws.org)

Abstract

Effective support for custom proof automation is essential for large-scale interactive proof

development. However, existing languages for automation via tactics either (a) provide no

way to specify the behavior of tactics within the base logic of the accompanying theorem

prover, or (b) rely on advanced type-theoretic machinery that is not easily integrated into

established theorem provers.

We present Mtac, a lightweight but powerful extension to Coq that supports dependently

typed tactic programming. Mtac tactics have access to all the features of ordinary Coq

programming, as well as a new set of typed tactical primitives. We avoid the need to touch

the trusted kernel typechecker of Coq by encapsulating uses of these new tactical primitives

in a monad, and instrumenting Coq so that it executes monadic tactics during type inference.

1 Introduction

The past decade has seen a dramatic rise in both the popularity and sophistication

of interactive theorem proving technology. Proof assistants like Coq and Isabelle

are now eminently effective for formalizing “research-grade” mathematics (Gonthier

2008; Gonthier et al. 2013b), verifying serious software systems (Leroy 2009; Klein

et al. 2010; Chlipala 2011b; Ševčı́k et al. 2013), and, more broadly, enabling

researchers to mechanize and breed confidence in their results. Nevertheless, due

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

2 B. Ziliani et al.

to the challenging nature of the verification problems to which these tools are

applied, as well as the rich higher-order logics they employ, the mechanization of

substantial proofs typically requires a significant amount of manual effort.

To alleviate this burden, theorem provers provide facilities for custom proof

automation, enabling users to instruct the system how to carry out “obvious” or

oft-repeated proof steps automatically. In some systems like Coq, the base logic

of the theorem prover is powerful enough that one can use “proof by reflection”

to implement automation routines within the base logic itself (e.g., Boutin (1997)).

However, this approach is applicable only to pure decision procedures and requires

them to be programmed in a restricted style (so that their totality is self-evident).

In general, one may wish to write automation routines that engage in activities

that even a rich type system like Coq’s does not sanction—routines, for instance,

that do not (provably) terminate on all inputs, that inspect the intensional syntactic

structure of terms, or that employ computational effects.

Toward this end, theorem provers typically provide an additional language

for tactic programming. Tactics support general-purpose scripting of automation

routines, as well as fine control over the state of an interactive proof. However, for

most existing tactic languages (e.g., ML, Ltac), the price to pay for this freedom is

that the behavior of a tactic lacks any static specification within the base logic of

the theorem prover (such as, in Coq, a type). As a result of being untyped, tactics

are known to be difficult to compose, debug, and maintain.

A number of researchers have therefore explored ways of supporting typed tactic

programming. One approach, exemplified by Delphin (Poswolsky & Schürmann

2009), Beluga (Pientka 2008), and most recently VeriML (Stampoulis & Shao 2010),

is to keep a strict separation between the “computational” tactic language and the

base logic of the theorem prover, thus maintaining flexibility in what tactics can

do, but in addition employing rich type systems to encode strong static guarantees

about tactic behavior. The main downside of these systems is a pragmatic one:

they are not programmable or usable interactively, and due to the advanced type-

theoretic machinery they rely on—e.g., for Beluga and VeriML, contextual modal

type theory (Nanevski et al. 2008a)—it is not clear how to incorporate them into

established interactive theorem provers.

A rather different approach, proposed by Gonthier et al. (2013a) specifically in the

context of Coq, is to encapsulate automation routines as overloaded lemmas. Like an

ordinary lemma, an overloaded lemma has a precise formal specification in the form

of a (dependent) Coq type. The key difference is that an overloaded lemma—much

like an overloaded function in Haskell—is not proven (i.e., implemented) once and

for all up front; instead, every time the lemma is applied to a particular goal, the

system will run a user-specified automation routine in order to construct a proof

on the fly for that particular instance of the lemma. To program the automation

routine, one uses Coq’s “canonical structure” (Säıbi 1997) mechanism to declare

a set of proof-building rules—implemented as Coq terms—that will be fired in a

predictable order by the Coq unification algorithm (but may or may not succeed).

In effect, one encodes one’s automation routine as a dependently typed logic program

to be executed by Coq’s type inference engine.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 3

The major benefit of this approach is its integration into Coq: it enables users

to program tactics in Coq directly, rather than in a separate language, while at the

same time offering significant additional expressive power beyond what is available

in the base logic of Coq. The downside, however, is that the logic-programming style

of canonical structures is in most cases not as natural a fit for tactics as a functional-

programming style would be.1 Moreover, canonical structures provide a relatively

low-level language for writing tactics. The control flow of sophisticated canonical

structure programs depends closely on how Coq type inference is implemented,

and thus writing even simple tactics requires one to think at the level of the Coq

unification algorithm, sometimes embracing its limitations and sometimes working

around them. To make up for this, Gonthier et al. (2013a) describe a series of

“design patterns” for programming canonical structures effectively. While these

design patterns are clearly useful, the desire for them nonetheless suggests that there

is a high-level language waiting to be born.

1.1 Mtac: A monad for typed tactic programming in Coq

In this paper, we present a new language—Mtac—for typed tactic programming in

Coq. Like Beluga and VeriML, Mtac supports general-purpose tactic programming

in a direct functional style. Unlike those languages, however, Mtac is not a separate

language, but rather a simple extension to Coq. As a result, Mtac tactics (or as we

call them, Mtactics) have access to all the features of ordinary Coq programming

in addition to a new set of tactical primitives. Furthermore, like overloaded lemmas,

their (partial) correctness is specified statically within the Coq type system itself, and

they are fully integrated into Coq, so they can be programmed and used interactively.

Mtac is thus, to our knowledge, the first language to support interactive, dependently

typed tactic programming.

The key idea behind Mtac is dead simple. We encapsulate tactics in a monad, thus

avoiding the need to change the base logic and trusted kernel typechecker of Coq

at all. Then, we modify the Coq infrastructure so that it executes these monadic

tactics, when requested to do so, during type inference (i.e., during interactive proof

development or when executing a proof script).

More concretely, Mtac extends Coq with:

1. An inductive type family �τ (read as “maybe τ”) classifying Mtactics that—if

they terminate successfully—will produce Coq terms of type τ. The constructors

of this type family essentially give the syntax for a monadically typed tactic

language: they include the usual monadic return and bind, as well as a suite

of combinators for tactic programming with fixed points, exception handling,

pattern matching, and more. (Note: the definition of the type family �τ does

not per se require any extension to Coq—it is just an ordinary inductive type

family.)

1 In terms of expressivity, there are tradeoffs between the two styles—for further discussion, see Section 7.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

4 B. Ziliani et al.

Fig. 1. Mtactic for searching in a list.

2. A primitive tactic execution construct, run t, which has type τ assuming its

argument t is a tactic of type �τ. When (our instrumentation of) the Coq type

inference engine encounters run t, it executes the tactic t. If that execution

terminates, it will either produce a term e of type τ (in which case Coq will

rewrite run t to e) or else an uncaught exception (which Coq will report to

the user). If a proof passes entirely through type inference without incurring

any uncaught exceptions, that means that all instances of run in the proof

must have been replaced with standard Coq terms. Hence, there is no need to

extend the trusted kernel typechecker of Coq to handle run.

1.1.1 Example: Searching in a list

To get a quick sense of what Mtac programming is like, consider the example in

Figure 1. Here, search is a tactical term of type ∀x : A. ∀s : list A. �(x ∈ s). When

executed, search x s will search for an element x (of type A) in a list s (of type

list A), and if it finds x in s, it will return a proof that x ∈ s. Note, however, that

search x s itself is just a Coq term of monadic type �(x ∈ s), and that the execution

of the tactic will only occur when this term is run.

The implementation of search relies on four new features of Mtac that go

beyond what is possible in ordinary Coq programming: it iterates using a potentially

unbounded fixed point mfix (line 2), it case-analyzes the input list s using a new

mmatch constructor (line 3), it raise-s an exception NotFound if the element x was

not found (line 16), and this exception is caught and handled (for backtracking

purposes) using mtry (line 5). These new features, which we will present in detail in

Section 2, are all constructors of the inductive type family �τ. Regarding mmatch,

the reason it is different from ordinary Coq match is that it supports pattern-

matching not only against primitive datatype constructors (e.g., [] and ::) but also

against arbitrary terms (e.g., applications of the ++ function for concatenating two

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 5

lists). For example, search starts out (line 4) by checking whether s is an application

of ++ to two subterms l and r. If so, it searches for x first in l and then in r. In this

way, mmatch supports case analysis of the intensional syntactic structure of open

terms, in the manner of VeriML’s holcase (Stampoulis & Shao 2010) and Beluga’s

case (Pientka 2008).

By run-ning search, we can now, for example, very easily prove the following

lemma establishing that z is in the list [x; y; z]:

Lemma z in xyz (x y z : A) : z ∈ [x; y; z] := run (search)

Note here that we did not even need to supply the inputs to search explicitly: they

were picked up from context, namely the goal of the lemma (z ∈ [x; y; z]), which

Coq type inference proceeds to unify with the output type of the Mtactic search.

1.2 Contributions and overview

In the remainder of this article, we will:

• Describe the design of Mtac in detail (Section 2).

• Give a number of examples to concretely illustrate the benefits of Mtac

programming (Section 3).

• Present the formalization of Mtac, along with meta-theoretic results such as

type soundness (Section 4).

• Explore some technical issues regarding the integration of Mtac into Coq

(Section 5).

• Extend the language to support stateful Mtactics (Section 6).

• Compare with related work and discuss future work (Section 7).

The source code of the Mtac implementation and the examples can be downloaded

from:

http://plv.mpi-sws.org/mtac

This article is an extended version of our ICFP 2013 paper (Ziliani et al. 2013). The

main differences from the conference version are the inclusion of: completely new

material about stateful Mtactics (Section 6); a revised account of Mtac’s operational

semantics, in which (following Coq) unification variables are assigned contextual

types (Section 4.1–4.2); details of the type soundness proof for Mtac (Section 4.3);

extended comparison with related work (Section 7); and a number of mostly minor

corrections. One more significant correction is to the operational semantics of the

abs construct (the EAbs rule in Figure 13, discussed at the end of Section 4.2),

which was missing a key side condition in the original conference paper.

2 Mtac: A language for proof automation

In this section, we describe the syntax and typing of Mtac, our language for typed

proof automation.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

6 B. Ziliani et al.

Fig. 2. The � and Patt inductive types.

2.1 Syntax of Mtac

Mtac extends Coq with a monadic type constructor �τ, representing tactic compu-

tations returning results of type τ, along with suitable introduction and elimination

forms for such computations. We define � : Type → Prop as a normal inductive

predicate in CIC—the Calculus of (co-)Inductive Constructions, which is the base

logic of Coq (Bertot & Castéran 2004)—with constructors that reflect our syntax

for tactic programming, as shown in Figure 2. (We prefer to define � inductively

instead of axiomatizing it in order to cheaply ensure that we do not affect the

logical consistency of CIC.) The � constructors include standard monadic return

and bind (ret, bind), primitives for throwing and handling exceptions (raise, mtry),

a fixed point combinator (mfix), a pattern matching construct (mmatch), and

a printing primitive useful for debugging Mtactics (print). Mtac also provides

more specialized operations for handling parameters and unification variables

(nu, abs, is var, evar, is evar), but we defer explanation of those features until

Section 3.2.

First, let us clear up a somewhat technical point. The reason we define � as

an inductive predicate (i.e., whose return sort is Prop rather than Type) has to do

with the handling of mfix. Specifically, in order to satisfy Coq’s syntactic positivity

condition on inductive definitions, we cannot declare mfix directly with the type

given in Figure 2, since that type mentions the monadic type constructor � in

a negative position. To work around this, in the inductive definition of �τ, we

replace the mfix constructor with a variant, mfix′, in “Mendler style” (Mendler

1991; Hur et al. 2013), i.e., in which references to � are substituted with references

to a parameter �:

mfix′ : ∀A P �. (∀x : A. �(P x)→ �(P x))→
((∀x:A. �(P x))→ (∀x:A. �(P x)))→ ∀x:A. �(P x)

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 7

The mfix from Figure 2 is then recovered simply by instantiating the � parameter

of mfix′ with �, and instantiating its first value parameter with the identity function.

However, due to the inherent “circularity” of this trick, it only works if the type

�τ belongs to an impredicative sort like Prop. (In particular, if �τ were defined in

Type, then while mfix′ would be well-formed, applying mfix′ to the identity function

in order to get an mfix would cause a universe inconsistency.) Fortunately, defining

�τ in Prop has no practical impact on Mtac programming. Note that, in CIC,

Prop : Type; so it is possible to construct nested types such as �(�τ).

Now, on to the features of Mtac. The typing of monadic ret and bind is self-

explanatory. The exception constructs raise and mtry are also straightforward: their

types assume the existence of an exception type Exception. It is easy to define such

a type, as well as a way of declaring new exceptions of that type, in existing Coq

(see Section 5.4 for details). The print statement print takes the string to print onto

the standard output and returns the trivial element.

Pattern matching, mmatch, expects a term of type A and a sequence of pattern

matching clauses of type Patt A P , which match objects x of type A and return

results of type P x. Binding in the pattern matching clauses is represented as a

telescope: Pbase p b describes a ground clause that matches the constant p and has

body b, and Ptele(λx. pc) adds the binder x to the pattern matching clause pc. So,

for example, Ptele(λx. Ptele(λy. Pbase (x+ y) b) represents the clause that matches

an addition expression, binds the left subexpression to x and the right one to y, and

then returns some expression b which can mention both x and y. Another example

is the clause, Ptele(λx. Pbase x b) which matches any term and returns b.

Note that it is also fine for a pattern to mention free variables bound in the

ambient environment (i.e., not bound by the telescope pattern). Such patterns enable

one to check that (some component of) the term being pattern-matched is unifiable

with a specific term of interest. We will see examples of this in the search2 and

lookup Mtactics in Section 3.

In our examples and in our Coq development, we often omit inferrable type

annotations and use the following notation to improve readability of Mtactics:

x← t; t′ denotes bind t (λx. t′)

mfix f (x : τ) : �τ′ := t denotes mfix (λx : τ. τ′) (λf. λx. t)

νx : A. t denotes nu (λx : A. t)

mmatch t denotes mmatch (λx. τ) t

as x return �τ with [

| [x1] p1 ⇒ b1 Ptele x1 (Pbase p1 b1),

.

| [xm] pm ⇒ bm Ptele xm (Pbase pm bm)

end]

mtry t with ps end denotes mtry t (λx.

mmatch x with ps end)

where Ptele x1 · · · xn p means Ptele(λx1. · · · . Ptele(λxn. p)· · ·). Both type annotations

in the mfix and in the mmatch notation (in the latter, denoted as x return �τ) are

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

8 B. Ziliani et al.

optional and can be omitted, in which case the returning type is left to the type

inference algorithm to infer. The mfix construct accepts up to five arguments.

2.2 Running Mtactics

Defining � as an inductive predicate means that terms of type �τ can be destructed

by case analysis and induction. Unlike other inductive types, � supports an addi-

tional destructor: tactic execution. Formally, we extend Coq with a new construct,

run t, that takes an Mtactic t of type �τ (for some τ), and runs it at type-inference

time to return a term t′ of type τ.

Γ
 t : �τ Γ
 t�∗ ret t′

Γ
 run t : τ

We postpone the definition of the tactic evaluation relation, �, as well as a precise

formulation of the rule, to Section 4, but note that since tactic evaluation is type-

preserving, t′ has type τ, and thus τ is inhabited.

3 Mtac by example

In this section, we offer a gentle introduction to the various features of Mtac by

working through a sequence of proof automation examples.

