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Abstract

Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for
characters of finite abelian groups (now recognized as an orthogonality relation on GL(1)) was used by Dirichlet to
prove infinitely many primes in arithmetic progressions. Orthogonality relations for GL(2) and GL(3) have been
worked on by many researchers with a broad range of applications to number theory. We present here, for the first
time, very explicit orthogonality relations for the real group GL(4,R) with a power savings error term. The proof
requires novel techniques in the computation of the geometric side of the Kuznetsov trace formula.

1. Introduction and main theorem

Let @ > 1 be an integer, and let j : (Z/@Z)× → C× be a Dirichlet character (mod @). The classical
orthogonality relation for Dirichlet characters states that for integers <, = coprime to @,

1

q(@)
∑

j (mod @)
j(<)j(=) =

{
1 if < ≡ = (mod @),
0 otherwise.

This orthogonality relation is the basis for Dirichlet’s proof that there are infinitely many primes ? ≡ 0
(mod @) if (0, @) = 1. It has played an essential role in the modern development of analytic number
theory.

When they are lifted to the adele ring A over Q, Dirichlet characters can be realized as automorphic
representations of GL(1) (see chapter 2 in [GH11]). It is then very natural to try to generalize the
above orthogonality relation to representations of higher rank reductive groups. When trying to do this,
however, there is an immediate obstacle. In the case of GL(1), there are only finitely many characters
(mod @) for any fixed @ > 1. In higher rank, on the other hand, there will be infinitely many automorphic
representations. It then becomes necessary to introduce a test function with rapid decay and define the
orthogonality relation as an absolutely convergent integral over the automorphic representations.

The first successful attempt at obtaining an orthogonality relation for GL(2) was made by R. Brugge-
man in 1978 (see [Bru78]) who considered the orthonormal basis {q 9 } 9=1,2,... of Maass cusp forms for
SL(2,Z), where

q 9 (I) =
∑
=≠0

0 9 (=)
√

2cH  8C 9 (2c |=|H) · 42c8=G , (I = G + 8H ∈ upper-half plane),
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and 8C 9 is the modified -Bessel function of the second kind while 0 9 (=) ∈ C are the Fourier coefficients
of q 9 . The Maass cusp form q 9 has Laplace eigenvalue _ 9 = 1/4 + C29 and is a Hecke eigenform. Each
such Maass cusp form is associated with a unique irreducible cuspidal automorphic representation of
GL(2). Then Bruggeman proved the following orthogonality relation for non-zero integers <, =:

lim
)→∞

4c2

)

∞∑
9=1

0 9 (<) 0 9 (=)
cosh(cC 9 )

· 4−_ 9/) =

{
1 if < = =,

0 if < ≠ =.

Other versions of GL(2) type orthogonality relations were later obtained by P. Sarnak [Sar87],
and, for the case of holomorphic Hecke modular forms, by Conrey-Duke-Farmer [CDF97] and J.P.
Serre [Ser97].

An orthogonality relation for Maass cusp forms on GL(3,R) was first proved independently by
Goldfeld–Kontorovich [GK13] and Blomer [Blo13] in 2013. Further results on orthogonality relations
for GL(3,R) were obtained by Blomer-Buttcane-Raulf [BBR14] and Guerreiro [Gue15]. In his 2013
thesis (see [Zho13], [Zho14]) Fan Zhou conjectured a very general orthogonality relation for GL(=) for
= ≥ 2. We now describe Zhou’s conjecture.

Fix = ≥ 2. A Maass cusp form for SL(=,Z) is a smooth function q : GL(=,R) → C that satisfies
q(6:A) = q(6) for all 6 ∈ GL(=,R), : ∈  = O(=,R), and A ∈ R×. In addition, q is square integrable
and is an eigenfunction of the Laplacian. If _ denotes the Laplace eigenvalue of q, then _ can be
expressed in terms of Langlands parameters U = (U1, . . . , U=) ∈ C= of q, where U1 + U2 + · · · + U= = 0.
The precise relation is given (see Section 6 in [Mil02]) by

_ =

(
=3 − =

24
−
U2

1 + U2
2 + · · · + U2

=

2

)
.

The Maass cusp form q is said to be tempered at ∞ if the Langlands parameters U1, . . . , U= are all pure
imaginary.

Let {q 9 } 9=1,2,... denote an orthogonal basis of Maass cusp forms for SL(=,Z) with associ-

ated Langlands parameters U ( 9) =
(
U
( 9)
1 , . . . , U

( 9)
=

)
and " Cℎ Fourier coefficient � 9 ("), where

" = (<1, <2, . . . , <=−1) with <1<2 · · ·<=−1 ≠ 0. We assume each Maass cusp form q 9 is normalized
so that its first Fourier coefficient � 9 (1, 1, . . . , 1) = 1. Let

L 9 := Res
B=1

!(B, q 9 × q 9 )

be the residue, at the edge of the critical strip, of the Rankin-Selberg L-function attached to q 9 × q 9 that
is the value at B = 1 of the adjoint L-function !(B,Ad q 9 ).

For ) → ∞, and Langlands parameters U = (U1, U2, . . . , U=) ∈ C= of q, let ℎ) (U) denote a good test
function with exponential decay as

∑=
:=1 |U: |2 → ∞. Here ‘good’ means ℎ) is smooth, holomorphic in

a region −[ < Re(U8) < [ for some [ > 0, invariant under permutation of the Langlands parameters
U = (U1, . . . , U=), real valued and positive, and is essentially supported on the Laplace eigenvalues of
q that are less than )2.

Conjecture 1.0.1 (Orthogonality relation for GL(=,R)). Let {q 9 } 9=1,2,... denote an orthogonal basis

of Maass cusp forms for SL(=,Z) as above. Set " = (<1, . . . , <=−1) and " ′ = (<′
1, . . . , <

′
=−1) ∈ Z=−1

+ .

Let ℎ) denote a good test function as above. Then

lim
)→∞

∞∑
9=1
� 9 (")� 9 (" ′) ℎ) (U( 9) )

L 9

∞∑
9=1

ℎ) (U( 9) )
L 9

=

{
1 if " = " ′,

0 otherwise.
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For applications, it is important to determine the rate of convergence as ) → ∞ in the above
asymptotic relation. With this in mind, we reformulate Conjecture 1.0.1 with an error term.1 In this
case, the orthogonality relation is expected to take the form

Conjecture 1.0.2. For some constant \ < 1, we have

∞∑
9=1

� 9 (")� 9 (" ′)
ℎ)

(
U ( 9) )
L 9

= X"," ′

∞∑
9=1

ℎ)
(
U ( 9) )
L 9

+ O"," ′
©«

∞∑
9=1

ℎ)
(
U ( 9) )
L 9

ª®¬
\

.

Here X"," ′ is 1 or 0 depending on whether " = " ′ or not.

In the above, since \ < 1, the error term gives a power savings in the main term. In the case = = 3, this
conjecture was proved in [GK13] with Langlands parameters U = (U1, U2, U3) ∈ C3 and the following
choice of test function:

ℎ) ,' (U) := 4
U2

1
+U2

2
+U2

3
) 2 ·

∏
1≤ 9≠:≤3

Γ
(

2+'+U9−U:

4

)2

∏
1≤ 9≠:≤3

Γ
(

1+U9−U:

2

) .

More precisely, it was shown in [GK13] that
∑∞

9=1
ℎ) ,' (U 9 )

L 9
∼ 2 )5+3' and \ = 3+3'+Y

5+3' , for some

constant 2 > 0, and any fixed Y > 0 as ) → ∞. Similar results were independently obtained by Blomer
[Blo13] and improved later in [BBR14] and more recently in [BZ20], where an interesting technique is
developed to remove the arithmetic weight L 9 .

Conjecture 1.0.2 has many important applications to low-lying zeros, Katz–Sarnak conjectures on
symmetry types of families of automorphic L-functions, Sato–Tate conjectures, etc. Such applications,
for the special case of GL(3,R), constitute a major main theme in [Blo13], [BBR14], [BZ20], [GK13],
[Gue15], [Zho13] and [Zho14]. See also [ST16], where results for these problems are obtained for
general families of cohomological automorphic representations of reductive groups over number fields.
In this paper, we focus only on the orthogonality conjecture, as the techniques to obtain the above type
applications from Conjecture 1.0.2 are very well established.

Shin–Templier [ST16] obtain their results by an application of the Arthur-Selberg trace formula, with
polynomial dependence on the Hecke eigenvalue and a power saving on the error term. Matz-Templier
[MT15] establish the analogous results for the family {q 9 } of Maass cusp forms for SL(=,Z), and this is
strengthened and generalized in Finis-Matz [FM19]. A variant of Theorem 1.1.1 is obtained in [MT15],
[FM19], without the arithmetic weightL 9 , without the polynomial weight of size)8', and with different

test functions that are indicator functions of U ( 9) ∈ )Ω, and where the error term would be$ (|ℓ< | 1
2 ·)8).

For comparison, note that in Theorem 1.1.1 (if the polynomial weights are removed) we obtain an error

term of the form O

(
|ℓ< | 2

5+Y · )6+Y
)
. Also note that our main term is of a different form than that of

[MT15], [FM19], in that ours entails some high-order asymptotics (the terms c2)
8+8' and c3)

7+8').
Shortly after our paper first appeared, Subhajit Jana [Jan20] obtained a proof of the conjecture for

compactly supported functions (on the geometric side) for automorphic forms for PGLA (Z) with A ≥ 2.
Although a power savings error term is not given in Jana’s paper, the author has informed us that the
method can give a power savings error term that is very far from optimal (even for GL(2)).

