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The reliability of genomic breeding values (DGV) decays over generations. To keep the DGV reliability at a constant level, the
reference population (RP) has to be continuously updated with animals from new generations. Updating RP may be challenging
due to economic reasons, especially for novel traits involving expensive phenotyping. Therefore, the goal of this study was to
investigate a minimal RP update size to keep the reliability at a constant level across generations. We used a simulated dataset
resembling a dairy cattle population. The trait of interest was not included itself in the selection index, but it was affected by
selection pressure by being correlated with an index trait that represented the overall breeding goal. The heritability of the index
trait was assumed to be 0.25 and for the novel trait the heritability equalled 0.2. The genetic correlation between the two traits
was 0.25. The initial RP ( n = 2000) was composed of cows only with a single observation per animal. Reliability of DGV using the
initial RP was computed by evaluating contemporary animals. Thereafter, the RP was used to evaluate animals which were one
generation younger from the reference individuals. The drop in the reliability when evaluating younger animals was then assessed
and the RP was updated to re-gain the initial reliability. The update animals were contemporaries of evaluated animals (EVA). The
RP was updated in batches of 100 animals/update. First, the animals most closely related to the EVA were chosen to update RP.
The results showed that, approximately, 600 animals were needed every generation to maintain the DGV reliability at a constant
level across generations. The sum of squared relationships between RP and EVA and the sum of off-diagonal coefficients of the
inverse of the genomic relationship matrix for RP, separately explained 31% and 34%, respectively, of the variation in the
reliability across generations. Combined, these parameters explained 53% of the variation in the reliability across generations.
Thus, for an optimal RP update an algorithm considering both relationships between reference and evaluated animals, as well
as relationships among reference animals, is required.
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Implications

Costs of genomic selection breeding scheme are especially
important, when the goal is to improve a novel trait, such as
methane emission or feed intake, where reliable phenotyping is
expensive. Creating reference population providing high
genomic breeding values reliability is challenging. Another
challenge is maintaining reference population such that initially
achieved reliability does not drop. This study investigated
minimum number of cows to be used for updating reference
population to keep reliability constant at initially achieved level.
Presented approach provides insights in designs of optimal
strategies to keep reference population up-to-date across
several generations in the population under selection pressure.

Introduction

High reliability of estimated breeding values is important
for achieving high genetic progress – a key feature of a
successful breeding programme. Introducing genomic selec-
tion (GS) (Meuwissen et al., 2001) into the breeding practice
enabled an increase in the reliability of breeding values for
animals without offspring performance (Sellner et al., 2007;
Hayes et al., 2009; Calus, 2010) which is especially important
for dairy cattle breeding. As the animals can be accurately
selected at young age, GS enables to accelerate the
generation turnover and thus to reduce the generation
interval (for reviews see: Pryce and Daetwyler, 2012;
Bouquet and Juga, 2013).
A reference population (RP) is a key element of GS. The RP

consists of genotyped animals with phenotypic observations† E-mail: mbee@up.poznan.pl
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either based on own or progeny performance. The RP is used
to predict the single nucleotide polymorphism (SNP) effects
which are then used to estimate the genomic breeding values
(DGV) of selection candidates. One of the most important
features of the RP influencing the DGV reliability is its size.
A larger RP generally results in a higher DGV reliability
(Goddard and Hayes, 2009; Hayes et al., 2009). Another
important aspect is the RP design. An optimally designed RP
is expected to maximize the reliability for a given population
(Pszczola et al., 2012a; Rincent et al., 2012; Isidro et al.,
2015). Several studies have shown that across scenarios the
highest accuracies were obtained when the RP consisted of
animals that are distantly related to each other (Clark et al.,
2012; Pszczola et al., 2012a; Rincent et al., 2012; Isidro
et al., 2015; Wu et al., 2015) and closely related to the
evaluated animals (EVA) (Habier et al., 2010; Pszczola et al.,
2012a; Wu et al., 2015).
The DGV reliability decays over generations if RP is not