3.1 noalias: Non-aliasing of disjointly allocated pointers

Our first example, noalias, is taken from Gonthier et al. (2013a). The goal is to

prove that two pointers are distinct, given the assumption that they appear in the

domains of disjoint subheaps of a well-defined memory.

In Gonthier et al. (2013a), the noalias example was used to illustrate a rather

subtle and sophisticated design pattern for composition of overloaded lemmas.

Here, it will help illustrate the main characteristics of Mtac, while at the same time

emphasizing the relative simplicity and readability of Mtactics compared to previous

approaches.

3.1.1 Preliminaries

We will work here with heaps (of type heap), which are finite maps from pointers

(of type ptr) to values. We write h1 • h2 for the disjoint union of h1 and h2, and

x �→ v for the singleton heap containing only the pointer x, storing the value v. The

disjoint union may be undefined if h1 and h2 overlap, so we employ a predicate

def h, which declares that h is in fact defined.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 9

3.1.2 Motivating example

With these definitions in hand, let us state a goal we would like to solve automati-

cally:

D : def (h1 • (x1 �→ v1 • x2 �→ v2) • (h2 • x3 �→ v3))

x1 != x2 ∧ x2 != x3

Above the line is a hypothesis concerning the well-definedness of a heap mentioning

x1, x2, and x3, and below the line is the goal, which is to show that x1 is distinct

from x2, and x2 from x3.

Intuitively, the truth of the goal follows obviously from the fact that x1, x2, and

x3 appear in disjoint subheaps of a well-defined heap. This intuition is made formal

with the following lemma (in plain Coq):

noalias manual : ∀(h:heap) (y1 y2:ptr) (w1:A1) (w2:A2).

def (y1 �→ w1 • y2 �→ w2 • h)→ y1 != y2

Unfortunately, we cannot apply this lemma using hypothesis D as it stands, since

the heap that D proves to be well defined is not of the form required by the premise

of the lemma—that is, with the pointers in question (x1 and x2, or x2 and x3) at the

very front of the heap expression. It is of course possible to solve the goal by: (a)

repeatedly applying rules of associativity and commutativity for heap expressions in

order to rearrange the heap in the type of D so that the relevant pointers are at the

front of the heap expression; (b) applying the noalias manual lemma to solve the

first inequality; and then repeating (a) and (b) to solve the second inequality.

But we would like to do better. What we really want is an Mtactic that will

solve these kinds of goals automatically, no matter where the pointers we care

about are located inside the heap. One option is to write an Mtactic to directly

automate the above-mentioned algorithm: perform all the rearrangements necessary

to bring the two pointers in the inequality to the front of the heap, and then apply

noalias manual. However, since such a tactic would end up rearranging the heap

twice, it would be computationally expensive and generate big proof terms.

Instead, we pursue a solution analogous to the one given by Gonthier et al.

(2013a), breaking the problem into two smaller Mtactics scan and search2, which

are then combined in a third Mtactic, noalias.

3.1.3 The Mtactic scan

Figure 3 presents the Mtactic scan. It scans its input heap h to produce a list of

the pointers x appearing in singleton heaps x �→ v in h. More specifically, it returns

a dependent record containing a list of pointers (seq of , of type list ptr), together

with a proof that, if h is well defined, then (1) the list seq of is “unique” (denoted

uniq seq of), meaning that all elements in it are distinct from one another, and (2)

its elements all belong to the domain of the heap.

To do this, scan inspects the heap and considers three different cases. If the heap

is a singleton heap x �→ v, then it returns a singleton list containing x. If the heap

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

10 B. Ziliani et al.

Fig. 3. Mtactic for scanning a heap to obtain a list of pointers.

Fig. 4. Mtactic for searching for two pointers in a list.

is the disjoint union of heaps l and r, it proceeds recursively on each subheap and

returns the concatenation of the lists obtained in the recursive calls. Finally, if the

heap does not match any of the previous cases, then it returns an empty list. (In all

cases, a corresponding proof component is returned as well. We omit the details of

these proofs here, as they are entirely straightforward.)

Note that this case analysis is not possible using Coq’s standard match mechanism,

because match only pattern-matches against primitive datatype constructors. In the

case of heaps, which are really finite maps from pointers to values, x �→ v and l • r
are applications not of primitive data-type constructors but of defined functions (�→
and •). Thus, in order to perform our desired case analysis, we require the ability of

Mtac’s mmatch mechanism to pattern-match against the syntax of heap expressions.

In each case, scan also returns a proof that the output list obeys the afore-

mentioned properties (1) and (2). For presentation purposes, we omit these proofs

(denoted with . . . in the figures), but they are proven as standard Coq lemmas. (We

will continue to omit proofs in this way throughout the paper when they present no

interesting challenges. The reader can find them in the source files.)

3.1.4 The Mtactic search2

Figure 4 presents the Mtactic search2. It takes two elements x and y and a list s

as input, and searches for x and y in s. If successful, search2 returns a proof that,

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 11

Fig. 5. Mtactic for proving that two pointers do not alias.

if s is unique, then x is distinct from y. Similarly to scan, this involves a syntactic

inspection and case analysis of the input list s.

When s contains x at the head (i.e., s is of the form x :: s′), search2 searches for y

in the tail s′, using the Mtactic search from Section 1.1. If this search is successful,

producing a proof r : y ∈ s′, then search2 concludes by composing this proof

together with the assumption that s is unique, using the easy lemma foundx pf:

foundx pf : ∀x y : ptr. ∀s : list ptr.
y ∈ s→ uniq (x :: s) → x != y

(In the code, the reader will notice that foundx pf is not passed the arguments y

and s explicitly. This is because y and s are inferrable from the type of r and may

thus be treated as implicit arguments.)

If s contains y at the head, search2 proceeds analogously. If the head element is

different from both x and y, then it calls itself recursively with the tail. In any other

case, it throws an exception.

Note that, in order to test whether the head of s is x or y, we rely crucially on

the ability of patterns to mention free variables from the context. In particular, the

difference between the first two cases of search2’s mmatch and the last one is that

the first two do not bind x and y in their telescope patterns (thus requiring the head

of the list in those cases to be syntactically unifiable with x or y, respectively), while

the third does bind z in its telescope pattern (thus enabling z to match anything).

3.1.5 The Mtactic noalias

Figure 5 shows the very short code for the Mtactic noalias, which stitches scan and

search2 together. The type of noalias is as follows:

∀h : heap. def h→ �(∀x y. �(x != y))

As the two occurrences of � indicate, this Mtactic is staged : it takes as input a

proof that h is defined and first runs the scan Mtactic on h, producing a list of

pointers sc, but then it immediately returns another Mtactic. This latter Mtactic in

turn takes as input x and y and searches for them in sc. The reason for this staging

is that we may wish to prove non-aliasing facts about different pairs of pointers in

the same heap. Thanks to staging, we can apply noalias to some D just once and

then reuse the Mtactic it returns on many different pairs of pointers, thus avoiding

the need to rescan h redundantly.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

12 B. Ziliani et al.

At the end, the proofs returned by the calls to scan and search2 are composed

using a combine lemma with the following type:

Lemma combine h x y (sc : form h) :

(uniq (seq of sc)→ x != y)→ def h→ x != y.

This lemma is trivial to prove by an application of the cut rule.

3.1.6 Applying the Mtactic noalias

The following script shows how noalias can be invoked in order to solve the

motivating example from the beginning of this section:

pose F := run (noalias D)

split; refine run (F)

When Coq performs type inference on the run in the first line, that forces the

execution of (the first scan-ning phase of) the Mtactic noalias on the input

hypothesis D, and the standard pose mechanism then binds the result to F . This F

has the type

∀x y : ptr. �(x != y)

In the case of our motivating example, F will be an Mtactic that, when passed

inputs x and y, will search for those pointers in the list [x1; x2; x3] output by the

scan phase.

The script continues with Coq’s standard split tactic, which generates two subgoals,

one for each proposition in the conjunction. For our motivating example, it generates

subgoals x1 != x2 and x2 != x3. We then solve both goals by executing the Mtactic

F . When F is run to solve the first subgoal, it will search for x1 and x2 in [x1; x2; x3]

and succeed; when F is run to solve the second subgoal, it will search for x2 and x3

in [x1; x2; x3] and succeed. QED. Note that we provide the arguments to F implicitly

(as). As in the proof of the z in xyz lemma from Section 1.1, these arguments

are inferred from the respective goals being solved. In order to make this inference

happen, we use the refine tactic instead of apply (see Section 5 for further discussion

of this point).

3.1.7 Developing Mtactics interactively

One key advantage of Mtac is that it works very well with the rest of Coq, allowing

us among other things to develop Mtactics interactively.

For instance, consider the code shown in Figure 6. This is an interactive de-

velopment of the search2 Mtactic, where the developer knows the overall search

structure in advance, but not the exact proof terms to be returned, as this can

be difficult in general. Here, we have prefixed the definition with the keyword

Program (Sozeau 2007), which allows us to omit certain parts of the definition

by writing underscores. Program instructs the type inference mechanism to treat

these underscores as unification variables, which—unless instantiated during type

inference—are exposed as proof obligations. In our case, none of these underscores

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 13

Fig. 6. Interactive construction of search2 using Program.

is resolved, and so we are left with three proof obligations. Each of these obligations

can then be solved interactively within a Next Obligation . . .Qed block.

Finally, it is worth pointing out that within such blocks, as well as within the

actual definitions of Mtactics, we could be running other more primitive Mtactics.

3.2 tauto: A simple first-order tautology prover

With this next example, we show how Mtac provides a simple but useful way

to write tactics that manipulate contexts and binders. Specifically, we will write

an Mtactic implementing a rudimentary tautology prover, modeled after those

found in the work on VeriML (Stampoulis & Shao 2010) and Chlipala’s CPDT

textbook (Chlipala 2011a). Compared to VeriML, our approach has the benefit that

it does not require any special type-theoretic treatment of contexts: for us, a context

is nothing more than a Coq list. Compared to Chlipala’s Ltac version, our version

is typed, offering a clear static specification of what the tautology prover produces,

if it succeeds.

To ease the presentation, we break the problem in two. First, we show a simple

propositional prover that uses the language constructs we have presented so far.

Second, we extend this prover to handle first-order logic, and we use this extension

to motivate some additional features of Mtac.

3.2.1 Warming up the engine: A simple propositional prover

Figure 7 displays the Mtactic for a simple propositional prover, taking as input a

proposition p and, if successful, returning a proof of p:

prop-tauto : ∀p : Prop. �p

The Mtactic only considers three cases:

• p is True. In this case, it returns the trivial proof I.

• p is a conjunction of p1 and p2. In this case, it proves both propositions and

returns the introduction form of the conjunction (conj r1 r2).

• p is a disjunction of p1 and p2. In this case, it tries to prove the proposition p1,

and if that fails, it tries instead to prove the proposition p2. The corresponding

introduction form of the disjunction is returned (or introl r1 or or intror r2).

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

14 B. Ziliani et al.

Fig. 7. Mtactic for a simple propositional tautology prover.

• Otherwise, it raises an exception, since no proof could be found.

3.2.2 Extending to first-order logic

We now extend the previous prover to support first-order logic. This extension

requires the tactic to keep track of a context for hypotheses, which we model as a

list of (dependent) pairs pairing hypotheses with their proofs. More concretely, each

element in the hypothesis context has the type dyn = Σp : Prop. p. (In Coq, this is

encoded as an inductive type with constructor Dyn p x, for any x : p.)

Figure 8 shows the first-order logic tautology prover tauto. The fixed point takes

the proposition p and is additionally parameterized over a context (c : list dyn). The

first three cases of the mmatch are similar to the ones in Figure 7, with the addition

that the context is passed around in recursive calls.

Before explaining the cases for →, ∀ and ∃, let us start with the last one (line 29),

since it is the easiest. In this last case, we attempt to prove the proposition in question

by simply searching for it in the hypothesis context. The search for the hypothesis

p′ in the context c is achieved using the Mtactic lookup shown in Figure 9. lookup

takes a proposition p and a context. It traverses the context linearly in the hope

of finding a dependent pair with p as the first component. If it finds such a pair,

it returns the second component. Like the Mtactic search2 from Section 3.1, this

simple lookup routine depends crucially on the ability to match the propositions in

the context syntactically against the p for which we are searching.

Returning to the tautology prover, lines 15–18 concern the case where p = p1 → p2.

Intuitively, in order to prove p1 → p2, one would (1) introduce a parameter y

witnessing the proof of p1 into the context, (2) proceed to prove p2 having y : p1 as

an assumption, and (3) abstract any usage of y in the resulting proof. The rationale

behind this last step is that if we succeed proving p2, then the result is parametric

over the proof of p1, in the sense that any proof of p1 will suffice to prove p2. Steps

(1) and (3) are performed by two of the operators we have not yet described: nu

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 15

Fig. 8. Mtactic for a simple first-order tautology prover.

Fig. 9. Mtactic to look up a proof of a proposition in a context.

and abs (the former is denoted by the νx binder). In more detail, the three steps are

as follows:

Line 16: It creates a parameter y : p1 using the constructor nu. This constructor has

type

nu : ∀(A B : Type). (A→ �B)→ �B

(where A and B are left implicit). It is similar to the operator with the same name

in Nanevski (2002) and Schürmann et al. (2005). Operationally, νx : τ. f (which

is notation for nu (λx : τ. f)) creates a parameter y with type τ, pushes it into the

local context, and executes f{y/x} (where ·{·/·} is the standard substitution) in

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

16 B. Ziliani et al.

the hope of getting a value of type B. If the value returned by f refers to y, then it

causes the tactic execution to fail: such a result would lead to an ill-formed term

because y is not bound in the ambient context. This line constitutes the first step

of our intuitive reasoning: we introduce the parameter y witnessing the proof of

p1 into the context.

Line 17: It calls tauto′ recursively, with context c extended with the parameter y,

and with the goal of proving p2. The result is bound to r. This line constitutes the

second step.

Line 18: The result r created in the previous step has type p2. In order to return an

element of the type p1 → p2, we abstract y from r, using the constructor

abs : ∀(A : Type) (P : A→ Type) (y : A).

P y → �(∀x : A. P x)

(with A, P implicit). Operationally, abs y r checks that the first parameter y is

indeed a variable, and returns the function

λx : A. r{x/y}

In this case, the resulting element has type ∀x : p1. p2, which, since p2 does not

refer to x, is equivalent to p1 → p2. This constitutes the last step: by abstracting

over y in the result, we ensure that the resulting proof term no longer mentions

the ν-bound variable (as required by the use of nu in line 16).

Lines 19–22 consider the case that the proposition is an abstraction ∀x : A. q x.

Here, q is the body of the abstraction, represented as a function from A to Prop.

We rely on Coq’s use of higher-order pattern unification (Miller 1991) to instantiate

q with a faithful representation of the body. The following lines mirror the body

of the previous case, except for the recursive call. In this case, we do not extend

the context with the parameter y, since it is not a proposition. Instead, we try to

recursively prove the body q replacing x with y (that is, applying q to y).

If the proposition is an existential ∃x : A. q x (line 23), then the prover performs

the following steps:

Line 24: It uses Mtac’s evar constructor to create a fresh unification variable

called X.

Line 25: It calls tauto′ recursively, replacing x for X in the body of the existential.