1.1. Main Theorem

Let U = (U1, U2, U3, U4) ∈ C4, and let (4 denote the symmetric group on a set of size four. The main
result of this paper is a proof of Conjecture 1.0.2 for GL(4,R) for the test function ℎ) ,' (U) given by

1We adopt the standard convention that the constant implied by O","′ depends at most on " and " ′.
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4
U2

1
+U2

2
+U2

3
+U2

4
) 2

∏
1≤ 9≠: ≤4

(
Γ

(
2+'+U9−U:

4

))2

Γ
(

1+U9−U:

2

) ∏
f∈(4

(
1 + Uf (1) − Uf (2) − Uf (3) + Uf (4)

) '
12
,

where ) is a large positive number and ' (sufficiently large) is a fixed positive integer.

Theorem 1.1.1 (Main Theorem). Let {q 9 } 9=1,2,... denote an orthogonal basis of even Maass cusp

forms for SL(4,Z) (assumed to be tempered at ∞) with associated Langlands parameters

U ( 9) =
(
U
( 9)
1 , U

( 9)
2 , U

( 9)
3 , U

( 9)
4

)
∈ (8R)4

and !Cℎ Fourier coefficient � 9 (!) (as in (2.8.1)), where ! = (ℓ1, ℓ2, ℓ3) ∈ Z3. Let L 9 = !(1,Ad q 9 ).
We assume each Maass cusp form q 9 is normalized so that its first Fourier coefficient � 9 (1, 1, 1) = 1.
Let ℓ, < ∈ Z with ℓ< ≠ 0. Then, for ) → ∞,

∞∑
9=1

� 9 (ℓ, 1, 1) � 9 (<, 1, 1)
ℎ) ,'

(
U ( 9) )

L 9
= Xℓ,< ·

(
c1)

9+8' + c2)
8+8' + c3)

7+8'
)

+ OY,'

(
|ℓ< | 2

5+Y · ) 6+8'+Y + |ℓ< | 7
32+Y · )5+8'+Y + |ℓ< | 15

2 · )4+8'+Y
)
,

where Xℓ,< is the Kronecker symbol and c1, c2, c3 > 0 are absolute constants that depend at most on '.

Note that ℎ) ,' is of size )8' on the relevant support.

Remark 1.1.2. The polynomial
∏

f∈(4

(
1 + Uf (1) − Uf (2) − Uf (3) + Uf (4)

) '
12

is a new feature. It has

not appeared in previous versions of this method for GL(2,R) and GL(3,R), but we have included it
because its inclusion improves the error terms.

Remark 1.1.3. For B ∈ C with Re(B) > 5/2, the L-function associated with q 9 is given by

!(B, q 9 ) =
∞∑

<=1

� 9 (<, 1, 1)<−B =
∏
?

(
1 − � 9 (?,1,1)

?B + � 9 (1, ?,1)
?2B − � 9 (1,1, ?)

?3B + 1
?4B

)−1
.

This shows that Theorem 1.1.1 gives the orthogonality relation on GL(4,R) for coefficients of cuspidal
!-functions. It is possible, using the Hecke relations, to obtain a more general version of Theorem 1.1.1

involving �! , �" for arbitrary !, " , where
3∏
8=1
ℓ8<8 ≠ 0, but the formulas get quite complex and messy

and so are omitted.

Remark 1.1.4. For a tempered Maass cusp form with Langlands parameters U ∈ (8R)4, note that

ℎ) ,' (U) > 0

and is essentially supported on Laplace eigenvalues _ < )2. It is not necessary to assume all Maass
cusp forms for SL(4,Z) are tempered. A weaker version of Theorem 1.1.1 can be proved that assumes
that almost all Maass cusp forms (except for a set of zero density) are tempered.

The proof of Conjecture 1.0.2 for GL(4,R) (with a strong power savings error term) has resisted all
attempts up to now. Theorem 1.1.1 is the first orthogonality relation for GL(4,R) obtained that has a
strong power savings error term. Many of the techniques used in the proof of the GL(3,R) conjecture
do not generalize in an obvious way and new difficulties arise for the first time. We now point out the
obstacles that we faced in the last seven years of work on this paper with some indications of how we
overcame them.
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• In the methods developed in [GK13], the Whittaker transform of a test function is estimated by first

taking the Mellin transform of the Whittaker function and then taking the inverse Mellin transform to

go back. This leads to multiple integrals involving ratios of Gamma functions that can be estimated

by Stirling’s asymptotic formula. When moving to GL(4,R), however, the Mellin transform of the

Whittaker function is much more complex and does not satisfy a simple recurrence relation as on

GL(3,R). The polynomials that appear in the recurrence formula in [FG93] are of large degree,

and it did not seem possible to get good estimates for Mellin transforms of Whittaker functions via

recurrence relations.

• Recent results (see Section 5.2) give precise control of the polynomials that appear in the recurrence

formulae for Mellin transforms of shifted Whittaker functions, allowing us to overcome the problem

discussed in the previous bullet.

• The classical Perron’s formula allows one to obtain asymptotic formulae for the sum of coefficients

of an L-function by computing a certain integral transform of that L-function and then evaluating the

integral transform by shifting the contour of integration. An important tool in the proof of Theorem

1.1.1 is a novel higher-dimensional version of Perron’s formula that gives asymptotic formulae for

sums of terms arising in the cuspidal contribution to the trace formula. In the case of GL(4,R),
the Perron type formula we develop involves a triple integral that requires shifting contours in

three directions. It was necessary to generalize the method of Goldfeld-Kontorovich for finding the

‘exponential zero set’ that gets repeatedly used for each shifted term. We also introduce a very

precise bound for elementary integrals (see Appendix A) that turns out to be critical for accurately

estimating the integrals over the shifted contours.

• Another difficulty is that the Langlands spectral decomposition is much more complex on GL(4,R)
with many more types of Langlands L-functions involving twists by Maass cusp forms of lower rank

in the Levi components of the relevant parabolic subgroups. In order to obtain precise power savings

error terms in the contribution of the continuous spectrum to the trace formula, it is necessary to

have very explicit forms of the Fourier coefficients of the Eisenstein series. Although the Fourier

coefficients are known in great generality (see, for example, Shahidi’s book [Sha10]), the archimedean

factors do not seem to have been worked out explicitly in the published literature. In Section 3.2,

we review [GMW], where Borel Eisenstein series are used as a template to explicitly determine the

non-constant Fourier coefficients of general Langlands Eisenstein series on GL(4,R).

1.2. Roadmap for the proof of the Main Theorem

The proof of Theorem 1.1.1 is based on the Kuznetsov trace formula for GL(4,R) that is worked out in
Section 3. The trace formula is the identity C = M +K − E, where

C =

∞∑
9=1

� 9 (ℓ, 1, 1) � 9 (<, 1, 1)
ℎ) ,'

(
U ( 9) )

L 9

is the cuspidal contribution. The main term M is computed in Proposition 3.5.1 and is given by

M = X!," ·
(
c1)

9+8' + c2)
8+8' + c3)

7+8' + O

(
) 6+8'

) )
.

The bound for the Kloosterman contribution K is worked in Proposition 4.0.4 (with A = 4), while the
bound for the continuous spectrum E is given in Theorem 7.0.7. Combining these bounds with the main
term M completes the proof. �

2. Whittaker functions, Maass cusp forms and Poincaré series for SL(4,Z)

We review basic notation and the definitions of Whittaker functions, Maass cusp forms and Poincaré
series following [Gol06].
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2.1. Iwasawa decomposition

Fix = ≥ 2, and let 6 ∈ GL(=,R). We have the Iwasawa decomposition

6 = DC:A (2.1.1)

where D ∈ *= (R) and : ∈  = O(=,R) and A ∈ R× and C ∈ ) , the subgroup of diagonal matrices with
positive entries. Then C = C (6) can be uniquely chosen to take the form

C =
©«
H1H2 · · ·H=−1

. . .
H1H2

H1
1

ª®¬
(2.1.2)

for some H = (H1, H2, . . . , H=−1) with H8 > 0 (8 = 1, 2, . . . , = − 1).

2.2. Spectral and Langlands parameters

In the context of SL(=,R), we associate with a vector of complex numbers B = (B1, B2, . . . , B=−1) ∈
C=−1, the spectral parameters

E := (E1, E2, . . . , E=−1), E 9 := B 9 −
1

=
, 9 = 1, . . . , = − 1,

and Langlands parameters

U8 :=



�=−1 (E) if 8 = 1,

�=−8 (E) − �=−8+1(E) if 1 < 8 < =,

−�1 (E) if 8 = =,

where

� 9 (E) =
=−1∑
8=1

18, 9E8 with 18, 9 =

{
8 9 if 8 + 9 ≤ =,
(= − 8) (= − 9) if 8 + 9 ≥ =.