updated (Meuwissen et al., 2001; Calus, 2010; Wolc et al.,
2011), because the relationships between the EVA and the
RP drop (Habier et al., 2007; Wolc et al., 2011; Pszczola
et al., 2012a). Another explanation for such decline in the
DGV reliability is the decay in linkage-disequilibrium (LD)
between SNPs and quantitative trait loci (QTL) over generations.
Consequently, it is important to update the RP with animals
from the new generations to maintain the reliability constant
at its initial level.
Updating the RP may sometimes be challenging either

because of the genotyping costs or difficulties in obtaining
reliable phenotypes. To minimize costs of running a
GS-based breeding programme, an important question is
what is the minimum size of the RP update in order to keep
the reliability at a constant level. Therefore, the objective of
this study was to investigate how many animals per
generation are needed to be added to the RP to keep the
reliability at a constant level across generations. This
minimum RP update size is specifically investigated for a
scenario with a novel trait for which only an initially small
cow RP (n = 2000) with own phenotypes is available,
and where additional cows are added every generation.
Examples of such a trait are methane emission or feed intake
in dairy cattle. In this study, we assumed that the update of
the RP uses phenotypes with the same accuracy measured on
the same category of animals. In practical implementations
these assumptions might need to be adapted for novel
traits for which initial accurate RP phenotypes are available
only for a limited number of animals and only less accurate
phenotyping may be done during the updating process.
For example, when the update could be done using indirect
measurements of the novel trait (e.g. mid-IR spectra
prediction of methane emission from milk).

Material and methods

Data
To assess the minimum RP update size, we have simulated a
dairy cattle population with phenotypes recorded for a novel

trait. In the simulation process, the history of cattle breeding
was simulated using QMSim software (Sargolzaei and
Schenkel, 2009). The values of the effective population size
(Ne) reflected different points in the history of the US and
Canadian Holstein cattle (Schenkel et al., 2009).

Historic population. In total, 505 historical generations were
simulated. The number of animals (n) at 500, 250 genera-
tions ago and in five generations ago were assumed to be
~1400, 1000 and 100, respectively. This decline in N across
generations was applied to achieve a level of Ne in the final
generations that is similar to the Ne in the current Holstein
population. The animals in the historic populations were
mated randomly and the sex ratio was assumed to be 0.5.
The simulated genome consisted of 29 autosomes with a
total genome length of 2333cM. Chromosomes were given
the same length as observed in cattle data by Snelling et al.
(2007). Initially, 46660 markers and 7250 QTL were evenly
spaced across the genome with equal allele frequencies for
both alleles. Mutation rate for markers and QTL was
2.5× 10−5. The first generation consisted of 1400 indivi-
duals. The number of animals was reduced linearly in the
subsequent generations until after 250 generations it
reached 1000 individuals. In the next 250 generations the
number of the animals was reduced until it reached 100
individuals. The first part of the simulation resembled the
bottleneck present in the history of cattle breeding and
enabled to reach the LD level which was realistic for the
current Holstein dairy cattle population. In the last five
generation of the historic population the number of females
was increased to 5000 and the number of males was
set to 25.

Current population. All the animals from the last generation
of the historic population were considered to be the founders
of the modern population. Each of 25 males per generation
was mated randomly with 5000 females. Each female
produced one offspring which had a 50% chance of being
male or female. The replacement ratio for females was 0.5
resulting in overlapping generations. The age of the animals
was assumed to be the only reason of culling. The mating
scheme included selection of males, while there was no
selection among females. Selection was based on estimated
breeding values for an overall index trait (as explained in more
detail later), which were approximated with an assumed
accuracy of 0.95, which reflects a progeny testing scheme with
150 progeny with one record each per sire for a trait with a
heritability of 0.25. Each generation, the 25 males with highest
breeding values were chosen to sire the next generation. The
first 10 generations of selection were used to establish Bulmer
equilibrium. The 11th generation of the simulation scheme was
assumed to be the initial generation for further analysis and
will be called generation 0 (Gen0) hereafter. Another five
generations (Gen1 to Gen5) were simulated to create a dataset
for analyses. In those final generations, 43256 segregating
markers and 6734 QTL remained. The whole simulation process
was replicated 10 times.
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Phenotypes
Our aim was to mimic a novel trait which is currently not
included in the breeding goal but it is genetically correlated
with it. Therefore, we simulated two genetically correlated
traits. The first trait resembled a breeding goal trait under
selection pressure and was simulated using the QMSim
software. The assumed heritability of this trait was 0.25. The
second trait mimicking the novel trait was simulated using
the output from QMSim. The procedure for simulating the
phenotypes and true breeding values (TBVs) for the second
trait was the following:

1. The QTL effects for the breeding objective (trait 1), as
obtained from QMSim, were standardized to follow a
normal distribution N (0,1).

2. Half of the QTL effects for the novel trait were drawn
randomly from a normal distribution N (0,1), that is
independent of the breeding objective trait.

3. The other half of QTL effects for the novel trait were
drawn from a multivariate distribution, considering the
known QTL effects for the breeding objective as obtained
from QMSim and a correlation between the QTL effects of
both traits of 0.5 (using a Cholesky decomposition of the
corresponding co-variance matrix).

4. TBVs were obtained by summing all the QTL effects for
the novel trait.

5. Phenotypes were calculated by drawing a random
residual terms from the normal distribution N(0,σ 2e),
where σ 2e reflected the heritability of 0.2.

The above procedure resulted in phenotypes for the novel
trait with a genetic correlation of 0.25 with the index trait
(under the assumption that the residual correlation is zero),
meaning that selection for an increase in the index trait will
indirectly lead to an improvement of the novel trait.
Only the second trait was used in further analyses.

RP and EVA
RP and EVA were sampled randomly from the 2500 females
available per generation. The initial RP consisted of 2000
females from Gen0. A total of 500 EVA/generation were
sampled randomly from Gen0 to Gen5 and the remaining
2000 females in each generation were considered to be
available for possible RP updates.

Breeding values estimation
The initial RP of 2000 cows was used to estimate variance
components. The following animal model was fitted using
ASReml 3.0 (Gilmour et al., 2009):

yj ¼ μ + animalj + ej (1)

where yj is the phenotypic record of animal j, μj the overall
mean, animalj the (random) DGV of animal j and ej a random
residual term. In the analyses we used the genomic
relationship matrix (G) created with the first formula
described by VanRaden (2008) using allele frequencies
computed across the 2000 initial RP. The variance
components were estimated using the initial RP and then

used to estimate DGV in the following BLUP analyses using
model (1) fitted in ASReml 3.0 (Gilmour et al., 2009).

Reliability
The reliability was calculated as the squared correlation of
the DGV estimated for the EVA and their simulated TBVs. The
initial reliability was computed, within each replicate, as the
DGV reliability for the EVA from Gen0. All the other
reliabilities were calculated for EVA one generation younger
than the current RP (e.g. EVA from Gen1 were used to
compute the reliability for the RP from Gen0).

RP update
The initial RP was updated by adding batches of 100 animals
until the current reliability was equal to or higher than
the initial reliability. The added animals originated from
the same generation as the current EVA. This resembles a
scenario where contemporaries of the selection candidates
are genotyped and phenotyped for the novel trait. In prac-
tical terms, it may for instance reflect a scenario where
measuring the novel phenotype on the EVA is prohibitive.
Examples are traits for which phenotyping is too expensive
to perform for all EVA, involves a challenge test such as
for disease traits, or where the phenotyping should be
performed under field conditions while the selection
candidates are kept in a nucleus environment. Because the
relationship between RP and EVA was shown previously to
have an impact on the DGV reliability (Pszczola et al.,
2012a), the animals for the RP update were sorted according
to their relationship with EVA and first the most closely
related animals were added. This relationship was measured
as the sum of squared relationship between potential RP
update and current EVA. After reaching the initial reliability
the EVA from the next generation was evaluated using the
updated RP. Further, the update animals were from the same
generation as the EVA. In this way, the size of the updated RP
was increasing depending on the number of updates
required to re-gain the initial reliability. To compare the
impact of the updating procedure on the reliability, we also
performed genomic evaluation in the five consecutive
generations without updating RP.