Lines 26–28: It uses Mtac’s is evar mechanism to check whether X is still an

uninstantiated unification variable. If it is, then it raises an exception, since no

proof could be found. If it is not—that is, if X was successfully instantiated in

the recursive call—then it returns the introduction form of the existential, with

X as its witness. In case the reader wonders how X could have been instantiated

during the recursive call, the answer is that it could happen during the lookup

of a hypothesis to solve the goal. For instance, consider the goal ∃x. P x, for

some proposition P , under hypothesis P 42. After creating a meta-variable X as

witness for the existential, the prover will try to solve the goal P X. At this point,

the lookup function will try to unify P X with any of the available hypotheses,

and will find that P 42 is unifiable with P X by instantiating X with 42.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 17

Now we are ready to prove an example, where P : nat→ Prop:

Definition exmpl : ∀P x. P x→ ∃y. P y := run (tauto []).

The proof term generated by run is

exmpl = λP x (H : P x). ex intro P x H

3.3 Inlined proof automation

Due to the tight integration between Mtac and Coq, Mtactics can be usefully

employed in definitions, notations, and other Coq terms, in addition to interactive

proving. In this respect, Mtac differs from related systems like VeriML (Stampoulis

& Shao 2010) and Beluga (Pientka 2008), in which (to the best of our knowledge)

such expressiveness is not currently available due to the strict separation between the

object logic and the automation language. (For further discussion of those systems,

see Section 7.)

In this section, we illustrate how Mtactics can be invoked from Coq proper. To

set the stage, consider the scenario of developing a library for n-dimensional integer

vector spaces, with the main type vector n defined as a record containing a list of

nats and a proof that the list has size n:

Record vector (n : nat) := Vector {
seq of : list nat;

: size seq of = n}.
One of the important methods of the library is the accessor function ith, which

returns the ith element of the vector, for i < n. One implementation possibility is for

ith to check at run time if i < n, and return an option value to signal when i is out

of bounds. The downside of this approach is that the clients of ith have to explicitly

discriminate against the option value. An alternative is for ith to explicitly request a

proof that i < n as one of its arguments, as in the following type ascription:

ith : ∀n:nat.vector n→ ∀i:nat.i < n→ nat

Then the clients have to construct a proof of i < n before invoking ith, but we

show that in some common situations, the proof can be constructed automatically

by Mtac and then passed to ith.

Specifically, we describe an Mtactic compare, which automatically searches for a

proof that two natural numbers n1 and n2 satisfy n1 � n2. compare is incomplete,

and if it fails to find a proof, because the inequality does not hold, or because the

proof is too complex, it raises an exception.

Once compare is implemented, it can be composed with ith as follows. Given

a vector v whose size we denote as vsize v, and an integer i, we introduce the

following notation, which invokes compare to automatically construct a proof that

i + 1 � vsize v (equivalent to i < vsize v).

Notation ”[’ith’ v i]” :=

(@ith v i (run (compare (i+1) (vsize v))))

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

18 B. Ziliani et al.

Fig. 10. Mtactic for proving inequalities between nat’s.

The notation can be used in definitions. For example, given vectors v1, v2 of fixed

size 2, we could define the inner product of v1 and v2 as follows, letting Coq figure

out automatically that the indices 0, 1 are within bounds.

Definition inner prod (v1 v2 : vector 2) :=

[ith v1 0] × [ith v2 0] + [ith v1 1] × [ith v2 1].

If we tried to add the summand [ith v1 2] × [ith v2 2], where the index 2 is out of

bounds, then compare raises an exception, making the whole definition ill-typed.

Similarly, if instead of vector 2, we used the type vector n, where n is a variable,

the definition will be ill-typed, because there is no guarantee that n is larger than 1.

On the other hand, the following is a well-typed definition, as the indices k and n

are clearly within the bound n + k + 1.

Definition indexing n k (v : vector (n + k + 1)) :=

[ith v k] + [ith v n].

We proceed to describe the implementation of compare, presented in Figure 10.

compare is implemented using two main helper functions. The first is the Mtactic

to ast, which reflects2 the numbers n1 and n2. More concretely, to ast takes an integer

expression and considers it as a syntactic summation of a number of components.

It parses this syntactic summation into an explicit list of summands, each of which

can be either a constant or a free variable (subexpressions containing operations

other than + are treated as free variables).

The second helper is a CIC function cancel which cancels the common terms

from the syntax lists obtained by reflecting n1 and n2. If all the summands in the

syntax list of n1 are found in the syntax list of n2, then it must be that n1 � n2 and

cancel returns the boolean true. Otherwise, cancel does not search for other ways

of proving n1 � n2 and simply returns false to signal the failure to find a proof.

This failure ultimately results in compare raising an exception. Notice that cancel

cannot directly work on n1 and n2; it has to receive their syntactic representation

from to ast (in the code of compare these are named term of r1 and term of r2,

respectively). The reason is that cancel has to compare names of variables appearing

in n1 and n2, as well as match against occurrences of the (non-constructor) function

+, and such comparisons and matchings are not possible in CIC.

2 In the literature, this step is also known as reification.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 19

Alternatively, we could use mmatch to implement cancel in Mtac, but there are

good reasons to prefer a purely functional Coq implementation when one is possible,

as is the case here. With a pure cancel, compare can return a very short proof

term as a result (e.g., (sound n1 n2 r1 r2) in the code of compare). An Mtac

implementation would have to expose the reasoning behind the soundness of the

Mtactic at a much finer granularity, resulting in a larger proof.

We next describe the implementations of the two helpers.

3.3.1 Data structures for reflection

There are two main data structures used for reflecting integer expressions. As each

expression is built out of variables, constants and +, we syntactically represent the

sum as term containing a list of syntactic representations of variables appearing in

the expression, followed by a nat constant that sums up all the constants from the

expression. We also need a type of variable contexts ctx, in order to determine the

syntactic representation of variables. In our case, a variable context is simply a list

of nat expression, each element standing for a different variable, and the position of

the variable in the context serves as the variable’s syntactic representative.

Definition ctx := list nat

Record var := Var of nat

Definition term := (list var)× nat

Example 1

The expression n = (1 + x) + (y + 3) may be reflected using a variable context

c = [x, y], and a term ([Var 0,Var 1], 4). Var 0 and Var 1 correspond to the two

variables in c (x and y, respectively). 4 is the sum of the constants appearing in n.

Example 2

The syntactic representations of 0, successor constructor S , addition and an individ-

ual variable may be given as the following term constructors. We use .1 and .2 to

denote projections out of a pair.

Definition syn zero : term := ([], 0).

Definition syn succ (t : term) := (t.1, t.2 + 1).

Definition syn add (t1 t2 : term) :=

(t1.1 ++ t2.1, t1.2 + t2.2).

Definition syn var (i : nat) := ([Var i], 0).
In prose, 0 is reflected by an empty list of variable indexes, and 0 as a constant

term; if t is a term reflecting n, then the successor S n is reflected by incrementing

the constant component of t, etc.

We further need a function interp that takes a variable context c and a term t,

and interprets t into a nat, as follows.

interp vars (c : ctx) (t : list var) :=

if t is (Var j) :: t’ then

if (vlook c j, interp c t’) is (Some v, Some e)

then Some (v + e) else None

else Some 0.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

20 B. Ziliani et al.

interp (c : ctx) (t : term) :=

if interp vars c t.1 is Some e

then Some (e + t.2) else None.

First, interp vars traverses the list of variable indices of t, turning each index into

a natural number (by looking it up in the context c) and summing the results. The

lookup function vlook c j is omitted here, but it either returns Some jth element of

the context c, or None if c has fewer than j elements. Then, interp simply adds the

result of interp vars to the constant part of the term. For example, if the context

c = [x, y] and term t = ([Var 0,Var 1], 4), then interp c t equals Some (x + y + 4).

3.3.2 Reflection by to ast

The to ast Mtactic is applied twice in compare: once to reflect n1, and again to

reflect n2. Each time, to ast is passed as input a variable context, and it extends this

context with new variables encountered during reflection. To reflect n1 in compare,

to ast starts with the empty context [], and to reflect n2, it starts with the context

obtained after the reflection of n1. This ensures that if the reflections of n1 and n2

encounter the same variables, they will use the same syntactic representations for

them.

The invariants associated with to ast are encoded in the data structure ast

(Figure 11). ast is indexed by the input context c and the number n to be reflected.

Upon successful termination of to ast, the term of field contains the term reflecting

n, and the ctx of field contains the new variable context, potentially extending c.

The third field of ast is a proof formalizing the described properties of term of and

ctx of .

As shown in Figure 11, the Mtactic to ast takes the input variable context c and

the number n to be reflected, and it traverses n trying to syntactically match the head

construct of n with 0, S or +, respectively. In each case it returns an ast structure

containing the syntactic representation of n, e.g.: syn zero, syn succ or syn add,

respectively. In the n1 + n2 case, to ast recurses into n2 using the variable context

that is returned from reflection of n1 (similarly to how the top level of compare is

implemented). In each case, the Ast constructor is supplied a proof that we omit but

can be found in the sources. In the default case, when no constructor matches, n is

treated as a variable. The Mtactic find n c (omitted here) searches for n in c and

returns a ctx× nat pair. If n is found, the pair consists of the old context c and the

position of n in c. If n is not found, the pair consists of a new context, in which n

is cons-ed to c, and the index k, where k is the index of n in the new context. to ast

then repackages the context and the index into an ast structure.

3.3.3 Canceling common variables

The cancel function is presented in Figure 12. It takes terms t1 and t2 and tries to

determine if t1 and t2 syntactically represent two �-related expressions by cancelling

common terms, as we described previously. First, the helper cancel vars iterates

over the list of variable representations of t1, trying to match each one with a

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 21

Fig. 11. Mtactic for reflecting nat expressions.

Fig. 12. Algorithm for canceling common variables from terms.

variable representation in t2 (in the process, removing the matched variables by

using yet another helper function remove vars, omitted here). If the matching is

successful and all variables of t1 are included in t2, then cancel merely needs to

check if the constant of t1 is smaller than the constant of t2.

We conclude the example with the statement of the correctness lemma of cancel,

which is the key component of the soundness proof for compare. We omit the proof

here, but it can be found in our Coq files.

Lemma sound n1 n2 (a1 : ast [] n1) (a2 : ast (ctx of a1) n2) :

cancel (term of a1) (term of a2)→
n1 � n2.

In prose, let a1 and a2 be reflections of n1 and n2 respectively, where the reflection of

a1 starts in the empty context, and the reflection of a2 starts in the variable context

returned by a1. Then running cancel in the final context of a2 over the reflected

terms of a1 and a2 returns true only when it is correct to do so; that is, only when

n1 � n2.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

22 B. Ziliani et al.

4 Operational semantics and type soundness

In this section, we present the operational semantics and type soundness of Mtac.

The presentation here differs from the one in the original conference version of this

article (Ziliani et al. 2013) in that here we give a more accurate treatment of Coq’s

unification variables and the “contextual types” assigned to them. After presenting

the rules of the semantics (Section 4.1), we provide more motivation for the use

of contextual types (Section 4.2), before giving details of the type soundness proof

(Section 4.3). Along the way, we motivate by example a number of our design

decisions.

4.1 Rules of the semantics

First, some preliminaries. We write A,B, C for CIC type variables, τ for CIC types,

ρ for CIC type predicates (functions returning types), e for CIC terms, f for CIC

functions, and t for Mtactics, i.e., CIC terms of type �τ for some type τ. The

operational semantics of Mtac defines the judgment form

Σ; Γ
 t� (Σ′; t′)

where Γ is the typing context containing parameters and (let-bound) local definitions,

and Σ and Σ′ are contexts for unification variables ?x. Both kinds of contexts contain

both variable declarations (standing for parameters and uninstantiated unification

variables, respectively) and definitions (let-bound variables and instantiated unifica-

tion variables, respectively). The syntax for contexts is

Γ ::= · | Γ, x : τ | Γ, x : τ := e

Σ ::= · | Σ, ?x : τ[Γ] | Σ, ?x : τ[Γ] := e

These contexts are needed for weak head reduction of CIC terms (Σ; Γ
 e
whd
� e′),

but also for some of Mtac’s constructs. The types of unification variables are

annotated with a “local context”, as in τ[Γ], in which Γ should bind a superset of

the free variables of τ. The reason for having such local contexts will be discussed

below (Section 4.2).

As is usual in Coq, we omit function arguments that can be inferred by the

type inference engine (typically, the type arguments). In some cases, however, it is

required, or clearer, to explicitly spell out all of the arguments, in which case we

adopt another convention from Coq: prepending the @ symbol to the function

being applied.

We assume that the terms are well typed in their given contexts, and we ensure

that this invariant is maintained throughout execution. Tactic computation may

either (a) terminate successfully returning a term, ret e, (b) terminate by throwing an

exception, raise e, (c) diverge, or (d) get blocked. (We explain the possible reasons

for getting blocked below.) Hence, we have the following tactic values:

Definition 1 (Values)

v ∈ Values ::= ret e | raise e .

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 23

Fig. 13. Operational small-step semantics.

Figure 13 shows our operational semantics. The first rule (EReduc) performs a

CIC weak head reduction step. As mentioned, weak head reduction requires both

contexts because, among other things, it will unfold definitions of variables and

unification variables in head position. For a precise description of Coq’s standard

reduction rules, see Section 4.3 of Coq’s Reference Manual (The Coq Development

Team 2012).

It is important to note that the decision to evaluate lazily instead of strictly is

deliberate. Weak head reduction preserves the structure of terms, which is crucial

to avoid unnecessary reductions, and to produce smaller proof terms. Take for

instance the search example in Section 1.1. The proof showing that x is in the list

[z; y;w]++[x] consists of one application of the lemma in or app to the lemma

in eq. In contrast, the proof showing that x is in the list [z; y;w; x] (the result of

forcing the execution of [z; y;w]++[x]) consists of three applications of the lemma

in cons to the lemma in eq. Were we to use call-by-value reduction, it would force

the reduction of the append and thus result in a larger proof term. Moreover, the

expressivity of Mtac would be diminished, since reducible patterns would not be

matched against in their expanded form.

The next seven rules, concerning the semantics of Mtac fixed points (EFix), bind

(EBindS, EBindR, and EBindE), and mtry (ETryS, ETryR, and ETryE), are all

quite standard.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

24 B. Ziliani et al.

The most complex rule is the subsequent one concerning pattern matching

(EMmatch). It matches the term e with some pattern described in the list ps.3 Each

element psi of ps is a pair containing a pattern p and a body b, abstracted over a list

of (dependent) variables x : τ. Since patterns are first-class citizens in CIC, psi is first

reduced to weak head normal form in order to expose the pattern and the body. The

normalization relation is written
whd
� ∗ and, as with the weak head reduction relation,

it requires the two contexts. Then, we replace each variable x in the pattern p with

a corresponding unification variable ?y and proceed to unify the result with term

e. For this, the context Σ is extended with the freshly created unification variables

?y. For each ?yk , the type τk is created within the context Γ′k , which is the original

context Γ extended with the variables appearing to the left of variable xk in the list

x : τ. After unification is performed, a new unification variable context is returned

that might not only instantiate the freshly generated unification variables ?y, but

may also instantiate previously defined unification variables. (Instantiating such

unification variables is important, for instance, to instantiate the existentials in the

tautology prover example of Section 3.2). The unification variables appearing in the

body of the pattern are substituted with their definitions, denoted as Σ′(b′), where b′

is the body after substituting the pattern variables with the unification variables, i.e.,

b′ = b{?y1[idΓ′1
]/x1} · · · {?yn[idΓ′n]/xn}. Here, [idΓ′k

] refers to the identity substitution

for variables in Γ′k; its use will be explained in detail in the discussion of Example 4

(Section 4.2 below). Finally, we require that patterns are tried in sequence, i.e., that

the scrutinee, e, should not be unifiable with any previous pattern psj . In case no

patterns match the scrutinee, the mmatch is blocked.