Note that

U1 + U2 + · · · + U= = 0. (2.2.1)

On the other hand, given U = (U1, . . . , U=) ∈ C= satisfying (2.2.1), it is straightforward to see that
the Langlands parameters associated with

B8 =
U8 − U8+1 + 1

=
(2.2.2)

are given by U.
To be completely explicit, in the special case of SL(4,Z), the Langlands parameters (U1, U2, U3, U4)

associated with B = 1
4 + (E1, E2, E3) are given by

U1 = 3E1 + 2E2 + E3, U2 = −E1 + 2E2 + E3, U3 = −E1 − 2E2 + E3, U4 = −E1 − 2E2 − 3E3;

E1 =
U1 − U2

4
, E2 =

U2 − U3

4
, E3 =

U3 − U4

4
.
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2.3. The Os-function

Let 6 ∈ GL(=,R) (with toric element given by (2.1.2)). We define a power function in terms of either
the spectral or Langlands parameters associated with B = (B1, B2, . . . , B=−1) ∈ C=−1 via

�B (6) = �B (DC:A) :=
=−1∏
8=1

=−1∏
9=1

H
18, 9 B 9
8 ,

or, equivalently,

�B (6) = �B (DC:A) :=
=−1∏
9=1

H
9 (=− 9)

2 +U1+···+U9−1

9 .

It is easy to see that if B and U are associated with each other as in Section 2.2, then these two
definitions are equivalent. For example, when = = 4 and B = (1/4+ E1, 1/4+ E2, 1/4+ E3) ∈ C3, we have

�B (6) = HB1+2B2+3B3
1 H

2B1+4B2+2B3
2 H

3B1+2B2+B3
3

= H
3
2+E1+2E2+3E3

1 H
2+2E1+4E2+2E3
2 H

3
2+3E1+2E2+E3

3 = H
3
2+U1+U2+U3

1 H
2+U1+U2
2 H

3
2+U1

3 .

2.4. Additive character of [n (R)

Assume = ≥ 2. Fix

" = (<1, <2, . . . , <=−1) ∈ Z=−1.

Let 6 ∈ GL(=,R) with Iwasawa decomposition 6 = DC:A, where

D =
©«

1 D1,2 D1,3 · · · D1,=
1 D2,3 · · · D2,=

. . .
...

1 D=−1,=
1

ª®®¬
.

Then associated with the vector " , we have an additive character k" : *= (R) → C defined by

k" (6) := k" (D) := 42c8
(
<1D1,2 +<2D2,3 + ··· +<=−1D=−1,=

)
. (2.4.1)

2.5. Jacquet’s Whittaker function

Assume = ≥ 2. Given Langlands parameters U = (U1, U2, . . . , U=), let B = B(U) be defined as in
Section 2.2.

For Re(E8) > 0 (8 = 1, . . . , = − 1) and Flong =

(
1

··
·

1

)
, we define the completed Whittaker function

,±
U : GL(=,R)

/
(O(=,R) · R×) → C by the absolutely convergent integral

,±
U (6) :=

∏
1≤ 9<:≤=

Γ
( 1+U9−U:

2

)
c

1+U9−U:
2

·
∫

*4 (R)

�B (FlongD6) k1,...,1,±1 (D) 3D,

where 3D is the Haar measure on*= (R). The product of Gamma factors is added so that,±
U is invariant

under all permutations of the Langlands parameters U1, U2, . . . , U=.

Remark 2.5.1. If 6 is a diagonal matrix in GL(=,R), then the value of ,±
U (6) is independent of sign,

so we drop the ±. We also drop the ± if the sign is +1.
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Let D= denote the algebra of GL(=,R)-invariant differential operators on

h= := GL(=,R)
/ (

O(=,R) · R×
)
.

It is well known that �B (6) is an eigenfunction of all X ∈ D=. In particular, for the case of X = Δ , the
Laplacian, then Δ �B = _Δ (U) · �B , where

_Δ (U) =
(
=3 − =

24
−
U2

1 + U
2
2 + · · · + U2

=

2

)
.

Define _X (U) ∈ C by the eigenfunction equation

X�B (6) = _X (U) · �B (6), (X ∈ D
=, 6 ∈ GL(=,R)) .

Jacquet’s Whittaker function for GL(=,R) is characterized (up to scalars) by the following properties:

• X,±
U (6) = _X (U) ·,±

U (6), (for all X ∈ D
=, 6 ∈ GL(=,R)), (2.5.2)

• ,±
U (D6) = k1,...,1,±1 (D) ·,±

U (6), (for all D ∈ *= (R), 6 ∈ GL(=,R)),
• ,±

U (diag
(
H1H2 · · · H=−1, . . . , H1, 1)

)
has exponential decay as H8 → ∞,

• ,±
U has holomorphic continuation to all U ∈ C=, for all 6 ∈ GL(=,R),

• ,±
U = ,±

U′ where U′ is any permutation of U = (U1, . . . , U=).

2.6. Whittaker transform

Assume = ≥ 2. Let

E =
1

=
+ (E1, E2, . . . , E=−1) ∈ C=−1

with the associated Langlands parameters U = (U1, U2, . . . , U=). Set

H := (H1, H2, . . . H=−1), C (H) :=
©«
H1H2 · · ·H=−1

. . .
H1H2

H1
1

ª®¬
.

Let 5 : R=−1
+ → C be an integrable function. Then we define the Whittaker transform 5 # : R=+ → C by

5 #(U) :=

∞∫
H1=0

· · ·
∞∫

H=−1=0

5 (H),U

(
C (H)

) =−1∏
:=1

3H:

H
: (=−:)+1
:

, (2.6.1)

provided the above integral converges absolutely and uniformly on compact subsets of R=−1
+ . Assume

that U is tempered: that is, E1, E2, . . . , E=−1 are all pure imaginary. The Whittaker transform was studied
in [GK12], and the following explicit inverse Whittaker transform was obtained:

5 (H) = 1

c=−1

∫
Re(E1)=0

· · ·
∫

Re(E=−1)=0

5 #(U),−U
(
C (H)

) 3E13E2 · · · 3E=−1∏
1≤:≠ℓ≤=

Γ
( U:−Uℓ

2

) ,

provided the above integral converges absolutely and uniformly on compact subsets of (8R)=.
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2.7. The inner product of two Whittaker functions

Assume = ≥ 2. Suppose that U = (U1, . . . , U=) and V = (V1, . . . , V=) are Langlands parameters for
which Re(U 9 ) = Re(V: ) = 0 (1 ≤ 9 , : ≤ =). Then

∞∫
H1=0

· · ·
∞∫

H=−1=0

,U (H),V (H)
=−1∏
9=1

H
(=− 9) (B− 9)
9

3H 9

H 9
=

=∏
9=1

=∏
:=1

Γ
( B+U9−V:

2

)
2cB

=(=−1)
2 Γ

(
=B
2

) , (2.7.1)

where the left side converges absolutely for Re(B) sufficiently large. This is given in [Sta02].

2.8. Fourier-Whittaker expansion of Maass cusp forms

Assume = ≥ 2. Fix Langlands parameters U = (U1, U2, . . . , U=) ∈ C=. Let q : h= → C be a Maass cusp
form for SL(=,Z) that satisfies Xq(6) = _U (X) · q(6) for all X ∈ D= and 6 ∈ GL(=,R), as in (2.5.2).
Then for 6 ∈ GL(=,R), we have the following Fourier-Whittaker expansion:

q(6) =
∑

W∈*=−1 (Z)\ SL=−1 (Z)

∞∑
<1=1

· · ·
∞∑

<=−2=1

∑
<=−1≠0

�q (")
=−1∏
:=1

|<: |
: (=−:)

2

,
sgn(<=−1)
U

(
C (")

(
W 0
0 1

)
6
)
, (2.8.1)

where " = (<1, <2, . . . , <#−1) and �q (") is the " Cℎ Fourier coefficient of q. This is proved in
Section 9.1 of [Gol15].

2.9. First Fourier-Whittaker coefficient of a Maass cusp form

For = ≥ 2, consider a Maass cusp form q for SL(=,Z) with Fourier Whittaker expansion given by
2.8.1. Assume q is a Hecke eigenform. Let �q (1) := �q (1, 1, . . . , 1) denote the first Fourier-Whittaker
coefficient of q. Then we have

�q (") = �q (1) · _q (")

where _q (") is the Hecke eigenvalue (see Section 9.3 in [Gol15]), and _q (1) = 1.
Recall also the definition of the adjoint L-function:

!(B,Ad q) :=
!(B, q × q)

Z (B)

where !(B, q × q) is the Rankin-Selberg convolution L-function as in Section 12.1 of [Gol15].

Proposition 2.9.1. Assume = ≥ 2. Let q be a Maass cusp form for SL(=,Z) with Langlands parameters

U = (U1, . . . , U=). Then the first coefficient �q (1) is given by

|�q (1) |2 =
c= ·

〈
q, q

〉
!(1,Ad q) ∏

1≤ 9≠:≤=
Γ
( 1+U9−U:

2

)

where c= ≠ 0 is a constant depending on = only.
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Proof. We follow the Rankin-Selberg computations in Section 12.1 of [Gol15].

〈
q, q

〉
=

∫
SL(=,Z)\h=

|q(6) |2 3∗6

= vol (SL(=,Z)\h=) · Res
B=1

∫
SL(=,Z)\h=

q(6)q(6)� (6, B) 3∗6

where � (6, B) is the maximal parabolic Eisenstein series. After unfolding and replacing q with its
Fourier-Whittaker expansion, we obtain∫

SL(=,Z)\h=

q(6)q(6)� (6, B) 3∗6 =
|�q (1) |2! (B,q×q)

Z (=B)

∫
R=−1
+

,U (H),U (H)
=−1∏
9=1

3H:

H
(:−B) (=−:)+1
:

.

The proposition follows immediately from the formula (2.7.1), since

!(1,Ad q) = Res
B=1

!(B, q × q).