Indicators for the reliability
Reliability of DGV can be predicted using a selection index-
based formula, which utilize relationships between RP and
EVA and the relationships within RP (VanRaden, 2008;
Pszczola et al., 2012a). Note that the formulas presented by
Pszczola et al. (2012a) and Goddard et al. (2011) account for
sampling errors in the G matrix, while the formula of
VanRaden (2008) does not. From the formulas presented by
VanRaden (2008) and Pszczola et al. (2012a) it can be easily
derived that the sum of squared relationships between RP
and EVA and the inverse of the genomic relationship matrix
of the RP affects the reliability. High relationships between
RP and EVA lead to an increase in the reliability. However,
high relationships between the animals in RP, are expected
to lead to high negative values in the inverse of G, potentially
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reducing the reliability. Therefore, both squared relationships
between RP and EVA and the elements in G−1 for the RP
could be potentially used to predict the reliability. It
is worthwhile noting that the impact of diagonal and
off-diagonal elements inG−1 for the RP may differ. We tested
the predictive ability of these parameters for the obtained
reliability in regression analyses. First, following single
regression analyses were performed:

yi ¼ β0 + β1x1 (2)

where yi was the DGV reliability for the update round i,
that is every added batch of 100 reference animals, β0 the
intercept and β1 the regression coefficients and x1 an inde-
pendent variable. In the first model (Reg1) x1 was the sum of
squared relationships between RP and EVA (

P
G2
RP;EVA), in

the second model (Reg2), x1 was the sum of off-diagonals of
G−1 for RP (

P
G�1
RP12;21 ), and in (Reg3), x1 was the sum of

elements of G−1 for RP (
P

G�1
RP ). In addition, we tested if

the sum of the off-diagonals of the non-inverted relationship
matrix G (

P
GRP12;21 ) was a good predictor of the reliability

as this would save the need to invert G (Reg4). Then the best
predictor of Reg2, Reg3 and Reg4 was combined with the
predictor of Reg1 (i.e.

P
G2
RP;EVA +

P
G�1
RP12;21 ) in a multiple

regression model (MultiReg) as follows:

yi ¼ β0 + β1x1 + β2x2 (3)

where yi was the within replicate DGV reliability for the
update round i; β0 the intercept and β1, β2 the regression
coefficients and x1, x2 the independent variables.

Results and discussion

The objective of this study was to investigate the required
size of RP update per generation for a novel trait when using
the same type of animals with the goal to keep the reliability
at a constant level across generations. The considered novel
trait mimics a trait for which the number of phenotypes is a
limiting factor (e.g. methane emission, feed intake). Such
novel traits are usually not yet included in the breeding
objectives. Nonetheless, they may indirectly be affected by
selection through the genetic correlations with the traits in
the breeding objective. To reflect such a scenario, we
performed simulations in which the selection pressure was
put on the index trait and affected the novel trait only
indirectly. This resembles a situation in which for example
direct selection on milk yield indirectly improves feed
efficiency (Veerkamp, 1998) or reduces methane intensity
(i.e. methane emitted per kilogram of milk) from the cows
(Bell et al., 2010; Wall et al., 2010). The animals used to
update RP were chosen from the same generation as the
evaluated individuals. Such a scenario is likely when creating
and updating RP for the novel traits for which recording was
initialized in recent times and no historical information is
available.

Reliability
The average initial reliability was 0.37 (SE 0.01) and within
five generations of GS with no RP update it dropped to 0.21
(SE 0.02) as shown in Figure 1. The reliability appears to
decay asymptotically towards a baseline. Closer inspection of
rates of decay in real data could confirm this pattern giving
more insight into reasons of decay pattern. The presented
results showed a clear drop in DGV reliability across
generations when the RP is not updated, as noted previously
in other studies as well (Sonesson and Meuwissen, 2009;
Habier et al., 2010; Wolc et al., 2011; Pszczola et al., 2012a
and 2012b). Similarly to the results reported by these authors
the largest drop in reliability was observed after the first
generation. In the present study, without updating RP, the
DGV reliability after the first generation of selection on
average dropped by 0.08 to drop by a further 0.08 across the
remaining four generations. Updating the RP, as expected,
enabled to maintain the DGV reliability across generations at
the initial value.
The average update size required to at least re-gain the

initial reliability was 576 animals/generation and varied

Figure 1 Reliability of genomic breeding values across generations
without updating the reference population (dashed line) and with update
(solid line).