The semantics for pattern matching is parametric with respect to the unification

judgment and thus does not rely on any particular unification algorithm. (Our

implementation uses Coq’s standard unification algorithm.) We observe that our

examples, however, implicitly depend on higher-order pattern unification (Miller

1991). Higher-order unification is in general undecidable, but Miller identified

a decidable subset of problems, the so-called pattern fragment, where unification

variables appear only in equations of the form ?f x1 . . . xn ≈ e, with x1, . . . , xn
distinct variables. The ∀ and ∃ cases of the tautology prover (Section 3.2) fall into

this pattern fragment, and their proper handling depends on higher-order pattern

unification.

Another notable aspect of Coq’s unification algorithm is that it equates terms up

to definitional equality. In particular, if a pattern match at first does not succeed,

Coq will take a step of reduction on the scrutinee, try again, and repeat. Thus, the

ordering of two patterns in a mmatch matters, even if it seems the patterns are

syntactically non-overlapping. Take for instance the search example in Section 1.1.

If the pattern for concatenation of lists were moved after the patterns for consing,

then the consing patterns would actually match against (many) concatenations as

3 In some cases, the return type of the pattern matching may depend on the parameters of the type
being pattern matched (the in keyword in Coq’s pattern matching). Mtac, for the moment, does not
supply an equivalent keyword for mmatch, although it is possible to achieve the same results indirectly
by pattern matching the parameters prior to matching the element.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 25

well, since the concatenation of two lists is often reducible to a term of the form

h :: t.

Related to this, the last aspect of Coq’s unification algorithm that we depend on

is its first-order approximation. That is, in the presence of an equation of the form

c e1 . . . en ≈ c e′1 . . . e′n, where c is a constant, the unification algorithm tries to

equate each ei ≈ e′i. While this may cause Coq to miss out on some solutions, it has

the benefit of being simple and predictable. For instance, consider the equation

?l++?r ≈ []++(h :: t)

that might result from matching the list []++(h :: t) with the pattern for concatena-

tion of lists in the search example from Section 1.1, with ?l and ?r fresh unification

variables. Here, although there exist many solutions, the algorithm assigns ?l := []

and ?r := (h :: t), an assignment that is intuitively easy to explain.4

Coming back to the rules, next is the rule for evarτ (EEvar), which simply extends

Σ with a fresh uninstantiated unification variable of the appropriate type. Note that

it is always possible to solve a goal by returning a fresh unification variable. But

a proof is only complete if it is closed and, therefore, before QED time, every

unification variable has to be instantiated. The two following rules (EEIsVarT and

EEIsVarF) govern is evar e and check whether an expression (after reduction to

weak head normal form) is an uninstantiated unification variable.

The next two rules (ENuS and ENuV) define the semantics of the νx binder: the

parameter x is pushed into the context, and the execution proceeds until a value is

reached. The computed value is simply returned if it does not contain the parameter,

x; otherwise, νx. v is blocked. The rule EAbs is for abstracting over parameters.

If the first (explicit) argument of abs weak-head reduces to a parameter, then we

abstract it from the second (explicit) argument of abs, thereby returning a function.

In order to keep a sound system, we need to check that the return type and the

local context do not depend on the variable being abstracted, as discussed below in

Example 5.

The astute reader may wonder why we decided to have νx and abs instead of one

single constructor combining the semantics of both. Such a combined constructor

would always abstract the parameter x from the result, therefore avoiding the final

check that the parameter is not free in the result. The reason we decided to keep nu

and abs separate is simple: it is not always desirable to abstract the parameters in

the same order in which they were introduced. This is the case, for instance, in the

Mtactic skolemize for skolemizing a formula (provided in the Mtac distribution).

Moreover, sometimes the parameter is not abstracted at all, for instance in the

Mtactic fv for computing the list of free variables of a term (also provided in

the Mtac distribution).

4 For those familiar with Ltac, there are several differences between our mmatch and Ltac’s match.
In particular, the latter (1) does not reduce terms during unification, (2) uses an unsound unification
algorithm, unlike Mtac (Section 4.3), and (3) backtracks upon (any kind of) failure, making it more
difficult to understand the flow of tactic execution.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

26 B. Ziliani et al.

Finally, the last rule (EPrint) replaces a printing command with the trivial value

〈〉. Informally, we also print out the string s to the standard output, although

standard I/O is not formally modeled here.

Example 3

We show the trace of a simple example, in order to give the reader a feel for the

operational semantics. In this example, Γ = {h : nat}.

let s := (h :: [])++[] in search h s

We want to show that the final term produced by running this Mtactic expresses

the fact that h was found at the head of the list on the left of the concatenation,

that is,

in or app (h :: []) [] (or introl (in eq h []))

First, the let is expanded, obtaining

search h ((h :: [])++[])

Then, after expanding the definition of search and β-reducing the term, we are left

with the fixpoint being applied to the list:

(mfix f (s : list A) := . . .) ((h :: [])++[])

At this point the rule for mfix triggers, exposing the mmatch:

mmatch ((h :: [])++[]) with . . . end

Thanks to first-order approximation, the case for append is unified, and its body is

executed:

mtry il ← f (h :: []); ret . . . with ⇒ . . . end (1)

where f stands for the fixpoint. The rule ETryS executes the code for searching for

the element in the sublist (h :: []):

il ← f (h :: []); ret (in or app (h :: []) [] h (or introl il)) (2)

The rule EBindS triggers, after which the fixpoint is expanded and a new mmatch

exposed:

mmatch (h :: []) with . . . end

This time, the rule for append fails to unify, but the second case succeeds, returning

the result in eq h []. Coming back to (2), il is replaced with this result, getting the

expected final result that is in turn returned by the mtry of (1).

As a last remark, notice how at each step the selected rule is the only applicable

one: the semantics of Mtac is deterministic.

4.2 Unification variables and contextual types

At the beginning of this section, we mentioned that unification variables have

contextual types, but we did not explain why. To motivate them, consider the

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 27

following scenario. Suppose we define a function f as follows:

f := λw : nat. run (evarnat)

When this function is elaborated, it will become λw : nat. ?u[w/w] for some fresh

unification variable ?u : nat[w : nat]. The contextual type of ?u specifies that ?u may

only be instantiated by a term with at most a single free type variable w of type nat,

and the suspended substitution [w/w] specifies how to transform such a term into

one that is well-typed under the current context. (The substitution is the identity at

first, because the current context and the context under which ?u was created are

both w : nat.)

Now suppose that we define

g := λx y : nat. f x h := λz : nat. f z

and then at some point we attempt to solve the following unification problem:

g ≈ λx y : nat. x (3)

Should this unification succeed, and if so, what should it instantiate ?u with? First,

to solve the unification goal, Coq will attempt to unify f x ≈ x, and then, after

β-reducing f x, to unify ?u[x/w] ≈ x. This is where the contextual type of ?u comes

into play. If we did not have the contextual type (and suspended substitution) for ?u,

it would seem that the only solution for ?u is x, but that solution would not make

any sense at the point where ?u appears in h, since x is not in scope there. Given

the contextual information, however, Coq will correctly realize that ?u should be

instantiated with w, not x. Under that instantiation, g will normalize to λx y : nat. x,

and h will normalize to λz : nat. z.

In the rules in Figure 13, there are two places where contextual types and

suspended substitutions are relevant: the rule for creation of unification variables

(EEvar) and the rule for pattern matching (EMmatch). In EEvar, the new unification

variable ?x is created with contextual type τ[Γ], where Γ is a copy of the local

context coming from the evaluation judgment. The returned value is ?x applied to

the identity suspended substitution idΓ, as seen in the above example. In EMmatch,

every pattern variable ?yk is created with the contextual type τk[Γ
′
k]. Γ

′
k is the context

Γ extended with the prior variables in the telescope x1, . . . , xk−1. In order to marry

the context in the contextual type with the local context Γ, each unification variable

?yk is applied, as before, with the identity suspended substitution.

There is another, more subtle use of contextual types in EMmatch: the unification

condition. In Mtac, the unification algorithm is in charge of instantiating unification

variables. As we saw in the previous example, it cannot instantiate unification

variables arbitrarily, as it may end up with an ill-typed meta-substitution. For this

reason, it uses the suspended substitution to know how to instantiate the unification

variable. Explaining the complex process of unification in a language like Coq is

beyond the scope of this paper, but we can give an intuitive hint: when Coq faces

a problem of the form

?u[y1/x1, . . . , yn/xn] ≈ e

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

28 B. Ziliani et al.

where the y1, . . . , yn are all distinct, then this equation falls into the pattern fragment

discussed above (Miller 1991). In this case, the solution to the problem is to invert

the substitution and apply it on the right- hand side of the equation, in other words

instantiating ?u with e{x1/y1, . . . , xn/yn} (assuming the free variables of e are in

{y1, . . . , yn}). In the example (3) above, for instance, at the point where Coq tries

to unify ?u[x/w] ≈ x, the unification problem falls into the pattern fragment and

(through inversion) can be solved by instantiating ?u with x{w/x}, that is, w.

Contextual types are useful for other reasons as well. In particular, the following

examples show two different potential sources of unsoundness related to the abs

constructor. Fortunately, thanks to contextual types, plus the restrictions enforced

by the rule EAbs, neither example presents any risk to the soundness of Mtac.

Example 4

Example showing how contextual types preclude the assignment of different types

to the same term.

01 Definition abs evar (A : Type) :=

02 X ← evar A;

03 f ← @abs Type (λ B. B) A X : �(∀ B : Type. B);

04 ret (f nat, f bool).

In short, this example takes a type A and creates a unification variable X of type

A. Then, it abstracts its type, creating the function f, which is then applied to the

types nat and bool. For readability, we annotated the type of f: ∀B : Type. B, and

therefore the returned terms f nat and f bool have type nat and bool, respectively.

However, they both compute to X, the unification variable, so at first sight it looks

like the same expression can be typed with different and incompatible types!

No need to panic here: contextual types solve the conundrum! Let us see what

really happens when we execute the Mtactic. First, note that, in order for the

abstraction in line 3 to succeed, the Mtactic should instantiate the argument A with

a type variable. Otherwise, the computation will get blocked, as we are only allowed

to abstract variables. So let us assume abs evar is executed in a local context with

only variable A′ : Type, which is then passed in as the argument. When executing

line 2, the unification variable ?u is created with contextual type A′[A′ : Type]. Then,

the variable X is bound to ?u[A′/A′].

Next, abstracting the type A′ from the unification variable results in

λB : Type. ?u[A′/A′]{B/A′},

which after applying the substitution is equal to

λB : Type. ?u[B/A′].

Variable f is bound to this value, and therefore the value resulting from applying

f to the different types is

(?u[nat/A′], ?u[bool/A′]).

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 29

Since the type of the unification variable depends on A′, the return type is nat×bool.

But the substitution distinguishes both terms in the pair, so even when they refer to

the same unification variable, they are actually referring to different interpretations

of the value carried by ?u.

Now, observe that in order to instantiate the unification variable we require a

term e such that, no matter what type τ is substituted for A′, e must have exactly

that type (τ). Of course, such a value does not exist, so ?u cannot be instantiated!

More precisely, when faced with the unification problem

?u[τ/A′] ≈ e

for some term e, Coq’s unification will not have a solution for ?u, as it does not fall

into the higher-order pattern fragment.

Example 5

In this example, we show why it is necessary to severely restrict occurrences of the

variable being abstracted.

In the previous example, the variable being abstracted occurred only in the term

(more precisely, in the substitution). If it instead occurred in the return type or in

the context, then this could lead to another potential source of unsoundness. To see

what can go wrong, let us consider the following example:

Definition abs dep (A : Type) (x : A) :=

X ← evar nat;

@abs Type (λ . nat) A X : �(Type → nat).

After running the first line of the function, X is bound to the term ?u[A/A, x/x],

where ?u is a fresh unification variable with (contextual) type nat[A : Type, x : A].

If we allow the abstraction of A in X, then we arrive at the ill-typed term

λ B. ?u[B/A, x/x]

Note that x should have as type the first component of the substitution, which is

B, but it has type A instead. For this reason, we impose the restriction that the

abstracted variable (A in this case) must not occur anywhere in the context aside

from the point where it is bound. It is not hard to see what goes wrong when the

abstracted variable appears in the return type, so we prohibit this case as well.

It is worth noting that the original implementation of Mtac, described in the

conference version of this article (Ziliani et al. 2013), neglected to check these side

conditions and was thus unsound.

4.3 Proof of soundness

As mentioned earlier, Mtactic execution can block. Here, we define exactly the cases

when execution of a term is blocked.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

30 B. Ziliani et al.

Definition 2 (Blocked terms)

A term t is blocked if and only if the subterm in reduction position satisfies one of

the following cases:

• It is not an application of one of the � constructors, and it is not reducible

using the standard CIC reduction rules (
whd
�).

• It is νx. v and x ∈ FV(v).

• It is abs e e′ and e
whd
� ∗ e′′ and (e′′ :) /∈ Γ.

• It is @abs τ ρ e e′ and e
whd
� ∗ x and Γ = Γ1, x : τ,Γ2 and x ∈ FV(Γ2, ρ).

• It is mmatch e ps and no pattern in ps unifies with e.

With this definition, we can then establish a standard type soundness theorem for

Mtac.

Theorem 1 (Type soundness)

If Σ; Γ
 t : �τ, then either t is a value, or t is blocked, or there exist t′ and Σ′ such

that Σ; Γ
 t� (Σ′; t′) and Σ′; Γ
 t′ : �τ .

In order to prove it, we assume the following typing judgment for Coq terms:

Σ; Γ
 e : τ

and also assume the following standard properties:

Postulate 1 (Convertibility)

If Σ; Γ
 e : τ and Σ; Γ
 τ ≡ τ′ (τ and τ′ are convertible up to CIC reduction), then

Σ; Γ
 e : τ′

Postulate 2 (Type preservation of reduction)

If Σ; Γ
 e : τ and Σ; Γ
 e
whd
� ∗ e′, then

Σ;Γ
 e′ : τ

Postulate 3 (Meta-substitution)

If Σ; Γ
 e : τ, then Σ; Γ
 Σ(e) : τ.

Postulate 4 (Substitution)

If Σ; Γ1, x : τ′,Γ2
 e : τ and Σ; Γ1
 e′ : τ′, then

Σ; Γ1,Γ2{e′/x}
 e{e′/x} : τ{e′/x}

Postulate 5 (Strengthening)

If Σ; Γ1, x : τ,Γ2
 e : τ′ and x �∈ FV(Γ2, e, τ
′), then

Σ; Γ1,Γ2
 e : τ′

Postulate 6 (Weakening)

If Σ; Γ1,Γ2
 e : τ′ and Σ; Γ1
 τ : Type and x �∈ dom(Γ1,Γ2), then

Σ; Γ1, x : τ,Γ2
 e : τ′

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 31

We also need the following relation between meta-contexts:

Definition 3 (Meta-context extension)

We say that Σ′ extends Σ, written Σ′ � Σ, if the following conditions holds: (1) Σ′ is

well defined, and (2) every meta-variable in Σ occurs also in Σ′ with the same type

and, in case it is an instantiated variable, with the same term. Formally:

Σ′ � Σ �
 Σ′

∧ ∀?x : τ[Γ] ∈ Σ. ?x : τ[Γ] ∈ Σ′ ∨ ∃e. ?x : τ[Γ] := e ∈ Σ′

∧ ∀?x : τ[Γ] := e ∈ Σ. ?x : τ[Γ] := e ∈ Σ′

where
 Σ′ means Σ′ is well formed under the implicit global environment. For

details of this definition, we refer the reader to the appendix of Asperti et al. (2009).