�

2.10. Vector or matrix notation depending on context

Given a vector

0 = (01, 02, 03) ∈ R3,

we shall define the toric element C (0) := diag(010203, 0102, 01, 1).
Given a function 5 : R3 → C, we define 5 (0) := 5 (01, 02, 03).On the other hand, if 5 : GL(4,R) →

C is a function defined on the group, then we let 5 (0) := 5 (C (0)), and more generally, for any
61, 62 ∈ GL(4,R), we define 5 (61062) := 5 (61C (0)62). In other words, we may consider 0 as a vector
or a diagonal matrix depending on the context.

2.11. Poincaré series for SL(4,Z)

Let � : h4 → C be a smooth test function satisfying � (DC:A) = � (C) (see (2.1.1)). We assume
that � has sufficient decay properties so that the series defining the Poincaré series (given below)
converges absolutely. For 6 ∈ GL(4,R), " = (<1, <2, <3) ∈ Z3

+, and B = (B1, B2, B3) ∈ C3, with Re(B 9 )
sufficiently large, the SL(4,Z) Poincaré series is defined by

%" (6, B) :=
∑

W∈*4 (Z)\ SL(4,Z)
k" (W6) �

(
"W6

)
�B (W6). (2.11.1)

Remark: Following Section 2.10, for k" , we take " = (<1, <2, <3). On the other hand for � ("W6),
we take " to be the diagonal matrix C (").

2.12. Inner product of the Poincaré series with a Maass cusp form

Let q be a Maass cusp form for SL(4,Z) with Fourier expansion (2.8.1). Let %" denote the Poincaré
series (2.11.1). The inner product is defined by

〈
%" (∗, B), q

〉
:=

∫
SL(4,Z)\h4

%" (6, B) q(6) 36.
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It follows that

〈
%" (∗, B), q

〉
=

∫
*4 (Z)\h4

k" (G)�
(
"H

)
�B (H)q(GH)

©«
∏

1≤ 9<:≤4

3G 9 ,:
ª®¬
3H13H23H3

H4
1H

5
2H

4
3

=
�q (")

<
3
2
1<

2
2<

3
2
3

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

�
(
"H

)
�B (H) ·,U ("H)

3H13H23H3

H4
1H

5
2H

4
3

.

We see that the above inner product picks out the " Cℎ Fourier coefficient of q multiplied by a certain
Whittaker transform of �

(
"H

)
· �B (H). Letting B → 0, it follows from (2.6.1) that

lim
B→0

〈
%" (∗, B), q

〉
=

�q (")

<
3
2
1<

2
2<

3
2
3

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

�
(
"H

)
·,U

(
"H

) 3H13H23H3

H4
1H

5
2H

4
3

= <
3
2
1<

2
2<

3
2
3 · �q (") · �#(U). (2.12.1)

2.13. Fourier-Whittaker expansion of the Poincaré series

Let,4 � (4 denote the Weyl group of GL(4,R). For F ∈ ,4, we define

ΓF :=
(
F−1 · C*4 (Z) · F

)
∩*4 (Z),

where C*4 denotes the transpose of*4.
We have the Bruhat decomposition

GL(4,R) =
⋃

F ∈,4

�F ,
(
�F = *4 (R) · F · )4 (R)*4(R)

)
,

where )4 (R) is the subgroup of diagonal matrices in GL(4,R).

Definition 2.13.1 (Twisted Character). Let

+4 :=

{
E =

(
E1

E2
E3

E4

) ����� E1, E2, E3, E4 ∈ {±1}, E1E2E3E4 = 1

}
.

Let " = (<1, <2, <3) ∈ Z3, and consider k" an additive character of *4. Then for E ∈ +4, we define
the twisted character kE

" : *4 (R) → C by

kE
" (6) := k"

(
E−16E

)
.

Definition 2.13.2 (Kloosterman Sum). Fix

! = (ℓ1, ℓ2, ℓ3), " = (<1, <2, <3) ∈ Z3.

Let k! , k" be characters of *4 (R). Let F ∈ ,4, where ,4 is the Weyl group of GL(4). Let 2 =(
1/23

23/22
22/21

21

)
with 28 ∈ N. Then the Kloosterman sum is defined as

(F (k! , k" , 2) :=
∑

W∈*4 (Z)\Γ∩�F/ΓF
W=V12FV2

k! (V1) k" (V2),
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with notation as in Definition 11.2.2 of [Gol06]. The Kloosterman sum (F (k, k ′, 2) is well defined and
not equal to zero if and only if it satisfies the compatibility condition k(2FDF−1) = k ′(D).

It follows from Theorem 11.5.4 of [Gol06] that the " Cℎ Fourier coefficient of the Poincaré series
%! (6, B) is given by

∫
*4 (Z)\*4 (R)

%! (D6, B) · k" (D) 3∗D

=
∑
F ∈,4

∑
E ∈+4

∞∑
21=1

∞∑
22=1

∞∑
23=1

(F (k! , k
E
" , 2)�F (6; B, k! , k

E
" , 2)

2
4B3
1 2

4B2
2 2

4B1
3

, (2.13.3)

where

�F (6; B, k! , k
E
" , 2) =

∫
*F (Z)\*F (R)

∫
*F (R)

k! (FD6) �
(
!2FD6

)
�B (FD6) kE

" (D) 3∗D,

*F (R) =
(
F−1 ·*4 (R) · F

)
∩*4 (R), *F (R) =

(
F−1 ·C*4 (R) · F

)
∩*4 (R),

and C< denotes the transpose of a matrix <.

3. Kuznetsov trace formula for SL(4,Z)

3.1. Choice of test function

Let U = (U1, U2, U3, U4) ∈ (8R)4 with U1 + U2 + U3 + U4 = 0. Let ) > 1 with ) → ∞ and ' ≥ 14 with
' fixed. We consider the test function

?
♯
) ,' (U) := 4

U2
1
+U2

2
+U2

3
+U2

4
2) 2 F' (U)

∏
1≤ 9≠: ≤4

Γ
(

2+'+U9−U:

4

)
, (3.1.1)

where

F' (U) :=

( ∏
f∈(4

(
1 + Uf (1) − Uf (2) − Uf (3) + Uf (4)

)) '
24

. (3.1.2)

The function ?♯) ,' (U) defined in (3.1.1) generalizes the similar function defined in [GK13]. As before,

the choice is motivated by the fact that we need ?♯) ,' to be invariant under the Weyl group, and have

meromorphic continuation in U ∈ C4, while also requiring it to have enough exponential decay to kill
the exponential growth of certain Gamma factors appearing in the denominator of the Kuznetsov trace
formula. The new feature is the introduction of the polynomial F' (U).

By the inverse Lebedev-Whittaker transform (see [GK12]), we see that ?) ,' is given by

?) ,' (H) = ?) ,' (H1, H2, H3) =
1

c3

∭
Re(U9 )=0

?#
) ,' (U) ,U (H)

3U1 3U2 3U3∏
1≤ 9≠: ≤4

Γ
(
U9−U:

2

) . (3.1.3)
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3.2. Setting up the trace formula

Set ! = (ℓ1, ℓ2, ℓ3), " = (<1, <2, <3) ∈ Z3, where we assume
∏3

8=1 ℓ8<8 ≠ 0. Consider the Poincaré
series %! , %" , as defined in (2.11.1) with the test function � = ?) ,'.

Definition 3.2.1 (Normalization factor �!," ). Let c4 be as Proposition 2.9.1. We define �!," :=
c4 · (ℓ1<1)3(ℓ2<2)4(ℓ3<3)3.

With the normalization factor �!," defined above, the Kuznetsov trace formula is obtained by
evaluating the inner product

�−1
!," · lim

B→0

〈
%! (∗, B), %" (∗, B)

〉
= �−1

!," · lim
B→0

∫
SL(4,Z)\h4

%! (6, B) %" (6, B) 36

in two different ways. The first approach is to use spectral theory while the second uses geometry. For
the spectral theory approach, we will need the following definition.

Definition 3.2.2 (Generic and non-generic automorphic forms). Let = ≥ 2. An automorphic form
for (!(=,Z) is said to be generic if there exists some nondegenerate character of *= (R) for which the
form has a nonzero Fourier coefficient. Otherwise, the automorphic form is said to be non-generic. Note
that a character k<1 ,<2 ,...,<=−1 of*= (R) is nondegenerate if all <1, <2, . . . , <=−1 are all nonzero.

In order to prove the Kuznetsov trace formula for GL(4,R), we require the spectral expansion of the
Poincaré series %" and %! . It will be shown (see the proof of Theorem 3.7.3) that these Poincaré series
are orthogonal to the non-generic spectrum. Therefore, the following theorem suffices for our needs.