Table 1 R2 values of the regression analyses with the reliability of
genomic breeding value as dependent variable

Model Independent variable(s) used in the model Mean SE

Reg1
P

G2
RP;EVA

1 0.31 0.06

Reg2
P

G�1
RP12;21

2 0.34 0.08

Reg3
P

G�1
RP

3 0.24 0.06

Reg4
P

GRP12;21 0.32 0.07

MultiReg
P

G2
RP;EVA +

P
G�1
RP12;21 0.53 0.05

The presented results are averaged across 10 replicates of the whole simulation
process and accompanied by the between replicates standard errors.
1G2

RP;EVA –squared genomic relationships between reference population and
evaluated animals.
2G�1

RP12;21 – off-diagonal elements of inverse of genomic relationship matrix for
reference population.
3G�1

RP – inverse of genomic relationship matrix for reference population.
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considerably across replicates as shown by the SE of 79. This
indicates that other factors than the number of the animals in
RP, such as the relationship between RP and EVA animals
that may vary across generations and replicates, also plays
an important role in determining the update size. In addition,
in this study a particular population structure was simulated,
in case of a different population structure the number of the
updates needed might be somewhat different to the one
presented here.

Indicators for DGV reliability
To investigate the impact of the RP design the relationships
between animals within RP and between RP and EVA were
evaluated. The regression analyses showed a variation in the
percentage of variance in the reliability explained by the
applied regression models (Table 1). Reg1 which included
only sum of squared relationships between RP and EVA
explained 31% of the variation whereas the models that
utilized relationships within the RP explained from 24% to
34% of the variance. The models using sum of the off-
diagonals of the G or sum of the off-diagonals of the G−1

showed similar predictive power (R 2 = 0.32 and 0.34)
whereas the model using the full matrix was inferior
(R 2 = 0.24). The slopes in Reg1 were expected to be
positive, as higher relationships between RP and EVA lead a
higher reliability (Habier et al., 2010; Clark et al., 2012;
Pszczola et al., 2012a; Rincent et al., 2012; Isidro et al.,
2015; Wu et al., 2015). This was confirmed by the results of
the current study as shown in Table 1. In addition, low
relationships in RP are desired (Pszczola et al., 2012a;
Rincent et al., 2012; Isidro et al., 2015; Wu et al., 2015).
Therefore, the slope in Reg2, which uses the off-diagonal
elements of the inverted G, is expected to be positive
(as confirmed by the results in Table 2). This is because many
high positive relationships in G lead to many negative values
in the G−1. The slope in Reg2 was indeed positive as
shown in Table 2. The regression coefficient of Reg4 was
expected to be negative, because higher relationships within
the RP lead to lower reliability, while it turned out to be
positive. This unexpected behaviour together with the
somewhat lower R 2 value than for Reg2, use of Reg4 is
not advisable.
Based the R2 of the above single regression analyses

Reg1 and Reg2 were combined in the multiple regression
model (MultiReg). This resulted in the highest predictive
ability of the reliability. The MultiReg model explained 53%
of the variance in the reliability which was only 16% less
variance in the reliability explained than the sum of the
variance explained by the models Reg1 and Reg2. This
means that relationships between RP and EVA and
relationships within RP explain largely different part of the
variation in the reliability, and thus have to be considered
jointly. Figure 2 shows DGV reliabilities against sum of
squared relationships between RP and EVA for one randomly
chosen replicate, indicated clear patterns across generations.
These patterns indicate that a part of the unexplained
variance in reliabilities by the regression models is perhaps
due to differences across generations as a result of selection
(i.e. changes in LD between SNP and QTL or in allele
frequencies of QTL) that are not accounted for in the formula.
Some sort of correction in the regression analyses accounting
for (the number of) generations could improve the predictive
power of the models.