We postulate that meta-context extension does not alter typechecking:

Postulate 7 (Meta-weakening)

If Σ; Γ
 e : τ and Σ′ � Σ, then

Σ′; Γ
 e : τ

From this postulate, it follows in particular that if Σ; Γ1,Γ2
 e : τ and Σ; Γ1
 τ′ :

Type and ?x �∈ dom(Σ) then

Σ, ?x : τ′[Γ1]; Γ1,Γ2
 e : τ

Finally, we require from unification the following:

Postulate 8 (Soundness of unification)

If Σ; Γ
 e : τ and Σ; Γ
 e′ : τ′ and Σ; Γ
 e ≈ e′ � Σ′, then

Σ′; Γ
 e ≡ e′ and Σ′; Γ
 τ ≡ τ′ and Σ′ � Σ

We start by proving type preservation:

Theorem 2 (Type preservation)

If Σ; Γ
 t� (Σ′; t′) and Σ; Γ
 t : �τ, then Σ′ � Σ and Σ′; Γ
 t′ : �τ.

Proof

By induction on the reduction relation. We will expand (some of) the implicit

parameters for clarity.

Case EReduc: It follows by preservation of reduction (Postulate 2).

Case EFix: We have t = @mfix τ′ ρ f t′′. Recall the type of the fixpoint:

mfix : ∀A P . ((∀x : A. �(P x))→ (∀x : A. �(P x)))→ ∀x : A. �(P x)

By hypothesis we know t is well typed, and as a consequence, t′′ has type τ′. We

have to show that

Σ; Γ
 f (@mfix τ′ ρ f) t′′ : �(ρ t′′)

It follows immediately from the types of the subterms:

f : (∀x : τ′. �(ρ x))→ (∀x : τ′. �(ρ x))

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

32 B. Ziliani et al.

and

mfix f : ∀x : τ′. �(ρ x)

and t′′ : τ′.

Case EBindS: We have t = @bind τ′ τ′′ t′′ f. By the premise of the rule, there exists

t′′′ such that

Σ; Γ
 t′′ � (Σ′; t′′′)

Recall the type of bind:

bind : ∀A B. �A→ (A→ �B)→ �B

We have that t has type �τ′′. We have to show that

Σ′; Γ
@bind τ′ τ′′ t′′′ f : �τ′′

By the inductive hypothesis, we know that Σ′ � Σ and

Σ′; Γ
 t′′′ : �τ′

We conclude by noting that, by Postulate 7 (Meta-weakening), the type of f in

the new meta-context Σ′ is unchanged.

Case EBindR: We have t = @bind τ′ τ′′ (ret e) f. We have to show that

Σ; Γ
 f e : �τ′′

Immediate by type of f and e.

Case EBindE: We have t = @bind τ′ τ′′ (@raiseτ′ e) f. We have to show that

Σ; Γ
@raiseτ′′ e : �τ′′

Immediate by type of @raiseτ′′ e.

Cases ETryS, ETryR, ETryE: Analogous to the previous cases.

Case EMmatch: We have t = @mmatch τ′ ρ e ps . The type of mmatch is

mmatch : ∀A P (t : A). list (Patt A P)→ �(P t)

By the premises of the rule:

Σ; Γ
 psi
whd
� ∗ Ptele (x : τ′′) (Pbase p b) (4)

Σ, ?y : τ′′[Γ′]; Γ
 p{?y[idΓ′]/x} ≈ e � Σ′ (5)

∀j < i. psj does not unify with e (6)

That is, reducing ps leads to a list whose ith element is a telescope (see Section 2)

abstracting variables x : τ′′ from a pattern p and body b. This pattern, after

replacing its abstraction with unification variables, is unifiable with term e,

producing a new meta-context Σ′. Every unification variable ?yk is created with

type τk in a context resulting from extending the context Γ with the variables to

the left of the telescope, that is

Γ′k = Γ, x1 : τ1, . . . , xk−1 : τk−1

We have to show that

Σ′; Γ
 Σ′(b{?y[idΓ′]/x}) : �(ρ e)

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 33

Given the hypothesis that t is well typed, we know that

Σ; Γ
 e : τ′ (7)

Σ; Γ, x : τ′′
 p : τ′ (8)

Σ; Γ, x : τ′′
 b : �(ρ p) (9)

Taking Equation (8) and by weakening of the meta-context, we obtain

Σ, ?y : τ′′[Γ′]; Γ, x : τ′′
 p : τ′ (10)

By Postulate 4 (Substitution), noting that the variables x cannot appear free in τ′

or Γ,

Σ, ?y : τ′′[Γ′]; Γ
 p{?y[idΓ′]/x} : τ′ (11)

Therefore, by Postulate 8 (soundness of unification) and Equations (5), (7), and

(11), we obtain that both sides of the unification are convertible under the new

context Σ′.

Similarly as before, by Equation (9), weakening of meta-context, and substitution,

we obtain

Σ′; Γ
 b{?y[idΓ′]/x} : �(ρ p{?y[idΓ′]/x})
(noting that ρ actually does not have any xk in its set of free variables).

By convertibility, this is equal to

Σ′; Γ
 b{?y[idΓ′]/x} : �(ρ e)

We conclude by Postulate 3 (Meta-substitution).

Case EEvar: We have t = evarτ. It is trivial:

Σ, ?x : τ[Γ]; Γ
 ret ?x[idΓ] : �τ

and the new meta-context is an extension of Σ.

Cases EIsEvarT and EIsEvarF: Trivial, both return a boolean value.

Case ENuS: Desugaring and making parameters explicit, we have

t = @nu τ′ τ (λx : τ′. t′′). The type of nu is

nu : ∀A B. (A→ �B)→ �B

Therefore,

Σ; Γ, x : τ′
 t′′ : �τ (12)

By the premise of the rule, Σ; Γ, x : τ′
 t′′ � (Σ′; t′′′). By the inductive hypothesis

with Equation 12,

Σ′; Γ, x : τ′
 t′′′ : �τ

and Σ′ � Σ. Therefore,

Σ′; Γ
 λx : τ′. t′′′ : τ′ → �τ

which allows us to conclude that

Σ′; Γ
 νx : τ′. t′′′ : �τ

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

34 B. Ziliani et al.

Case ENuV: As in the previous case, we have t = @nu τ′ τ (λx : τ′. v). We have to

show that

Σ; Γ
 v : �τ

Since t is well typed, we know that

Σ; Γ, x : τ′
 v : �τ

By the premise of the rule, x �∈ FV(v), and it cannot appear free in τ, so by

strengthening (Postulate 5),

Σ; Γ
 v : �τ

Case EAbs: We have t = @abs τ′ ρ e e′. Recall the type of abs:

abs : ∀A P x. P x→ �(∀y : A. P y)

We need to show that

Σ; Γ
 ret (λy : τ′. e′{y/x}) : �(∀y : τ′. ρ y)

where, by the premises of the rule, e reduces to x. By preservation of reduction

(Postulate 2), we know that x has type τ′, and therefore Γ is equivalent (i.e.,

convertible) to Γ1, x : τ′,Γ2, for some context Γ1 and Γ2. Also, by the premises of

the rule, x �∈ FV(Γ2, ρ).

By t being well typed, we know

Σ; Γ
 e′ : ρ e

which by convertibility is equivalent to (expanding Γ)

Σ; Γ1, x : τ′,Γ2
 e′ : ρ x

By weakening (Postulate 6),

Σ; Γ1, x : τ′,Γ2, y : τ′
 e′ : ρ x

and by Postulate 4 (Substitution), noting that by the premise of the rule x does

not appear free in ρ nor in Γ2,

Σ; Γ1,Γ2, y : τ′
 e′{y/x} : ρ y

By weakening,

Σ; Γ, y : τ′
 e′{y/x} : ρ y

We can conclude that

Σ; Γ
 λy : τ′. e′{y/x} : (∀y : τ′. ρ y)

which is precisely what we have to show.

Case EPrint: Immediate. �

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 35

As a corollary, we have the main theorem of this section:

Theorem 1 (Type soundness)

If Σ; Γ
 t : �τ, then either t is a value, or t is blocked, or there exist t′ and Σ′ such

that Σ; Γ
 t� (Σ′; t′) and Σ′; Γ
 t′ : �τ.

Proof

Since t is well-typed with type �τ, then the following two cases have to occur: either

the head constructor of t is one of the constructors of �—and it is fully applied—or

it is another CIC construct (another constant, a let-binding, etc.).

In the first case, we have further three sub-cases:

1. It is a value (of the form ret e or raise e).

2. It is blocked, that is, is of any of the following forms:

• It is νx. v and x ∈ FV(v).

• It is abs e e′ and Σ; Γ
 e
whd
� ∗ e′′ and (e′′ :) /∈ Γ.

• It is @abs τ′ ρ e e′ and e
whd
� ∗ x and Γ = Γ1, x : τ′,Γ2 and x ∈ FV(Γ2, ρ).

• It is mmatch e ps and no pattern in ps unifies with e.

3. There exist a t′ and Σ′ such that Σ; Γ
 t� (Σ′; t′).

In the first two cases, there is nothing left to prove. In the last case, we conclude by

applying Theorem 2.

If t’s head constant is another CIC construct, then it either reduces using the

standard CIC reduction rules, in which case the proof follows by preservation of

CIC reduction rules, or it does not reduce and hence it is blocked. �

5 Implementation

This section presents a high-level overview of the architecture of our Mtac extension

to Coq, explaining our approach for guaranteeing soundness even in the possible

presence of bugs in our Mtac implementation.

The main idea we leverage in integrating Mtac into Coq is that Coq distinguishes

between fully and partially type-annotated proof terms: Coq’s type inference (or

elaboration) algorithm transforms partially annotated terms into fully annotated

ones, which are then fed to Coq’s kernel type checker. In this respect, Coq follows

the typical architecture of interactive theorem provers, ensuring that all proofs

are ultimately certified by a small trusted kernel. Assuming that the kernel is

correct, no code outside this kernel may generate incorrect proofs. Thus, our Mtac

implementation modifies only the elaborator lying outside of Coq’s kernel, and

leaves the kernel type checker untouched.

5.1 Extending elaboration

The typing judgment used by Coq’s elaboration algorithm (Säıbi 1997; Sacerdoti

Coen 2004) takes a partially type-annotated term e, a local context Γ, a unification

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

36 B. Ziliani et al.

variable context Σ, and an optional expected type τ′, and returns its type τ, and

produces a fully annotated term e′, and updated unification variable context Σ′.

Σ; Γ
τ′ e ↪→ e′ : τ � Σ′

If an expected type τ′, is provided, then the returned type τ will be convertible to

it, possibly instantiating any unification variables appearing in both τ and τ′. The

elaboration judgment serves three main purposes that the kernel typing judgment

does not support:

1. To resolve implicit arguments. We have already seen several cases where this

is useful (e.g., in Section 1.1), allowing us to write underscores and let Coq’s

unification mechanism replace them with the appropriate terms.

2. To insert appropriate coercions. For example, Ssreflect (Gonthier et al. 2008)

defines the coercion is true : bool → Prop := (λb. b = true). So whenever

a term of type Prop is expected and a term b of type bool is encountered,

elaboration will insert the coercion, thereby returning the term is true b having

type Prop.

3. To perform canonical structure resolution. Ample examples of canonical

structures can be found in Gonthier et al. (2013a).

We simply extend the elaboration mechanism to perform a fourth task, namely to

run Mtactics. We achieve this by adding the following rule for handling run t terms:

Σ; Γ
�τ′ t ↪→ t′ : �τ � Σ′ Σ′; Γ
 t′ �∗ (Σ′′; ret e)

Σ; Γ
τ′ run t ↪→ e : τ � Σ′′

This rule first recursively elaborates the tactic body, while also unifying the return

type τ of the tactic with the expected goal τ′ (if present). This results in the refinement

of t to a new term t′, which is then executed. If execution terminates successfully

returning a term e (which from Theorem 1 will have type τ), then that value is

returned. Therefore, as a result of elaboration, all run t terms are replaced by the

terms produced when running them, and thus the kernel type checker does not need

to be modified in any way.

5.2 Elaboration and the apply tactic

We have just seen how the elaborator coerces the return type τ of an Mtactic to be

equivalent to the goal τ′, but we did not stipulate in what situations the knowledge

of τ′ is available. Our examples so far assumed τ′ was given, and this was indeed

the case thanks to the specific ways we invoked Mtac. For instance, at the end of

Section 1.1 we proved a lemma by direct definition—i.e., providing the proof term

directly—and in Section 3.1 we proved the goal by calling the tactic refine. In

both these situations, we were conveniently relying on the fact that Coq passed the

knowledge of the goal being proven into the elaboration of run.

Unfortunately, not every tactic does this. In particular, the standard Coq tactic

apply does not provide the elaborator with the goal as expected type, so if we had

written apply (run (F)), the Mtactic F would have been executed on unknown

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 37

Fig. 14. Type class for delayed execution of Mtactics.

parameters, resulting in a different behavior from what we expect. (Specifically,

it would have unified the implicits with the first two pointers appearing in the

heap, succeeding only if, luckily, these are the pointers in the goal.) In contrast, the

apply: tactic (note the colon!) from Ssreflect (Gonthier et al. 2008) does support the

behavior we desire—i.e., it ensures that information about the goal is available when

running Mtactics. Consequently, apply: is what we use in many of the accompanying

source files.

One last point about tactics: Mtac is intended as a typed alternative to Ltac for

developing custom automation routines, but it is neither intended to replace the built-

in tactics (like apply) nor to subsume all uses of existing Coq tactics. For example,

the OCaml tactic vm compute enables dramatic efficiency gains for reflection-based

proofs (Grégoire & Leroy 2002), but its performance depends critically on being

compiled. Mtac is interpreted, and it is not clear how it could be compiled, given the

interaction between Mtac and Coq unification.

5.3 Delaying execution of Mtactics for rewriting

Consider the goal from Section 3.1, after doing pose F := run (noalias D), unfolding

the implicit is true coercions for clarity:

D : def (h1 • (x1 �→ v1 • x2 �→ v2) • (h2 • x3 �→ v3))

F : ∀x y. �((x != y) = true)

(x1 != x2) = true ∧ (x2 != x3) = true

Previously, we solved this goal by applying the Mtactic F twice to the two subgoals

x1 != x2 and x2 != x3. An alternative way in which a Coq programmer would hope

to solve this goal is by using Coq’s built-in rewrite tactic. rewrite enables one

to apply a lemma one or more times to reduce various subterms of the current

goal. In particular, we intuitively ought to be able to solve the goal in this case by

invoking rewrite !(run (F)), where the ! means that the Mtactic F should be

applied repeatedly to solve any and all pointer inequalities in the goal. Unfortunately,

however, this does not work, because—like Coq’s apply tactic—rewrite typechecks

its argument without knowledge of the expected type from the goal, and only later

unifies the result with the subterms in the goal. Consequently, just as with apply, F

gets run prematurely.

Fortunately, we can circumvent this problem, using a cute trick based on Coq’s

type class resolution mechanism.

Type classes are an advanced Coq feature similar to canonical structures, with

the crucial difference that their resolution is triggered by proof search after elabora-

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

38 B. Ziliani et al.

Fig. 15. Exceptions in Mtac.

tion (Sozeau & Oury 2008). We exploit this functionality in Figure 14, by defining

the class runner, which is parameterized over an Mtactic t with return type τ and

provides a value, eval, of the same type. We then declare a Hint instructing the type

class resolution mechanism how to build an instance of the runner class, which is

precisely by running t.