Theorem 3.2.3 (Langlands spectral decomposition for SL(4,Z)). Assume that q1, q2, q3, . . . is an

orthogonal basis of Maass cusp forms for SL(4,Z). Assume that �, � ∈ L2(SL(4,Z)\h4) are orthogonal

to the non-generic spectrum. Then for 6 ∈ GL(4,R), we have

� (6) =

∞∑
9=1

〈�, q 9〉
q 9 (6)
〈q 9 , q 9〉

+
∑
P

∑
Φ

2P

∫
Re(B1)=0

· · ·
∫

Re(BA−1)=0

〈
�, �P,Φ(∗ , B)

〉
�P,Φ(6 , B) 3B1 · · · 3BA−1;

〈�, �〉 =
∞∑
9=1

〈�, q 9〉 〈q 9 , �〉
〈q 9 , q 9〉

+
∑
P

∑
Φ

2P

∫
Re(B1)=0

· · ·
∫

Re(BA−1)=0

〈
�, �P,Φ(∗ , B)

〉〈
�P,Φ(∗ , B), �

〉
3B1 · · · 3BA−1;

where the sum over P ranges over proper parabolic subgroups associated with partitions 4 =
∑A

:=1 =:
(A > 1), and the sum over Φ (see Definition 3.7.1) ranges over an orthonormal basis of Maass cusp

forms associated with P. Here B = (B1, . . . , BA ), where
∑A

:=1 =: B: = 0 for the partition 4 =
∑A

:=1 =: .

Furthermore, 2P is a fixed non-zero constant for each parabolic subgroup P.

Proof. For proofs of the spectral expansion for arbitrary reductive groups, see [Art79], [Lan76], and
[MW95].

It has long been known that the residual spectrum of GL(=,R) is non-generic (see, for example,
[LM18]). According to the results of Kostant, Casselman-Zuckerman and Vogan (mentioned at the
end of Vogan’s paper [Vog78]), generic representations have Gelfand-Kirillov dimension as large as
possible. It follows that Eisenstein series induced from the residual spectrum can never be generic.
Therefore, the spectral expansion here only involves terms coming from cusp forms, as claimed. �
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In particular since %! , %" ∈ L2
(
SL(4,Z)\h4

)
, the inner product can be computed with the spectral

expansion of the Poincaré series. The geometric approach utilizes the Fourier Whittaker expansion of
the Poincaré series that involve Kloosterman sums.

The trace formula takes the following form.

C + E︸ ︷︷ ︸
spectral side

= M + K︸   ︷︷   ︸
geometric side

. (3.2.4)

Here C is the cuspidal contribution, and M is the main term coming from the identity element.
Further, E = Eisenstein contribution, and K = Kloosterman sum contribution. These will be small with
the special choice of the test function ?) ,'. In the subsections that follow, we explicitly evaluate C,E,M
and K.

3.3. Cuspidal contribution C to the Kuznetsov trace formula

Proposition 3.3.1 (Cuspidal contribution to the trace formula). Suppose that ! = (ℓ1, ℓ2, ℓ3) and

" = (<1, <2, <3), where ℓ1, ℓ2, ℓ3, <1, <2, <3 are fixed non-zero rational integers. Let q1, q2, . . .

denote an orthogonal basis of Maass cusp forms for SL(4,Z) with spectral parameters U (1) , U (2) , . . .,
respectively, ordered by Laplace eigenvalue. Let � 9 (!) and � 9 (") denote the !Cℎ and " Cℎ Fourier

coefficients of q 9 , and assume that � 9 (1, 1, 1) = 1 for all 9 = 1, 2, . . .. Let L 9 = !(1,Ad q 9 ). Then the

cuspidal contribution to the trace formula (3.2.4) is given by

C =

∞∑
9=1

� 9 (!)� 9 (") ·
���?#

) ,'

(
U ( 9)

)���2
L 9

∏
1≤ 9≠:≤4

Γ
(

1+U9−U:

2

)

where ?#
) ,' is given by (3.1.1).

Proof. It follows from Theorem 3.2.3 that for 6 ∈ GL(4,R), the cuspidal contribution to the trace
formula (3.2.4) is given by

∞∑
9=1

〈
%! (∗, 0), q 9

〉
·
q 9 (6)
〈q 9 , q 9〉

.

Now, since � 9 (1, 1, 1) = 1, Proposition 2.9.1 implies that

〈
q 9 , q 9

〉
= c−1

4 · L 9

∏
1≤ 9≠:≤4

Γ

(
1 + U 9 − U:

2

)
.

The cuspidal contribution to the trace formula is given by

C := �−1
!," ·

∞∑
9=1

〈
%! (∗, 0), q 9

〉
·
〈
%" (∗, 0), q 9

〉
〈q 9 , q 9〉

.

The proposition immediately follows from the inner product formula (2.12.1). �

3.4. Geometric side of the Kuznetsov trace formula

Next we consider the geometric side of the trace formula (3.2.4). This is computed with the Fourier-
Whittaker expansion of the Poincaré series given in (2.13.3).
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Proposition 3.4.1 (Geometric side of the trace formula). Fix ! = (ℓ1, ℓ2, ℓ3) and " = (<1, <2, <3)
with �!," ≠ 0. Then

lim
B→0

〈
%! (∗, B), %" (∗, B)

〉
=

∑
F ∈,4

IF ,

where we have

IF :=
∑
E ∈+4

∞∑
21=1

∞∑
22=1

∞∑
23=1

(F (k! , k
E
" , 2)

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

∫
*F (Z)\*F (R)

∫
*F (R)

· k! (FDH) kE
" (D) ?) ,' (!2FDH) ?) ,' ("H) 3∗D

3H1 3H2 3H3

H4
1 H

5
2 H

4
3

. (3.4.2)

Proof. We compute the inner product

lim
B→0

〈
%! (∗, B) , %" (∗, B)

〉
= lim

B→0

∫
SL(4,Z)\h4

%! (6, B) · %" (6, B) 36

= lim
B→0

∫
*4 (Z)\h4

%! (6, B) · k" (6) ?) ,' ("6) �B (6) 36

= lim
B→0

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

©«
∫

*4 (Z)\*4 (R)

%! (DH, B) · k" (D) 3D
ª®®¬
· ?) ,' ("H) �B (H) 3H1 3H2 3H3

H4
1 H5

2 H4
3

.

It follows from (2.13.3) that

lim
B→0

〈
%! (∗, B) , %" (∗, B)

〉

= lim
B→0

∑
F ∈,4

∑
E ∈+4

∞∑
21=1

∞∑
22=1

∞∑
23=1

(F (k! , k
E
" , 2)

2
4B1
1 2

4B2
2 2

4B3
3

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

∫
*F (Z)\*F (R)

∫
*F (R)

· k! (FDH) kE
" (D) ?) ,' (!2FDH) ?) ,' ("H) �B (FDH) �B (H) 3∗D 3H1 3H2 3H3

H4
1 H5

2 H4
3

=
∑
E ∈+4

∞∑
21=1

∞∑
22=1

∞∑
23=1

(F (k! , k
E
" , 2)

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

∫
*F (Z)\*F (R)

∫
*F (R)

· k! (FDH) kE
" (D) ?) ,' (!2FDH) ?) ,' ("H) 3D 3H1 3H2 3H3

H4
1 H5

2 H4
3

,

which equals
∑

F ∈,4

IF , as claimed. �

3.5. Main term M in the Kuznetsov trace formula

Let F1 denote the 4 × 4 identity matrix. The main term M = �F1 in the trace formula (3.2.4) can now
be easily computed.

Proposition 3.5.1 (Main term in the trace formula). There exist fixed constants c1, c2, c3 > 0 (de-

pending only on R) such that the main term M in the trace formula (3.2.4) is given by

M = X!," ·
(
c1)

9+8' + c2)
8+8' + c3)

7+8' + O

(
)6+8'

) )
.

Proof. The Kloosterman sum in Definition 2.13.2 for the special case of the trivial Weyl group element
F1 is identically zero unless 2 = (1, 1, 1), in which case (F1

(
k" , k

a
! , (1, 1, 1)

)
= 1. It follows from
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(3.4.2) and the normalization (by �!," ) of the cuspidal contribution C that

M = �−1
!," · IF1

= �−1
!," ·

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

©«
∫

*F (Z)\*F (R)

k! (D)k" (D) 3∗D
ª®®¬
?) ,' (!H) ?) ,' ("H) 3H1 3H2 3H3

H4
1 H5

2 H4
3

.

Next

M = X!," · c4

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

|?) ,' (H) |2
3H1 3H2 3H3

H4
1 H

5
2 H

4
3

=
〈
?) ,', ?) ,'

〉

= X!," · c4

∭
Re(U9 )=0

��?#
) ,' (U)

��2 3U1 3U2 3U3∏
1≤ 9≠:≤4

Γ
(
U9−U:

2

)
= X!," c4 ·

〈
?#
) ,', ?

#
) ,'

〉
,

where the second representation of M in terms of the norm of ?#
) ,' follows from the Plancherel formula

in Corollary 1.9 of [GK12].
It now follows from (3.1.1) that

M = X!," · c4

∭
Re(U9 )=0

���4 U2
1
+U2

2
+U2

3
+U2

4
2) 2 F' (U)

∏
1≤ 9≠: ≤4

Γ
(

2+'+U9−U:

4

) ���2
∏

1≤ 9≠:≤4
Γ

(
U9−U:

2

) 3U13U23U3.

Let U 9 = 8g9 with g9 ∈ R, where g4 = −g1 − g2 − g3. Hence, from Stirling’s asymptotic formula
|Γ(f + 8C) |2 ∼ 2c |C |2f−1 4−c |C | , it follows that

M ∼ X!," · c4 ·
∭
R3

4

−g2
1
−g2

2
−g2

3
−g2

4
2) 2

( (
1 + |g1 + g2 − g3 − g4 |2

) (
1 + |g1 − g2 + g3 − g4 |2

)

·
(
1 + |g1 − g2 − g3 + g4 |2

) ) '
3
( (

1 + |g1 − g2 |
) (

1 + |g1 − g3 |
) (

1 + |g2 − g3 |
)

·
(
1 + |2g1 + g2 + g3 |

) (
1 + |g1 + 2g2 + g3 |

) (
1 + |g1 + g2 + 2g3 |

) )1+'
3g13g23g3.