Table 2 Regression coefficients form the performed regression analyses

B0 B1 B2

Model Mean SE Mean SE Mean SE

Reg1 0.2440451 0.02578662 0.01042874 0.00304777 NA NA
Reg2 −42.9091612 13.65084476 0.00002160 0.00000682 NA NA
Reg3 0.9669055 0.40272659 −0.00000033 0.00000021 NA NA
Reg4 0.3050640 0.01581185 0.00000162 0.00000093 NA NA
MultiReg −0.5258080 0.91131291 0.03024358 0.00704248 0.00000033 0.00000044

In all the models the dependent variable was reliability of genomic breeding value and independent variables included: Reg1 – genomic relationships between reference
population (RP) and evaluated animals (

P
G2
RP;EVA); Reg2 – off-diagonal coefficients of genomic relationship matrix for RP-GRP (

P
G�1
RP12;21 ); Reg3 – all elements in GRP

(
P

G�1
RP ); Reg4 – off-diagonals of GRP

P
GRP12;21 ; MultiReg – combination of Reg1 and Reg3 (

P
G2
RP;EVA +

P
G�1
RP12;21 ). The presented results are averaged across 10

replicates of the whole simulation process and accompanied by the between replicates standard errors.

Figure 2 Reliability of genomic breeding values v. sum of squared
genomic relationships between reference population and evaluated
animals plotted for evaluated animals from generations one to five
(indicated, respectively, by the following symbols: □, ●, + , Δ and × )
for one replicate.
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Updating strategy
The results of the regression analyses indicate that the
optimal updating scheme for the RP considers both
relationships between RP and EVA and relationships within
RP. In the present study, the update animals were chosen
only considering maximization of the relationships between
RP and EVA. Considering the relationships in RP during the
updates could result in less updates required to re-gain
the reliability. Such procedure would, however, require a
complex optimization algorithm which on one hand would
maximize the relationships between RP and EVA but on the
other hand would minimize the relationship of the update
with already existing RP. Other studies showed that random
sampling of the RP may be suboptimal and attempted to
derive algorithms based on statistical properties of the
genomic prediction model (Rincent et al., 2012; Isidro et al.,
2015). Although these approaches may be theoretically
more optimal, the advantage of our approach based on
relationships is its’ intuitiveness leading to easier application
in practice. Furthermore, the regression analyses confirmed
that a large part of the variance in reliabilities can be
explained by the relationships. Therefore, the proposed
concept could potentially find an implementation in breeding
practice. Although, practical implementations might be more
complicated to organize because of differences between
traits definitions in original and updated RPs and different
types of animals (e.g. cows v. sires).
In the present study, we used genomic relationships

to select update of the RP. This resembles a situation
for novel and expensive to measure traits, in which some
animals are genotyped but phenotyped, and the choice
of animals to phenotype is based on the genomic relation-
ships. In most practical situations, however, the potential
animals to update RP might not be genotyped. In such
case the selection of RP update could be based on the
pedigree relationships or combined genomic and pedigree
relationships.

Conclusion

Updating RP every generation is important to maintain the
DGV reliability at the constant level across generations. For
this, in the scenario considered here in which the RP update
were chosen to be maximally related to EVA, ~600 animals
were needed every generation. However, the actual required
RP update size varies and depends on the design of the RP. It
is important how the RP update will affect the relationships
within RP and how closely the RP to be updated is related to
the EVA. It is therefore important to update RP with animals
that are closely related to the EVA. However, in practice
selecting such animals for an update will quickly increase the
within RP relationships, having a negative impact on the
reliability. Moreover, our study showed that the relationships
between RP and EVA and relationships within RP explain
largely different parts of the variation in the reliability. Thus,
an algorithm considering both relationships in the same time
would be desired for optimal RP update.
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