The details of this implementation are a bit of black magic, and beyond the scope

of this paper to explain fully. But intuitively, all that is going on is that eval is

delaying the execution of its Mtactic argument until type class resolution time, at

which point information about the goal to be proven is available.

Returning to our example, we can now use the following script:

rewrite !(eval (F)) .

This will convert the goal to is true true ∧ is true true, which is trivially solvable.

In fact, with eval we can even employ the standard apply tactic, with the caveat

that eval creates slightly bigger proof terms, as the final proof term will also contain

the unevaluated Mtactic inside it.

5.4 A word about exceptions

In ML, exceptions have type exn and their constructors are created via the keyword

exception, as in

exception MyException of string

Porting this model into Coq is difficult as it is not possible to define a type without

simultaneously defining its constructors. Instead, we opted for a simple yet flexible

approach. We define the type Exception as isomorphic to the unit type, and to

distinguish each exception we create them as opaque, that is, irreducible. Figure 15

shows how to create two exceptions, the first one parameterized over a string. What is

crucial is the sealing of the definition with Qed, signaling to Coq that this definition

is opaque. The example test ex illustrates the catching of different exceptions.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 39

5.5 Controlling the size of terms

Some tactics tend to generate unnecessarily big terms. Take for instance the to ast

Mtactic from Figure 11. In the case of an addition, this Mtactic constructs an

instance of the ast structure using the values projected out from calling the Mtactic

recursively. That means that the final proof term will contain several copies of a

structure, one for each projector called on that structure. As a matter of fact, for a

type that admits a term of size n we can end up constructing a term with size as big

as n2! For reducing the size of such proof terms, it is therefore critical to give the

Mtac programmer the ability to force reduction steps to be taken in certain places.

Mtac is thus equipped with three different unit operators: ret, retS, retW. The

first one we have already seen in the rest of the work; the other two are new and

are used extensively in the source files. They both reduce the term prior to returning

it: retS using the simplification strategy from the simpl tactic, and retW using the

weak head reduction strategy. As a result, run-ning the following terms produces

different outputs:

ret (1 + 1)� 1 + 1

retS (1 + 1)� 2

retW (1 + 1)� S (0 + 1)

To observe the utility of such reduction operators, suppose G is a context (in the

sense of Section 3.3, that is, an element of type ctx). An intermediate step of the

to ast tactic, invoked with argument G, may result in a term such as

@term of G 0 (@Ast G 0 syn zero G (zero pf G)),

which has four copies of G in it. However, if this term is returned via retS, it will

be reduced via simplification to

syn zero.

For details on the reduction strategies, see The Coq Development Team (2012).

6 Stateful Mtactics

So far, we have seen how Mtactics support programming with a variety of effects,

including general recursion, syntactic pattern matching, exceptions, and unification,

that are not available in the base logic of Coq. If, however, we compare these

to the kinds of effects available in mainstream programming languages, we will

immediately spot a huge omission: mutable state! This omission is costly: the lack

of imperative data structures can in some cases preclude us from writing efficient

Mtactics.

One example is the tautology prover from Section 3.2, whose running time can be

asymptotically improved by using a hashtable. To see this, consider the complexity

of proving the following class of tautologies:

p1 → . . .→ pn → p1 ∧ . . . ∧ pn

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

40 B. Ziliani et al.

Fig. 16. The new array primitives of the � inductive type.

in a context where p1 . . . pn : Prop. First, the tautology prover will perform n steps to

add hypotheses h1 : p1, . . . , hn : pn to the context. Then, it will proceed to decompose

the conjunctions and prove each pi by searching for it in the context. Since the lookup

Mtactic performs a linear search on the context, the overall execution will take O(n2)

steps in total. Had we used a more clever functional data structure for implementing

the context, such as a balanced tree, we could reduce the lookup time to logarithmic

and the total running time to O(n log n). By using a hashtable to represent the

context, however, we can do much better: we can achieve a constant-time lookup,

thereby reducing the total proof search time to O(n).

Rather than directly adding hashtables to Mtac, in this section, we show how

to extend Mtac with two more primitive constructs: arrays and a hashing opera-

tor (Section 6.1). With these primitives, we implement a hashtable in Mtac (Section

6.2) and use it to implement a more efficient version of the tautology prover (Section

6.3), obtaining the expected significant speedup (Section 6.6).

The model of mutable state that we decided to incorporate to Mtac is very flexible

and allows us to write complex imperative structures, but that comes at a price. First

of all, combining mutable state with parameters (i.e., the nu and abs operators) and

syntax inspection (i.e., the mmatch operator) is tricky and requires special care in

the design of the operational semantics (Section 6.4). Second, the interactive nature

of a proof assistant like Coq enforces certain constraints (Section 6.5). Despite these

difficulties, the language enhanced with mutable state remains sound (Section 6.7).

6.1 New language constructs

Figure 16 shows the new language constructs, where N stands for binary encoded

natural numbers and array τ is an abstract type representing arrays of type τ (this

type will be discussed later). The new constructs are explained next:

• hash e n takes term e and natural number n and returns the hash of e as a

natural number between 0 and n− 1, ensuring a fair distribution.

• array make n e creates an array with n elements initialized to e.

• array get a i returns the element stored in position i in the array a. If the

position is out of bounds, it raises an exception.

• array set a i e stores element e in position i in the array a. If the position is

out of bounds, it raises an exception.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 41

Fig. 17. The Array module.

• array length a returns the size of array a.5

For each of these constructs, the type parameter A is treated as an implicit argument.

In the rest of the section, we will use references, which are arrays of length 1. We

will use a notation resembling that of ML: ref e creates a reference of type Ref τ,

where e : τ, !r returns the current contents of reference r, and r ::= e updates r to e.

6.2 A dependently typed hashtable in Mtac

The aforementioned primitives are enough to build stateful algorithms and data

structures, in particular a dependently typed hashtable. We present the hashtable

below, introducing first a required module:

6.2.1 The Array module

Figure 17 presents the wrapper module Array, emulating the one in OCaml. Besides

the four primitive operations on arrays (make, length, get, set), the module also

provides an iterator iter, an array constructor with an initialization function init

(which throws an exception if asked to create a 0-length array), a conversion

function from array to list, and a copy function that copies the elements from the

first array into the second one, if there is enough space, and fails otherwise. We omit

the code for these, but they are standard and can be found in the source files.

6.2.2 The HashTbl module

Figure 18 presents the module HashTbl, which implements a (rudimentary) depen-

dently typed hashtable. At a high level, given types τ and ρ : τ→ Type, a hashtable

maps each key x of type τ to a term of type ρ x. More concretely, it consists of a

pair of references, one containing the load of the hash (how many elements were

added), and the other containing an array of “buckets”. Each bucket, following the

5 Note that this operation returns a pure natural number rather than a member of type �N. This design
choice is debatable, since it means that one can produce confusing results if one sets out to use arrays
unhygienically. But ultimately it is not relevant for soundness because the length component in our
representation of arrays (described below) plays no role in the their Mtac reduction rules (Figure 20).

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

42 B. Ziliani et al.

Fig. 18. The HashTbl module.

standard open hashing strategy for conflict resolution, is a list of Σ-types packing a

key with its element. In open hashing, each bucket holds all the values in the table

whose keys have the same hash, which is the index of that bucket in the array.

The hashtable is created with an initial size (initial size) of 16 buckets, and every

time it gets expanded it increases by a factor (inc factor) of 2. The threshold to

expand the hashtable is when its load reaches 70% of the buckets.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 43

The function quick add adds key x, mapped to element y, to the table. It does

so by hashing x, obtaining a position i for a bucket l, and adding the existential

package containing both x and y to the head of the list. Note that this function does

not check whether the threshold has been reached and is thus not intended to be

called from the outside—it is just used within the HashTbl module as an auxiliary

function.

The function expand first creates a new array of buckets doubling the size of the

original one, and then it iterates through the elements of the original array, adding

them to the new array. We omit the code of the iterator function iter for brevity.

The function add first checks if the load exceeds the threshold and, if this is the

case, proceeds to expand the table. It then adds the given key-element pair to the

table. Finally, the count of the load is increased by one. Since the load is a binary

natural, and for binary naturals the successor (succ) operation is a function, we

force the evaluation of succ load by simplifying it with retS.

The function find first obtains the bucket l corresponding to the hashed index i

of the key x, and then performs a linear search using the function

List.find (A : Type) (P : A→ Type) (x : A) (l : list {z : A & P z}) : �(P x)

We omit the code of this function since it is similar to the lookup function from

Section 3.2.

Similarly, the function remove removes an element from the hashtable by

obtaining the bucket l of the key x and removing the element using the auxiliary

function

List.remove (A : Type) (P : A→ Type) (x : A) (l : list {z : A & P z})
: �(list {z : A & P z})

This function throws the exception NotFound if the element is not in the list, and

only removes one copy if the key x appears more than once.

6.3 The tautology prover revisited

The code for the new tautology prover with hashing of hypotheses is listed in

Figure 19. The type used to represent contexts is defined in the first line: it is a

dependently typed hashtable whose keys are propositions and whose elements are

proofs of those propositions. The prover itself begins on line 3. The cases for the

trivial proposition, conjunction and disjunction (lines 5–17), as well as for ∀ (lines

23–26), are similar to the original ones, except that the context is not threaded

through recursive calls but rather updated imperatively.

The implication, existential, and base cases require more drastic changes. The

implication case is modified to extend the hashtable (line 20) with the mapping of

parameter x with hypothesis p1. In order to avoid leaving garbage in the hashtable,

the added element is removed after the recursive call. Since the recursive call may

raise an exception, the removal is performed before re-throwing the exception.

The base case (line 36) is modified to perform the lookup in the hashtable.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

44 B. Ziliani et al.

Fig. 19. Tautology prover with hashing of hypotheses.

Finally, the existential case (line 27), requires a bit of explanation. It starts, as

in the previous prover, by creating a unification variable for the witness X (line

28). Then it differs substantially. The reason why we need to change its behavior

is simple: in the previous prover, we were expecting it to find the solution for the

witness by unification during the lookup in the base case. Since now we have a

hash table for the lookup, there is no unification process going on, and therefore no

instantiation for the witness can occur.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 45

Here instead we do the following: we still try to find a solution recursively (line

30) for when the solution is trivial or does not depend on the witness—for instance,

consider the case ∃p : Prop. p with trivial solution

ex intro (λp : Prop. p) True I

If no solution is found (i.e., an exception ProofNotFound is raised), then we create

another unification variable for the proof r and return the proof term ex intro q X r

(line 34). That is, we return a proof with a hole, expecting the proof developer to

fill the hole later on. For instance, if we run the tautology prover on the example

∀x : nat. ∃y : nat. y � x

then Coq will ask, as a subgoal, for a proof of ?X � x. The proof developer can

proceed to provide the standard proof of 0 � x, thereby instantiating ?X with 0.

6.4 Operational semantics

As we mentioned in the introduction to this section, we need to take special care

when combining mutable state with parameters and syntax inspection.

6.4.1 Mutable state and parameters

The combination of these two features requires us to adjust the operational semantics

for the nu (ν) operator in order to preserve soundness. More precisely, we need to

ensure that if we store a parameter x in an array or reference, then we should not

be able to read from that location outside the scope of x. Take for instance the

following example:

Definition wrong := r ← ref 0; (ν x:nat. r ::= x);; !r.

In this code, first a reference r is created, then a new parameter x is created and

assigned to r. Later, outside of the scope of x, r is dereferenced and returned. Without

checking the context of the element being returned, the result of this computation

would be undefined.

With unification variables we also have this problem—we can encode a similar

example using evar instead of ref and mmatch instead of the assignment. But with

unification variables, the contextual type of the unification variable would prevent

us from performing the instantiation, therefore effectively ensuring that “nothing

goes wrong”. For mutable state, on the other hand, it would be too restrictive to

restrict assignments to only include variables coming from the context where the

array was created. Take for instance the tautology prover: there, in the implication

case, the parameter x is added to a hashtable that was created outside the scope of

x.

Thus, for mutable state we take a different, more “dynamic” approach: before

returning from a νx binder we invalidate all the cells in the state that refer (in the

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

46 B. Ziliani et al.

term or in the type) to x. If later on a read is performed on any such cell, the system

simply gets blocked.

6.4.2 Mutable state and syntax inspection

The problem with combining mutable state and the mmatch constructor concerns

(lack of) abstraction. In short, we would like to be able to prevent the user from

breaking abstraction and injecting a spurious reference (a location that is not in

the domain of the store or with a different type from the one in the store) in

the execution of a Mtactic, as that would result in a violation of type soundness.

However, we have been unable to find any simple and elegant way of preventing the

user from doing that, and so instead we choose to incur the cost of dynamic safety

checks when performing stateful operations.

In order to understand the problem, let us first explain how it is handled in

Haskell, and why we cannot simply port the same approach to Mtac. In Haskell,

the runST command (Launchbury & Peyton Jones 1994) enables one to escape the

stateful ST monad by executing the stateful computation inside, much as with Mtac’s

run and � monad.

Since runST uses an effectful computation to produce a term of a pure Haskell

type, it is essential to the soundness of runST that its computation runs inside a

fresh store. Moreover, it is important to prevent the user from attempting to access

an old reference within a new call to runST, as in the following code (here in Mtac

syntax).

let r := run (ref 0) in run !r

After creating the reference r in the first run, the reference is read in the second. In

Haskell, this situation is prevented by giving runST the following more restrictive

type:

∀A. (∀S. ST S A)→ A

where S is a phantom type parameter representing the state and A is the return

type of the monad, which may not mention S . By making the monad parametric

in the state type, the typechecker effectively ensures that the computation being

executed can neither leak any references to nor depend on any references from

its environment. For example, in the code above, the command ref 0 has type

ST S (Ref S nat) for some S , but this cannot be generalized to runST’s argument

type (∀S. ST S A) because A = Ref S nat mentions S .

Crucially, Haskell’s built-in abstraction mechanisms also hide the constructor for

the Ref type. That is, in Haskell the user is not entitled to pattern match an element

of the Ref type simply because its constructor is hidden from the user.

Unfortunately, the same techniques will not help us in Mtac. The problem arises

from the following observation: for any constant c with type τ, if Mtac can create

it, Mtac can inspect it. That is, we can always pattern match a term of type τ and

get a hold of its head constant (e.g., c). The same happens with references. Say that

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 47

we create a new type Ref A with constructor

cref : ∀A. Loc→ Ref A

Say further that we hide the constructor from the user (by using the module system

of Coq), so that the proof developer is not entitled to write the following code:

mmatch x with [l : Loc] cref l ⇒ . . . end

There is still a way of achieving the same behavior with the following code:

mmatch x with [(c : Loc→ Ref A) (l : Loc)] c l ⇒ . . . end

since, if Mtac is (somehow) allowed to construct a cref , then nothing can prevent it

from matching a meta-variable with a cref .

And this can be disastrous from the perspective of soundness. Imagine, for

instance, that the location of a reference with type A is accessed at type B:

mmatch (x, y) with

| [(c1 : Loc → Ref A) (c2 : Loc → Ref B) l1 l2] (c1 l1, c2 l2) ⇒ !(c2 l1)

end

One option for solving this problem might be to forbid mmatch from pattern

matching an element containing a reference. However, this solution is too strict, as

it would disallow legitimate matches on terms of data types containing references.

Instead, the solution that we have adopted in Mtac is not to hide cref at all, but

rather to bite the bullet and perform the necessary dynamic checks to ensure that

the code above gets blocked. More precisely, under Mtac semantics, the read of c2 l1
will get blocked as it is reading from the location l1 at a different type (B) from

the expected one (A). Similarly, in the previous example, the attempt to read the

reference r in run !r will get blocked since run !r executes in a fresh store and r is

not in the domain of that store.