Next, make the change of variables

g1 → g1), g2 → g2), g3 → g3).

It follows that as ) → ∞, we have M ∼ c1 · X!," )9+8', where

c1 = c4

∭
R3

4
−g2

1
−g2

2
−g2

3
−g2

4
2

( (
1 +

��g1 + g2 − g3 − g4��2) (1 +
��g1 − g2 + g3 − g4��2)

(
1 +

��g1 − g2 − g3 + g4��2) ) '
3 ·

( (
1 + |g1 − g2 |

) (
1 + |g1 − g3 |

) (
1 + |g2 − g3 |

)
·
(
1 + |2g1 + g2 + g3 |

) (
1 + |g1 + 2g2 + g3 |

) (
1 + |g1 + g2 + 2g3 |

) )1+'
3g13g23g3.

This method of proof can be extended by using additional terms in Stirling’s asymptotic expansion for
the Gamma function to obtain additional terms in the asymptotic expansion of M. �
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3.6. Kloosterman term K in the Kuznetsov trace formula

It immediately follows from Proposition 3.4.1 that

K = �−1
!," ·

∑
F ∈,4
F≠F1

IF .

3.7. Eisenstein contribution E to the Kuznetsov trace formula

This section is based on [GMW]. There are four standard non-associate parabolic subgroups on GL(4)
corresponding to the partitions

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Consider the minimal parabolic subgroup

PMin :=

{( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

)
⊂ GL(4,R)

}

associated with the partition 4 = 1+1+1+1. Let B = 1
4 + (B1, B2, B3) with B ∈ C3. The minimal parabolic

Eisenstein series for Γ = SL(4,Z) is defined by

�PMin (6, B) :=
∑

W ∈ (PMin∩Γ)\Γ
�B (W6), (6 ∈ GL(4,R), Re(B) ≫ 1).

For the other three partitions 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1, consider the parabolic subgroups

P3,1 :=

{( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗

)}
, P2,2 :=

{( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

)}
, P2,1,1 :=

{( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

)}
,

respectively. For each of these parabolic subgroups (denoted P), associated with a partition with
4 = =1 +=2 + · · · +=A , we may define an infinite family of Eisenstein series �P,Φ (as in [GMW]) given by

�P,Φ(6, B) :=
∑

W ∈ (P∩Γ)\Γ
Φ(W6) · |W6 |B

P
, (6 ∈ GL(4,R), Re(B) ≫ 1).

Here Φ runs over cusp forms on the Levi components < =
©«
<1 0 · · · 0
0 <2 · · · 0
...

...
. . .

...
0 0 · · · <A

ª®¬
of 6 (with <8 ∈ GL(=8 ,R))

and |6 |B
P
=

A∏
9=1

|det(< 9 ) |B 9 is a toric character as in [GMW].

Definition 3.7.1. The cusp forms Φ and complex B values associated with Eisenstein series �P,Φ(6, B)
for SL(4,Z) are given as follows.

• Let P = P3,1; then Φ runs over Maass cusp forms for SL(3,Z), and B = (B1, B2) with 3B1 + B2 = 0.
• Let P = P2,2; then Φ runs over pairs Φ = (q1, q2), where q1, q2 are Maass cusp forms for SL(2,Z),

and B = (B1, B2) with 2B1 + 2B2 = 0.
• Let P = P2,1,1; then Φ runs over Maass cusp forms for SL(2,Z), and B = (B1, B2, B3) with 2B1 + B2 +
B3 = 0.
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The Eisenstein series �P,Φ has a Fourier-Whittaker expansion similar to (2.8.1). If " = (<1, <2, <3)
with<1,<2 and<3 positive integers, then the" Cℎ Fourier-Whittaker coefficient of �P,Φ (∗, B) is given by

∫
*4 (Z)\*4 (R)

�P (DH, B) k" (D) 3D =
��P,Φ

(", B)
|<1 |

3
2 |<2 |2 |<3 |

3
2

,U

(
"H

)
,

where U denotes the Langlands parameter of �P,Φ(6, B). Here

��P,Φ
(", B) = ��P,Φ

(
(1, 1, 1), B

)
· _�P,Φ

(", B)

and _�P,Φ
(", B) is the " Cℎ Hecke eigenvalue of �P,Φ.

Proposition 3.7.2 (Inner product of the Poincaré series %" with �P,Φ). Consider an Eisenstein

series �P,Φ for SL(4,Z). Fix " = (<1, <2, <3) ∈ Z3
+. Let %" be the Poincaré series defined in (2.11.1)

with test function ?) ,' : h4 → C (as in (3.1.1)). Then

lim
X→0

〈
%" (∗, X), �P,Φ(∗, B)

〉
= <

3
2
1<

2
2<

3
2
3 · ��P,Φ

(", B) · ?#
) ,' (U).

Proof. The proof is similar to the proof of (2.12.1). One begins by taking Re(B) very large so that there
is no problem with convergence and the result follows by analytic continuations in B. �

Theorem 3.7.3 (Spectral decomposition for the inner product of Poincaré series). Fix ! =

(ℓ1, ℓ2, ℓ3), " = (<1, <2, <3) ∈ Z3 .

Let q1, q2, q3, . . . denote a basis of Maass cusp forms for SL(4,Z) with spectral parameters U (1) ,
U (2) , U (3) , . . ., respectively, ordered by Laplace eigenvalue and normalized so that the first Fourier

coefficient � 9 (1, 1, 1) = 1 for all 9 = 1, 2, . . .. Set L 9 = !(1,Ad qj).
Let P range over parabolics associated with partitions 4 = =1 + · · · + =A , and Φ range over an

orthonormal basis of Maass cusp forms associated with P. Let �P,Φ(B) denote the Langlands Eisenstein

series for SL(4,Z) with Langlands parameter U
P,Φ

(B) and !Cℎ , " Cℎ Fourier coefficients ��P,Φ
(!, B),

��P,Φ
(", B), respectively. Then

�−1
!," · lim

X→0

〈
%! (∗, X), %" (∗, X)

〉
=

∞∑
9=1

� 9 (!)� 9 (") ·
���?#

) ,'

(
U ( 9) ) ���2

L 9
∏

1≤ 9≠:≤4
Γ

(
1+U9−U:

2

)

+
∑
P

∑
Φ

2P

∫
Re(B1)=0

· · ·
∫

Re(BA−1)=0

��P,Φ
(!, B) ��P,Φ

(", B) ·
���?#

) ,'

(
U(P,Φ) (B)

)���2 3B1 · · · 3BA−1,

for constants 2P > 0.

Proof. This follows immediately from Proposition 3.3.1, Theorem 3.2.3, Proposition 3.7.2, and the rapid
decay of the ?) ,' function. Note that the Poincaré Series %! , %" are orthogonal to the non-generic
spectrum. This can be seen as follows:∫

SL(4,Z)\h4

%" (6)q(6) 36 =

∫
*4 (Z)\h4

k(6)� ("6)�B (6)q(6) 36

=

∫
*4 (R)\h4

� ("6)�B (6)
∫

*4 (Z)\*4 (R)

k(=) q(=6) 3= 36.

The last integral is zero if q is non-generic. �
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Proposition 3.7.4 (Eisenstein term E in the Kuznetsov trace formula). With the notation of Theorem

3.7.3, the Eisenstein term E in the Kuznetsov trace formula is given by

E =
∑
P

∑
Φ

2P

∫
Re(B1)=0

· · ·
∫

Re(BA−1)=0

��P,Φ
(!, B) ��P,Φ

(", B) ·
���?#

) ,'

(
U(P,Φ) (B)

)���2 3B1 · · · 3BA−1.

Proof. The proof follows from Proposition 3.7.3. �

4. Bounding the geometric side

Recall from (3.2.4) and (3.4.2) that the Kloosterman contribution to the Kuznetsov trace formula is
given by

K = �−1
!,"

∑
F ∈,4

IF

where �!," = c4 · (ℓ1<1)3(ℓ2<2)4(ℓ3<3)3, and

IF =
∑
E ∈+4

∞∑
21=1

∞∑
22=1

∞∑
23=1

(F (k! , k
E
" , 2)

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

∫
Uw (Z)\Uw (R)

∫
*F (R)

· k! (FDH) kE
" (D) ?) ,' (!2FDH) ?) ,' ("H) 3∗D

3H1 3H2 3H3

H4
1 H

5
2 H

4
3

, (4.0.1)

and 2 =

(
1/23

23/22
22/21

21

)
.

The main term in the Kuznetsov trace formula is given in Proposition 3.5.1 and consists of the first
term (corresponding to the identity Weyl element F = F1) on the geometric side of the trace formula.
In this section we bound �F in each of the remaining cases.

We remark first, by Friedberg [Fri87], that IF = 0 unless F is relevant. That is F must be of the form

F =

(
�=1

. .
.

�=:

)
, where �=8 is the identity matrix of size =8 × =8 and 4 =

:∑
8=1
=8 with 1 ≤ : ≤ 4 and

=8 ∈ Z≥0. The relevant Weyl group elements are therefore,

F1 =

(
1

1
1

1

)
, F2 =

(
1

1
1

1

)
, F3 =

(
1

1
1

1

)
, F4 =

(
1

1
1

1

)
,

F5 =

(
1

1
1

1

)
, F6 =

(
1

1
1

1

)
, F7 =

(
1

1
1

1

)
, F8 =

(
1

1
1

1

)
.