With these considerations in mind, we can now move on to explain the actual

rules. We extend the judgment from Section 4 to include input and output stores.

A store σ is a map from locations l to arrays annotated with the type τ of their

elements. An array element d is either null or a Coq term:

σ ::= · | l �→ [d; . . . ; d]τ, σ

d ::= null | e

The new judgment is

Σ; Γ; σ
 t� (Σ′; σ′; t′)

On the Coq side, we have an inductive type of locations Loc and an inductive

array type, where the number in carray represents the length of the array:

array : Type→ Type

carray : ∀A. Loc→ N→ array A

Since we need to transform numbers and locations from Coq to ML and vice versa,

we write e for the interpretation of Coq numbers/locations e into ML (implicitly

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

48 B. Ziliani et al.

Fig. 20. Operational small-step semantics of references.

Fig. 21. Invalidation of array positions whose contents are out of scope.

reducing e to normal form) and e for the interpretation of ML numbers/locations

e into Coq.

Figure 20 shows the new rules concerning stateful computations. The first rule

(ENuV) presents the aforementioned modifications to the original rule for the νx

binder. The changes (highlighted) show that, upon return of the νx binder, we

invalidate all the arrays whose type contains x and all the array positions referring

to x. The invalidate judgment is given in Figure 21.6

6 For performance reasons, in the implementation we do not traverse the entire state. Instead, we
maintain a map relating each parameter x introduced by a νx binder to a list of array positions. When
the parameter x goes out of scope, all the array positions associated with it are invalidated. The map
is populated in each operation array set a i e in two steps: First, previous occurrences of the position
(a, i) are eliminated from the map. Second, for each parameter x occurring free in e, the position (a, i)
is added to the list mapped to x. In the current implementation, the removal of previous occurrences
of (a, i) from the map is performed by a linear pass over the entire map, thus visiting each array
position containing free parameters in its element. We note that (a) the map typically contains fewer
elements than the entire state, and (b) this process can be optimized further with a better choice of
data structures.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 49

The second rule (EHash) performs the hash-ing of a term e, limited by s. The

element is hashed using an ML function hash, which we omit here.

The rule EAMake creates an n-element array initialized with element e. A fresh

location pointing to the new array is appended to the state, and this location,

together with n, are returned as part of the carray constructor.

The next two rules (EAGetR and EAGetE) describe the behavior of the getter.

In both rules, the array is first weak head-reduced in order to obtain the carray

constructor applied to location l. Then the rules differ according to the case: if the

index i is within the bounds of the array, and the element at index i is defined (i.e.,

not null), then the type of the array τ is unified with the type coming from the

carray constructor (τ′), potentially instantiating new meta-variables. If the index is

outside the bounds of the array, an error OutOfBounds is raised.

The two rules for the setter (EASetR and EASetE) are similar: we first check

that the index is within the bounds and that the type of the array unifies with the

one from the constructor, and if so, the position i of the array is updated. Otherwise,

an exception is raised.

6.5 Use once and destroy

Allowing state to persist across multiple Mtactic runs is possible but technically

challenging. For the present work, we have favored a simple implementation, and

therefore restricted Mtactics to only use mutable state internally, as in Launchbury

& Peyton Jones (1994).

If we were to consider generalizing to handle persistent state, we would encounter

at least two key challenges. First, since Coq is interactive, the user is entitled to

undo and redo operations. Allowing state to persist across multiple runs would

thus require the ability to rollback the state accordingly. While this is doable using

persistent arrays (Baker 1991) with reasonable amortized space and time complexity,

there is still a technical challenge: how to know to which state to rollback.

A second challenge arises from the module system of Coq. In particular, a

developer may create references and modify them in different modules. Then,

importing a module from another file should replay the effects in that file in

order to ensure a consistent view of the storage among different modules.

As mentioned above, we decided to leave this problem for future work and throw

away the state after the execution of a Mtactic. While this decision may sound

restrictive, it is flexible enough for us to be able to encode interesting examples, such

as the one presented in this section.

The rule for elaborating the run operator is modified to start the evaluation of

the Mtactic with an empty state:

Σ; Γ
�τ′ t ↪→ t′ : �τ � Σ′

Σ′; Γ; []
 t′ �∗ (Σ′′; σ; ret e)

Σ; Γ
τ′ run t ↪→ e : τ � Σ′′

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

50 B. Ziliani et al.

Fig. 22. Performance of three different implementations of tautology provers: using a list, a

finite map over a balanced tree, and a hashtable.

6.6 A word on performance

Despite the various dynamic checks performed by our stateful extensions to Mtactics,

we can obtain a significant speedup by using mutable state. To support our claim,

we implemented three different versions of the tautology prover, using different

data structures (both functional and imperative). Figure 22 shows the time it takes

for each prover to solve tautologies on an increasing number of hypotheses. The

slowest one is the functional prover from Section 3.2, which takes constant time for

extending the context and linear time (in the size of the context) for lookup.

The second prover uses a functional map implemented with a balanced tree. As

keys for the map, we use the natural numbers coming from hashing the hypotheses,

similarly to what the prover from Figure 19 does. Both extending and querying the

context take logarithmic time to compute.

Finally, the third prover is the one presented in this section, which performs both

extension and lookup of the context in amortized constant time. As expected, it

greatly outperforms the other two.

Before moving on to prove soundness of the system, we want to stress that the

safety check done in the getter and setter rules (i.e., the unification of the type

of the array with the one coming from the carray constructor) does not result

in a significant performance cost. In particular, it is possible to cache the results,

effectively avoiding the overhead in the most common cases (which cover almost all

of the accesses). Even in our rather naive implementation, our experimental results

shows that the invalidation of cells and the unification of types in the getter and

setter operations causes only minor slowdowns (less than 5%).

6.7 Soundness in the presence of state

The soundness theorem must now be extended to consider the store. We start by

extending the definition of blocked terms to consider the new cases:

Definition 4 (Blocked terms)

A term t is blocked if and only if the subterm in reduction position satisfies one of

the cases of Definition 2, or:

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 51

• It is an array operation (get or set), and the array or the index do not normalize

to the array constructor or a natural number, respectively.

• It is an array operation (get or set), the array and the index normalize to

@carray τ l and i respectively, for some τ, l and i, but either

1. l is not in the state σ, or

2. there exists l �→ aτ′ ∈ σ, but τ does not unify with τ′ or ai = null.

To state the preservation theorem, we need to say what it means for a store to be

valid. A store σ is valid in contexts Γ and Σ if for every array a with element type τ

in σ, every element of a is either null or has type τ. Formally,

Σ; Γ
 · valid

∀j ∈ [1..n]. ej = null ∨ Σ; Γ
 ej : τ Σ; Γ
 σ valid

Σ; Γ
 (l �→ [e1, . . . , en]τ, σ) valid

We now extend the proof of type preservation, where we need to also ensure

preservation of the validity of the store.

Theorem 3 (Type preservation with references)

If Σ; Γ
 t : �τ and Σ; Γ
 σ valid and Σ; Γ; σ
 t � (Σ′; σ′; t′), then Σ′ � Σ and

Σ′; Γ
 t′ : �τ and Σ′; Γ
 σ′ valid.

Proof

The proof poses little challenge. We only consider the new or modified cases.

Case ENuV: We have t = νx. v. Since x goes out of scope in the returning term, in

order to have a valid state we need to remove all the arrays with types referring to

x, and invalidate all array positions with contents referring to x. This is precisely

what the invalidate judgment does.

Case EHash: Trivial, as it is returning a number.

Case EAMake: We have t = array make τ′ n e. Let l be a fresh location. By

hypothesis we know that e has type τ′, so the new store σ′ = l �→ [e; n−2. . . ; e]τ′ , σ

contains an array of elements of type τ′. Therefore, the new state is valid, and the

returned value @carray τ′ l n has type array τ′.

Case EAGetR: We have t = array get τ′ a i. By the premise of the rule, a normalizes

to @carray τ′ l and i to i′ such that l �→ [e1, . . . , en]τ ∈ σ for some e1, . . . , en. Also

by hypothesis, i′ < n, τ unifies with τ′, and ei′+1 �= null. Therefore, ei′+1 has type

(convertible with) τ′. Note that, by soundness of unification (Postulate 8), Σ′ � Σ.

Case EAGetE: Trivial.

Case EASetR: We have t = array set τ′ a i e. As in the EAGetR case, we also have

that a
whd
� ∗ @carray τ′ l and there exist e1, . . . , en such that l �→ [e1, . . . , en]τ ∈ σ.

We need to show that Σ; Γ
 σ′ valid, where σ′ = l �→ [e1, i−1. . ., e, . . . , en]τ, σ. By

hypothesis and the premises of the rule, we know that e has type τ′, unifiable with

τ. Therefore, updating the ith position cannot invalidate the store. Note that, as

in the previous case, by soundness of unification (Postulate 8), Σ′ � Σ.

Case EASetE: Trivial. �

As before, our main theorem follows as an immediate corollary:

Theorem 4 (Type soundness with references)

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

52 B. Ziliani et al.

If Σ; Γ
 t : �τ and Σ; Γ
 σ valid, then either t is a value, or t is blocked, or

there exist t′, Σ′ and σ′ such that Σ; Γ; σ
 t � (Σ′; σ′; t′) and Σ′; Γ
 t′ : �τ and

Σ′; Γ
 σ′ valid.

As a second corollary, we have that the new rule for run t (in Section 6.5) is also

sound: since the initial empty store under which t is run is trivially valid, Theorem 4

tells us that the type τ of t is preserved, and hence that the returned term e has

type τ.

7 Related work

7.1 Languages for typechecked tactics

In the last five years, there has been increasing interest in languages that support safe

tactics to manipulate proof terms of dependently typed logics. Delphin (Poswolsky &

Schürmann 2009), Beluga (Pientka 2008; Pientka & Dunfield 2008; Cave & Pientka

2012), and VeriML (Stampoulis & Shao 2010, 2012) are languages that, like Mtac,

fall into this category. By “safe” we mean that, if the execution of a tactic terminates,

then the resulting proof term has the type specified by the tactic.

But, unlike Mtac, these prior systems employ a strict separation of languages: the

computational language (the language used to write tactics) is completely different

from the logical language (the language of proofs), making the meta-theory heavier

than in Mtac. Indeed, our proof of type soundness is completely straightforward,

as it inherits from CIC all the relevant properties such as type preservation

under substitution. Having a simple meta-theory is particularly important to avoid

precluding future language extensions—indeed, extensions of the previous systems

have often required a reworking of their meta-theory (Cave & Pientka 2012;

Stampoulis & Shao 2012).

Another difference between these languages and Mtac is the logical language they

support. For Delphin and Beluga, it is LF (Harper et al. 1993), for VeriML it is

λHOL (Barendregt & Geuvers 2001), and for Mtac it is CIC (Bertot & Castéran

2004). CIC is the only one among these that provides support for computation

at the term and type level, thereby enabling proofs by reflection (e.g., see Section

3.3). Instead, in previous systems term reduction must be witnessed explicitly in

proofs. To work around this, VeriML’s computational language includes a construct

letstatic that allows one to stage the execution of tactics, so as to enable equational

reasoning at typechecking time. Then, proofs of (in-)equalities obtained from tactics

can be directly injected in proof terms generated by tactics. This is similar to our

use of run in the example from Section 3.3, with the caveat that letstatic cannot be

used within definitions, as we did in the inner prod example, but rather only inside

tactics.

In Beluga and VeriML, the representation of objects of the logic in the computa-

tional language is based on Contextual Modal Type Theory (Nanevski et al. 2008a).7

7 The contextual types of CMTT are not to be confused with the lightweight “contextual types” that
Mtac assigns to unification variables (Section 4.2). In Mtac, we only use contextual types to ensure

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 53

Therefore, every object is annotated with the context in which it is immersed. For

instance, a term t depending only on the variable x is written in Beluga as [x. t],

and the typechecker enforces that t has only x free. In Mtac, it is only possible to

perform this check dynamically, writing an Mtactic to inspect a term and rule out

free variables not appearing in the set of allowed variables (the interested reader

may find an example of this Mtactic in the Mtac distribution). On the other hand,

the syntax of the language and the meta-theory required to account for contextual

objects are significantly heavier than those of Mtac.

Delphin shares with Mtac the νx : A binder from (Nanevski 2002; Schürmann

et al. 2005). In Delphin, the variable x introduced by this binder is distinguished

with the type A#, in order to statically rule out offending terms like νx : A. ret x. In

Mtac, instead, this check gets performed dynamically. Yet again, we see a tension

between the simplicity of the meta-theory and the static guarantees provided by the

system. In Mtac, we favor the former.

Of all these systems, VeriML is the only one that provides ML-style references at

the computational level. Our addition of mutable state to Mtac is clearly inspired by

the work of Stampoulis & Shao (2010), although, as we do not work with Contextual

Modal Type Theory, we are able to keep the meta-theory of references quite simple.

Beluga’s typechecker is constantly growing in complexity in order to statically

verify the completeness and correctness of tactics (through coverage and termination

checking). If a tactic is proved to cover all possible shapes of the inspected object,

and to be terminating, then there is no reason to execute it: it is itself a meta-theorem

one can trust. This concept, also discussed below, represents an interesting area of

future research for Mtac.

Finally, a key difference between Mtac and all the aforementioned systems is the

ability to program Mtactics interactively, as shown at the end of Section 3.1. None

of the prior systems support this.

7.2 Proof automation through lemma overloading

At heart, one of the key ideas of Mtac is to get tactic execution to be performed

by Coq’s type inference engine. In that sense, Mtac is closely related to (and indeed

was inspired by) Gonthier et al.’s work on lemma overloading using canonical

structures (Gonthier et al. 2013a).

However, as explained in the introduction, whereas Mtac supports a functional

style of programming, the style of programming imposed by lemma overloading is

that of (dependently typed) logic programming. For instance, Figure 23 shows the

scan algorithm from Section 3.1 rewritten using canonical structures. Without going

into detail, the structure (a.k.a. record) form in line 9 is the backbone of the tactic.

The (tagged) heap heap of is the input to the algorithm, and the list of pointers

s and the (unnamed) axiom are the output of the algorithm. The “tagging” of the

heap (lines 1 to 4) is required in order to specify an order in which the canonical

soundness of unification, inheriting the mechanism from Coq. Mtac’s contextual types are essentially
hidden from the user, whereas in VeriML and Beluga they are explicit in the computational language.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

54 B. Ziliani et al.

Fig. 23. Scan tactic in lemma overloading style.

instance declarations in lines 13 to 20 (much like type class instances in Haskell)

should be considered during canonical instance resolution.

The reason for using a parameter of the structure (s) to represent one of the

outputs of the algorithm is tricky to explain. More generally, knowing where to

place the inputs and outputs of overloaded lemmas, and how to compose them

together effectively, requires deep knowledge of the unification algorithm of Coq. In

fact, the major technical contribution of Gonthier et al. (2013a) is the development of

a set of common “design patterns” to help in dealing with these issues. For instance,

in order to encode the noalias tactic as a composition of several overloaded lemmas,

Gonthier et al. employ a rather sophisticated “parameterized tagging” pattern for

reordering of unification subproblems.

In contrast, the Mtac encoding of noalias is entirely straightforward functional

programming. Admittedly, the operational semantics of Mtac’s mmatch construct is

also tied to the unification algorithm of Coq, and the lack of a clear specification

of this algorithm is an issue we hope to tackle in the near future. But, crucially,

the high-level control flow of Mtactics is easy to understand without a detailed

knowledge of Coq unification.