To motivate the strategy for bounding IF , we consider (4.0.1) (choosing ! = " = 1) and then take
absolute values to obtain

|�F | ≪
∑
2∈Z3

+

∫
R3
+

��?) ,' (H)
�� XF (H)
X(H)

∫
*F (R)

��?) ,' (2FHD)
�� 3D 3×H (4.0.2)

(H = diag(H1H2H3, H1H2, H1, 1)) for each Weyl group element F, where X(H) = H3
1H

4
2H

3
3 is the modular

character and XF (H) is the Jacobian of *F (R) ∋ D ↦→ HDH−1. It can be checked that XF (H)
X (H) = X−

1
2 (H) ·

X−
1
2 (FHF−1). Theorem 4.0.3 is required to prove the absolute convergence of (4.0.2). From the trivial

bound of the Kloosterman sum given by ((1, 1, 2) ≪ X−
1
2 (2) ≪ 212223, one obtains the absolute
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convergence of the sum over 2 provided that ?) ,' (H) ≪ X1+Y (H). Fortunately, then one checks that the
D-integral is also absolutely convergent and

∫
*F (R)

��?) ,' (2FHD)
�� 3D ≪ X1+Y (2) · X1+Y (FHF−1).

Then the remaining H integral becomes

∫
R3
+

��?) ,' (H)
�� · X 1

2+Y
(
FHF−1) · X− 1

2 (H) 3×H.

So, to make the H integral convergent, one also needs

?) ,' (H) ≪ X
1
2 (H) · X− 1

2

(
FHF−1

)
min(H−Y , HY)

for all Weyl elements F. Note that min(H−Y , HY) is needed as buffer as in the proof of Theorem 4.0.13

and that for F = Flong this bound coincides with X1+Y (H). One also notes that X
1
2 (H) is the trivial bound

of ?) ,' (H).
The main technical tool for bounding the geometric side, the proof of which occupies all of Section 6,

is the following theorem.

Theorem 4.0.3. Let 0 < Y < 1 and A ∈ Z≥0. There exists ' sufficiently large such that the following is

true. Suppose 01, 02, 03 satisfy the conditions

Y ≤ |2A 9 − 0 9 | ≤ 1 − Y (1 ≤ 9 ≤ 3)

if (A1, A2, A3) ∈
{
(0, A, 0), (A, A, 0), (0, A, A), (A, A, A)

}
, or

Y ≤ |2A − 01 | ≤ 1 − Y, Y ≤ |02 | ≤ 1 − Y, −1 + Y ≤ 03 < −Y

if (A1, A2, A3) = (A, 0, 0), or

−1 + Y ≤ 01 < −Y, Y ≤ |02 | ≤ 1 − Y, Y ≤ |2A − 03 | ≤ 1 − Y

if (A1, A2, A3) = (0, 0, A). Then we have the bound

?) ,' (H) ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 )
Y+4'+9+

3∑
9=1

(X0,A 9−A 9 )
.

Here, X0,A 9 is equal to 1 if A 9 = 0 and is zero otherwise. The implicit constant depends on Y and '.

Proof. We will show in Section 6 that ?) ,' (H) can be expressed as a sum of a ‘shifted ?) ,' term,’
‘single residue terms,’ ‘double residue terms’ and ‘triple residue terms’ (see (6.1.8)). A bound for the
shifted ?) ,' term is given in Proposition 6.3.4. Note that in the proof of Proposition 6.3.4 the first set
of inequalities for 0 9 ( 9 = 1, 2, 3) is shown to hold for any (A1, A2, A3) with A 9 ≥ 0. Bounds for the single
residue terms are given in Proposition 6.4.2 and Proposition 6.4.18. See the proof of Lemma 6.4.13 for
details of why the further inequalities given above are required. Bounds for the double residue terms are
given in Proposition 6.5.4 and Proposition 6.5.25. Finally, bounds for the triple residue terms are given
in Proposition 6.6.2. Combining these bounds gives the desired result. �
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Proposition 4.0.4. Let IF be as above. Let " = (<1, <2, <3), ! = (ℓ1, ℓ2, ℓ3) ∈ Z3, where �!," ≠ 0
is the normalization factor given in Definition 3.2.1. Let A ≥ 1 be an integer. Then for ' sufficiently

large and any Y > 0, we have

�−1
!,"

��IF9

�� ≪Y,' (ℓ1<1)2A−1/2(ℓ2<2)2A−1(ℓ3<3)2A−1/2� 9 ()),

where

� 9 ()) =


) Y+8'+20−4A if 9 = 2, 3, 4,

) Y+8'+19−5A if 9 = 6, 7,

) Y+8'+18−6A if 9 = 5, 8.

Remark 4.0.5. Given Proposition 3.5.1 (the asymptotic formula for the main term with asymptotic
error terms), we need 20 − 4A < 6 in order for the contribution from IF to be smaller than the main
term M. In other words, we will need to take A ≥ 4. In order to minimize the contribution of ! and "
in the Main Theorem 1.1.1, we take A = 4.

Proof. The main idea of the proof of Proposition 4.0.4 is to apply Theorem 4.0.3 to each of the two
instances of ?) ,' that appear on the right-hand side of (4.0.1). Before doing so, we make the change of
variables D ↦→ HDH−1. Note that, by definition, 3 (HDH−1) = XF (H) 3D for any D ∈ *F .

|IF | ≪
∑
E ∈+4

∞∑
21=1

∞∑
22=1

∞∑
23=1

|(F (k! , k
E
" , 2) |

∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

∫
*F (Z)\*F (R)

∫
*F (R)

· XF (H) · |?) ,' (!2FHD) | · |?) ,' ("H) | 3∗D
3H1 3H2 3H3

H4
1 H

5
2 H

4
3

(4.0.6)

For the term ?) ,' (!2FHD), we need the Iwasawa form: !2FHD =: D′C: so that we can apply The-
orem 4.0.3 for a particular choice of integers A1, A2, A3 and parameters 2A 9 − 1 < 0 9 < 2A 9 for each
9 = 1, 2, 3.

For notational purposes, we write

C = C (!2FDH) =: . = (.1, .2, .3).

It is easy to see that .8 factors as

.8 =: .8 (F, 2).8 (F, !).8 (F, H).8 (F, D)

with each factor being an expression in the entries of 2, !, H or D, respectively. (Note that we are
following the notation of (2.1.2) for the element . .) By inspection, we see that

.1 (F, !) = ℓ
3
2+01

1 , .2 (F, !) = ℓ2+02
2 , .3 (F, !) = ℓ

3
2+03

3 (4.0.7)

for all F. Moreover,

.1 (F, D) =
√
b2(F, D)
b1 (F, D)

, .2 (F, D) =
√
b1(F, D) · b3(F, D)

b2 (F, D)
, .3 (F, D) =

√
b2 (F, D)
b3(F, D)

, (4.0.8)

where each function b 9 (F, D) is strictly positive for any D ∈ * (R).
For example, in the case of F = F8, the long element, we find that if

D =

©«

1 G12 G13 G14

0 1 G23 G24

0 0 1 G34

0 0 0 1

ª®®®¬
, H = (H1, H2, H3) =

©«

H1H2H3 0 0 0
0 H1H2 0 0
0 0 H1 0
0 0 0 1

ª®®®¬
,
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then

.1 (F8, H) =
1

H3
, .2 (F8, H) =

1

H2
, .3 (F8, H) =

1

H1
, (4.0.9)

and

b1(F8, D) = 1 + G2
12 + G

2
13 + G

2
14,

b2(F8, D) = 1 + G2
23 + G2

24 +
(
G12G24 − G14

)2 +
(
G12G23 − G13

)2 +
(
G13G24 − G14G23

)2
,

b3(F8, D) = 1 + G2
34 +

(
G23G34 − G24

)2 +
(
G12G23G34 − G13G34 − G12G24 + G14

)2
.

Returning now to (4.0.6), we apply Theorem 4.0.3 for (A, A, A) and yet to be determined values 01, 02, 03

within the permissible bounds (Y ≤ |2A − 0 9 | ≤ 1 − Y) to the term ?) ,' (D′C:). To the other term we
apply the theorem for a choice (A ′1, A

′
2, A

′
3) and values 11, 12, 13. As we will see, values of (A ′1, A

′
2, A

′
3)

and 1′9 will be forced upon us in order to guarantee the convergence of the sum over 2, the integral over
(H1, H2, H3) and the integral over D. In fact, it will become evident that these values are determined by
F and 01, 02, 03.

Independent of the choice of F, we define

�0 := (0, 1], �1 = (1,∞),

hence ∞∫
H1=0

∞∫
H2=0

∞∫
H3=0

=
∑

8, 9 ,:∈{0,1}

∫
�8

∫
� 9

∫
�:

.