That said, there are some idioms that canonical structures support but Mtactics

do not. In particular, their logic programming style makes them openly extensible

(as with Haskell type classes, new instances can be added at any time), whereas

Mtactics are closed to extension. It also enables them to be applied in both backward

and forward reasoning, whereas Mtactics are unidirectional.

7.3 Typechecked tactics through reflection

There is a large, mostly theoretical, body of work on using the theory of a proof

assistant to reason about tactics written for the same proof assistant. The high-level

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 55

idea is to reflect (a fraction of) the object language of the proof assistant into a

Term datatype inside the same proof assistant. Tactics are then constructed using

this datatype, and can be verified just like any other procedure built inside the proof

assistant. If the tactic is proven to be correct, then it can be safely used as an axiom,

without having to spend time executing it, or checking its result.

While this idea is appealing, the circularity that comes from reasoning about the

logic of a proof assistant within itself endangers the soundness of the logic, and

therefore special care must be taken. In theory, one can avoid this circularity by

restricting the objects of the language that can be reflected, and by establishing

a hierarchy of assistants: an assistant at level k can reason about tactics for the

assistant at level k − 1 or below.8 This concept is discussed in depth theoretically

in Allen et al. (1990), Howe (1992), Constable (1992), Pollack (1995), Harrison (1995),

and Artëmov (1999). More recently, Devriese & Piessens (2013) provide, to the best

of our knowledge, the first attempt of implementing it, but without arriving yet at

a practical and sound implementation.

More pragmatically, the programming language Agda suports a lightweight

implementation of reflection.9 It does so with two primitives, quoteGoal and

unquoteGoal. The first one reflects the current goal into a Term datatype, and the

second one solves the current goal by the proof term that results from interpreting a

term of the same datatype. This mechanism avoids the circularity problem mentioned

before in two ways: first, as mentioned above, by restricting the object language

supported and, second, by dynamically typechecking the proof term before solving

a goal with it. That is, like in Mtac, a tactic is never trusted, and therefore cannot

be used as an axiom. An example of proof automation using Agda’s reflection

mechanism, and its limitations, can be found in van der Walt & Swierstra (2013).

All of the aforementioned works require tactics to be written using a de Bruijn

encoding of objects, in contrast to the direct style promoted in Mtac. In Agda this

can be annoying, but not fatal. However, if tactics have to be proven correct, as in

Devriese & Piessens (2013), then the overhead of verifying a tactic quickly negates

the benefit of using it. Another disadvantage is that tactics are restricted to use the

pure language of the assistant, and therefore cannot use effects like non-termination

and mutable state.

Recent work by Malecha et al. (2014) restricts the use of reflection to reflective

hints. Hints are lemmas reflected into an inductive datatype, similar to what the

reflection mechanism of Agda does, packed together with a proof of soundness.

These hints are then used by a specialized auto tactic that reflects the goal and

tries to prove it automatically using the reflective hints. This work shares with

the reflection mechanism of Agda the de Bruijn encoding of terms, but, unlike in

Devriese & Piessens (2013), the soundness proof is local to the hint: the auto tactic

will be in charge of performing the recursion, so the effort required to verify a hint

is significantly smaller. Unlike Mtac, this work does not aim at a full language for

8 This is reminiscent of the universe level hierarchy in type theory.
9 http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Reflection

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

56 B. Ziliani et al.

meta-programming, although there are ongoing efforts to extend it into a general

purpose tactic language, Rtac (Malecha & Bengtson 2015).

7.4 Simulable monads

Claret et al. (2013) present Cybele, a framework for building more flexible proofs by

reflection in Coq. Like Mtac, it provides a monad to build effectful computations,

although these effects are compiled and executed in OCaml. Upon success, the

OCaml code creates a prophecy that is injected back into Coq to simulate the effects

in pure CIC. On the one hand, since the effects Cybele supports must be replayable

inside CIC, it does not provide meta-programming features like Mtac’s mmatch, nu,

abs, and evar, which we use heavily in our examples. On the other hand, for the

kinds of effectful computations Cybele supports, the proof terms it generates ought

to be smaller than those Mtac generates, since Cybele enforces the use of proof by

reflection. The two systems thus offer complementary benefits, and can in principle

be used in tandem.

7.5 Effectful computations in Coq

There is a large body of work incorporating or modeling effectful computations in

Coq. Concerning the former, in Armand et al. (2010) the kernel of Coq is extended to

handle machine integers and persistent arrays (Baker 1991). As discussed in Section 6,

in Mtac we favored the more generic reference model à la ML, and we did not need

to modify the kernel. That said, if the reduction of terms in Armand et al. (2010)

were extended to handle terms containing unification variables, the developer could

potentially choose between our interpreted implementation of generic arrays and

their natively implemented persistent arrays.

Concerning the latter, there are two different approaches when it comes to

modeling state in Coq. The more traditional one, exemplified by Nanevski et al.

(2008c,b, 2010) and Miculan & Paviotti (2012), is to encapsulate the effectful

computations in a monad, and provide two different views of it. Inside the prover,

this monad performs the computation in an inefficient functional (state-passing)

way: easy to verify, but slow to execute. Then, the verified code is extracted into a

programming language with imperative features (typically Haskell or OCaml) using

the efficient model of imperative computation that these languages provide.

Vafeiadis (2013) argues that the monadic style of programming imposed by

the previous approach is inconvenient, as it drags all functions that use stateful

operations into the monadic tarpit, from which they cannot escape even if they are

observably pure. He proposes an alternative called adjustable references, to enable

the convenient use of references within code that is not observably stateful. An

adjustable reference is like an ML reference cell with the addition of an invariant

ensuring that updates to the cell are not observable. As with the previous approach,

the code written in the prover is extracted into efficient OCaml code.

In contrast to the above approaches, stateful Mtactics do not offer any formal

model for reasoning about code that uses references. State is restricted to the

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 57

language of Mtactics, whose operational behavior cannot be reasoned about within

Coq itself.

Acknowledgments

We are deeply grateful to Chung-Kil Hur for suggesting the Mendler-style encoding

of mfix, to Arnaud Spiwack for suggesting the use of telescopes for representing

patterns, and to Georges Gonthier for the neat type class trick for delaying execution

of Mtactics. We would also like to thank Jesper Bengtson and Jonas Jensen, who

tested an earlier version of Mtac and gave useful feedback that helped us in

polishing the implementation, as well as Nils Anders Danielsson, Scott Kilpatrick,

Antonis Stampoulis, and the anonymous reviewers of this article (and of the

original conference version) for their very helpful comments. This research was

partially supported by the Spanish MINECO projects TIN2010-20639 Paran10

and TIN2012-39391-C04-01 Strongsoft, AMAROUT grant PCOFUND-GA-2008-

229599, and Ramon y Cajal grant RYC-2010-0743.

References

Allen, S. F., Constable, R. L., Howe, D. J. & Aitken, W. E. (1990) The semantics of reflected

proof. In IEEE Symposium on Logic in Computer Science (LICS). New York: IEEE.

Armand, M., Grégoire, B., Spiwack, A. & Théry, L. (2010) Extending Coq with imperative

features and its application to SAT verification. In International Conference on Interactive

Theorem Proving (ITP). Berlin: Springer.

Artëmov, S. N. (1999) On explicit reflection in theorem proving and formal verification. In

Conference on Automated Deduction (CADE). Berlin: Springer.

Asperti, A., Ricciotti, W., Sacerdoti Coen, C. & Tassi, E. (2009) A compact kernel for the

calculus of inductive constructions. Sadhana 34(1), 71–144.

Baker, H. G. (1991) Shallow binding makes functional arrays fast. SIGPLAN Not. 26(8),

145–147.

Barendregt, H. & Geuvers, H. (2001) Proof-assistants using dependent type systems. In

Handbook of Automated Reasoning, Robinson, A. & Voronkov, A. (eds), Elsevier Science

Publishers B. V., pp. 1149–1238

Bertot, Y. & Castéran, P. (2004) Interactive Theorem Proving and Program Development:

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.

An EATCS Series, Springer.

Boutin, S. (1997) Using reflection to build efficient and certified decision procedures. In

International Symposium on Theoretical Aspects of Computer Software (TACS). Berlin:

Springer.

Cave, A. & Pientka, B. (2012) Programming with binders and indexed data-types. In ACM

Symposium on Principles of Programming Languages (POPL). New York: ACM.

Chlipala, A. (2011a) Certified Programming with Dependent Types. MIT Press.

http://adam.chlipala.net/cpdt/.

Chlipala, A. (2011b) Mostly-automated verification of low-level programs in computational

separation logic. In ACM Conference on Programming Languages Design and

Implementation (PLDI), pp. 234–245. New York: ACM.

Claret, G., del Carmen González Huesca, L., Régis-Gianas, Y. & Ziliani, B. (2013) Lightweight

proof by reflection using a posteriori simulation of effectful computation. In International

Conference on Interactive Theorem Proving (ITP). Berlin: Springer.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

58 B. Ziliani et al.

Constable, R. L. (1992) Metalevel programming in constructive type theory. In Programming

and Mathematical Method, Broy, M. (ed), NATO ASI Series, vol. 88. New York: Springer-

Verlag, pp. 45–93.

Devriese, D. & Piessens, F. (2013) Typed syntactic meta-programming. In International

Conference on Functional Programming (ICFP). New York: ACM.

Gonthier, G. (2008) Formal proof—the four-color theorem. Not. AMS 55(11), 1382–93.

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux, S., Mahboubi,

A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev, A., Tassi, E. & Théry, L.

(2013b) A machine-checked proof of the odd order theorem. In International Conference

on Interactive Theorem Proving (ITP). Berlin: Springer.

Gonthier, G., Mahboubi, A. & Tassi, E. (2008) A Small Scale Reflection Extension for the Coq

System. Technical Report, INRIA.

Gonthier, G., Ziliani, B., Nanevski, A. & Dreyer, D. (2013a) How to make ad hoc proof

automation less ad hoc. J. Funct. Program. (JFP) 23(4), 357–401.

Grégoire, B. & Leroy, X. (2002) A compiled implementation of strong reduction. In

International Conference on Functional Programming (ICFP). New York: ACM.

Harper, R., Honsell, F. & Plotkin, G. (1993) A framework for defining logics. J. ACM (JACM)

40(1), 143–184.

Harrison, J. (1995) Metatheory and Reflection in Theorem Proving: A Survey and Critique.

Technical Report CRC-053. SRI Cambridge, Millers Yard, Cambridge, UK.

Howe, D. J. (1992) Reflecting the semantics of reflected proof. In Proof Theory. Cambridge

University Press, pp. 227–250.

Hur, C.-K., Neis, G., Dreyer, D. & Vafeiadis, V. (2013) The power of parameterization in

coinductive proof. In ACM Symposium on Principles of Programming Languages (POPL).

New York: ACM.

Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D.,

Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H. & Winwood, S. (2010)

seL4: Formal verification of an operating-system kernel. Commun. ACM (CACM) 53(6),

107–115.

Launchbury, J. & Peyton Jones, S. L. (1994) Lazy functional state threads. In ACM Conference

on Programming Languages Design and Implementation (PLDI). New York: ACM.

Leroy, X. (2009) Formal verification of a realistic compiler. Commun. ACM (CACM) 52(7),

107–115.

Malecha, G. & Bengtson, J. (2015) Rtac: A fully reflective tactic language. In International

Workshop on Coq for PL (CoqPL).

Malecha, G., Chlipala, A. & Braibant, T. (2014) Compositional computational reflection. In

International Conference on Interactive Theorem Proving (ITP). Berlin: Springer.

Mendler, N. P. (1991) Inductive types and type constraints in the second-order lambda

calculus. Ann. Pure Appl. Log. 51(1–2), 159–172.

Miculan, M. & Paviotti, M. (2012) Synthesis of distributed mobile programs using monadic

types in coq. In International Conference on Interactive Theorem Proving (ITP). Berlin:

Springer.

Miller, D. (1991) Unification of simply typed lamda-terms as logic programming. In

International Conference on Logic Programming (ICLP). Berlin: Springer.

Nanevski, A. (2002) Meta-programming with names and necessity. In International

Conference on Functional Programming (ICFP). New York: ACM.

Nanevski, A., Morrisett, G. & Birkedal, L. (2008b) Hoare type theory, polymorphism and

separation. J. Funct. Program. (JFP) 18(5–6), 865–911.

Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P. & Birkedal, L. (2008c) Ynot: Dependent

types for imperative programs. In International Conference on Functional Programming

(ICFP). New York: ACM.

Nanevski, A., Pfenning, F. & Pientka, B. (2008a) Contextual modal type theory. ACM Trans.

Comput. Log. (TOCL) 9(3), 23:1–23:49.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

Mtac: A monad for typed tactic programming in Coq 59

Nanevski, A., Vafeiadis, V. & Berdine, J. (2010) Structuring the verification of heap-

manipulating programs. In ACM Symposium on Principles of Programming Languages

(POPL). New York: ACM.

Pientka, B. (2008) A type-theoretic foundation for programming with higher-order abstract

syntax and first-class substitutions. In ACM Symposium on Principles of Programming

Languages (POPL). New York: ACM.

Pientka, B. & Dunfield, J. (2008) Programming with proofs and explicit contexts. In

International Symposium on Principles and Practice of Declarative Programming (PPDP).

New York: ACM.

Pollack, R. (1995) On extensibility of proof checkers. In TYPES. Berlin: Springer.

Poswolsky, A. & Schürmann, C. (2009) System description: Delphin – a functional

programming language for deductive systems. In Electron. Notes Theor. Comput. Sci.

(ENTCS) 228, 113–120.

Sacerdoti Coen, C. (2004) Mathematical Knowledge Management and Interactive Theorem

Proving. PhD Thesis, University of Bologna.

Säıbi, A. (1997) Typing algorithm in type theory with inheritance. In ACM Symposium on

Principles of Programming Languages (POPL). New York: ACM.

Schürmann, C., Poswolsky, A. & Sarnat, J. (2005) The ∇-calculus. Functional programming

with higher-order encodings. In International Conference on Typed Lambda Calculi and

Applications (TLCA). Berlin: Springer.

Ševčı́k, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S. & Sewell, P. (2013) CompCertTSO:

A verified compiler for relaxed-memory concurrency. J. ACM (JACM) 60(3), 22:1–22:50.

Sozeau, M. (2007) Subset coercions in Coq. In TYPES. Berlin: Springer.

Sozeau, M. & Oury, N. (2008) First-class type classes. In International Conference on Theorem

Proving in Higher Order Logics (TPHOLs). Berlin: Springer.

Stampoulis, A. & Shao, Z. (2010) VeriML: Typed computation of logical terms inside a

language with effects. In International Conference on Functional Programming (ICFP).

New York: ACM.

Stampoulis, A. & Shao, Z. (2012) Static and user-extensible proof checking. In ACM

Symposium on Principles of Programming Languages (POPL). New York: ACM.

The Coq Development Team. (2012) The Coq Proof Assistant Reference Manual—Version

V8.4.

Vafeiadis, V. (2013) Adjustable references. In International Conference on Interactive Theorem

Proving (ITP). Berlin: Springer.

van der Walt, P. & Swierstra, W. (2013) Engineering proof by reflection in Agda. In

Implementation and Application of Functional Languages (IFL).

Ziliani, B., Dreyer, D., Krishnaswami, N. R., Nanevski, A. & Vafeiadis, V. (2013) Mtac: A

monad for typed tactic programming in Coq. In International Conference on Functional

Programming (ICFP). New York: ACM.

https://doi.org/10.1017/S0956796815000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000118