Using the bounds for ?) ,' (once with parameters 01, 02, 03 and once with parameters 11, 12, 13 as
described above), it follows that

|IF | ≪ )
Y+8'+18−3A−A ′1−A

′
2−A

′
3+

3∑
8=1

XA′
8
,0 (ℓ1<1)

3
2 (ℓ2<2)2(ℓ3<3)

3
2 ℓ

01
1 ℓ

02
2 ℓ

03
3 <

11
1 <

12
2 <

13
3

·
∑
E ∈+4

∞∑
21=1

∞∑
22=1

∞∑
23=1

��(F (k" , k
E
! , 2)

��
2

1+201−02
1 2

1−01+202−03
2 2

1−02+203
3

(4.0.10)

·
∑

8, 9 ,:∈{0,1}

∫
�8

∫
� 9

∫
�:

.1 (F, H)
3
2+01.2 (F, H)2+02.3 (F, H)

3
2+03 · H

3
2+11

1 H
2+12
2 H

3
2+13

3 · |XF (H) |

· 3H1 3H2 3H3

H4
1 H

5
2 H

4
3

·
∫

*F (Z)\*F (R)

∫
*F (R)

b
− 1

2−01+
02
2

1 · b−
1
2+

01
2 −02+

03
2

2 · b−
1
2+

02
2 −03

3 |3∗D |.

It is known (see also [Jac67]) that the integral in b will converge, provided that each of the exponents of
b 9 for 9 = 1, 2, 3 is less than − 1

2 . Explicitly, we require that

203, 201 > 02, and 202 > 01 + 03. (4.0.11)

Note that for any A ≥ 2, the first of the conditions in (4.0.11) is ensured for any choice of 01, 02, 03 such
that

0 < |2A − 0 9 | < 1 for each 9 = 1, 2, 3. (4.0.12)

In this range, the second condition (that 202 > 01 + 03) imposes an additional constraint, but we will
see that it can be easily satisfied as well.

We next want to determine what additional restrictions on 01, 02, 03 must be satisfied to guarantee
the convergence of the sum over 2. We require the following Kloosterman bounds.
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Proposition 4.0.13. Let F ≠ F1. The sum

K(", !;F, 0) :=
∑
E ∈+4

∞∑
21=1

∞∑
22=1

∞∑
23=1

|(F (k" , k
E
! , 2) |

2
1+201−02
1 2

1−01+202−03
2 2

1−02+203
3

,

which appears on the right-hand side of (4.0.10), satisfies the following bounds (with all implied

constants independent of " , !, 2, and 0).

For 2 ≤ 9 ≤ 8 and any Y > 0, we have

|K(", !;F 9 , 0) | ≪
∞∑

21=1

1

2
201−02
1

∞∑
22=1

1

2
−01+202−03
2

∞∑
23=1

1

2
−02+203
3

.

Proof. As noted in Appendix B, we have

|(F9
(k" , k

E
! , 2) | ≪ 212223 (2 ≤ 9 ≤ 8). (4.0.14)

Applying this to the definition of K(", !, 2;F, 0) gives the desired result. �

Appendix B gives slightly better bounds for the Kloosterman sums in terms of 21, 22, 23 at the
expense of some powers of ", !. The bounds in Appendix B will likely be relevant in other applications.
However, we thank the referee for pointing out that the proof of Proposition 4.0.13 only requires the
trivial bound for Kloosterman sums proved in [DR98, Theorem 0.3 (i)].

Clearly, the series in the above proposition will converge as long as each 2 9 , for 1 ≤ 9 ≤ 3, occurs to
an exponent less than −1. This will be guaranteed by the following additional set of restrictions:

− 201 + 02 < −1, 01 − 202 + 03 < −1, 02 − 203 < −1. (4.0.15)

Again, this is easy to arrange given that we may take any values of 0 9 satisfying the bounds of (4.0.12).
Note, moreover, that (4.0.11) is a consequence of (4.0.15).

The next step is to show that the integral over H = (H1, H2, H3) also converges. An elementary
calculation shows that

H
3
2+11

1 H
2+12
2 H

3
2+13

3 .1 (F, H)
3
2+01.2 (F, H)2+02.3 (F, H)

3
2+03XF (H)

H4
1H

5
2H

4
3

3H13H23H3

= H
11−41 (F ;0)
1 H

12−42 (F ;0)
2 H

13−43 (F ;0)
3

3H1

H1

3H2

H2

3H3

H3
,

where 4 9 (F; 0) is given by

F 41(F; 0) 42(F; 0) 43(F; 0) (A ′1, A ′2, A ′3)
F2 03 −01 + 03 −02 + 03 (A, 0, 0)
F3 01 − 02 01 − 03 01 (0, 0, A)
F4 02 − 03 02 −01 + 02 (0, A, 0)
F5 03 01 − 02 + 03 01 (A, A, A)
F6 02 − 03 02 01 (0, A, A)
F7 03 02 −01 + 02 (A, A, 0)
F8 03 02 01 (A, A, A)

(4.0.16)

The result for F8, for example, is established using (4.0.9) and the fact that XF8 (H) = H3
1H

4
2H

3
3.

This means for each 9 = 1, 2, 3 and : = 0, 1, we are searching for 01, 02, 03 satisfying (4.0.12) and
(4.0.15). Simultaneously, we search for A ′1, A

′
2, A

′
3 ∈ Z≥0 and 11, 12, 13 satisfying the necessary bounds

https://doi.org/10.1017/fms.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.39


24 Dorian Goldfeld et al.

given in Theorem 4.0.3 such that the integral

∫
�:

H
1 9−4 9 (F ;0)
9

3H 9

H 9

converges. Since �0 = (0, 1] and �1 = (1,∞), we require that 1 9 − 4 9 (F; 0) be positive if : = 0 and
negative if : = 1. With this in mind, we let Y > 0 and choose 11, 12, 13 such that

1 9 − 4 9 (F; 0) =
{
+Y if : = 0

−Y if : = 1.

Note that having made this choice for 1 9 , the value of A ′9 is forced to be that given in the final column
of the table above. More precisely, given (A ′1, A

′
2, A

′
3) as indicated in the final column of the table, there

exists some choice 01, 02, 03 and Y > 0 for which conditions (4.0.12) and (4.0.15) are satisfied, and for
which the necessary bounds on 1 9 = 4 9 (F; 0) ± Y are also satisfied.

Except in the case that F = F2 or F = F3, the conditions on 1 9 are that

0 < |2A ′9 (F) − 4 9 (F; 0) ± Y | < 1.

It is not hard to see that in these cases there exists an appropriate choice of parameters 01, 02, 03.
On the other hand, if F = F2, for example, we see that (A ′1, A ′2, A ′3) = (A, 0, 0), and so the restriction

on the quantities 12 = 03 − 01 ± Y and 13 = 03 − 02 ± Y (which plays the role of 03 in Theorem 4.0.3) are

0 < |12 | = |01 − 03 ± Y | < 1, (4.0.17)

−1 + Y ≤ 13 = 03 − 02 ± Y ≤ −Y. (4.0.18)

But we’re assuming that 01 − 202 + 03 < −1 and 01 − 03 < 1 − Y (by equations (4.0.15) and (4.0.17)),
which together imply that 03 − 02 < −Y in any event. A similar analysis applies to the above restriction
on 11 in the case that F = F3 and (A ′1, A ′2, A ′3) = (0, 0, A).

The values of A ′9 for 9 = 1, 2, 3 determine the exponent of) in (4.0.10), hence the values of � 9 ()) in the
statement of the proposition. To complete the proof, we note that 0 9 < 2A+1 and 1 9 < 2A ′9 (F)+1 ≤ 2A+1,
and therefore, the powers of ℓ1, ℓ2, ℓ3, <1, <2, <3 in (4.0.10) are as claimed. �

5. Mellin transform of the GL(4) Whittaker function

Let U = (U1, U2, U3, U4) ∈ (8R)4 with U1 + U2 + U3 + U4 = 0. Let H = (H1, H2, H3) ∈ R3 and B =

(B1, B2, B3) ∈ C3 with Re(B 9 ) > Y for 9 = 1, 2, 3 and Y > 0. Define the Mellin transform (denoted ,̃U (B))
of the GL(4,R) Whittaker function,U defined in Section 2.6 by the absolutely convergent integral

,̃U (B) :=

∞∫
0

∞∫
0

∞∫
0

H
B1− 3

2
1 H

B2−2
2 H

B3− 3
2

3 ,U (H)
3H13H23H3

H1H2H3
. (5.0.1)

5.1. Formula for Mellin transform of the Whittaker function

Here we present an expression for ,̃U (B) as an integral, over an additional variable C ∈ C, of a ratio
of Gamma functions involving B and U. For the purposes of this section, we will assume that U is in
general position, meaning that U 9 ≠ U: for all 9 ≠ : . As explained in Remark 6.1.9, for our purposes
this assumption is not prohibitive.

In the context of GL(4), this expression was first given in [Sta95]; that result was later generalized to
�!(=), in Theorem 3.1 of [Sta01]. The formula for = = 4 takes the form ,̃U (B) = 2−3c−B1−B2−B3,̂ U

2

(
B
2

)
,
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where, assuming that Re(B 9 ) ≥ Y > 0 for each 9 = 1, 2, 3,

,̂U (B) = Γ(B1 + U1)Γ(B1 + U2)Γ(B2 − U1 − U2)Γ(B2 + U1 + U2)Γ(B3 − U1)Γ(B3 − U2)

· 1

2c8

∫
Re(C)=−Y′

Γ(−C+U3)Γ(−C+U4)Γ(C+B1)Γ(C+B2+U1)Γ(C+B2+U2)Γ(C+B3+U1+U2)
Γ(C+B1+B2+U1+U2)Γ(C+B2+B3) 3C, (5.1.1)

assuming that 0 < Y′ < Y.

5.2. Poles and residues of ,̃U

Following [Sta01], we introduce the sets

%1 := {−U1,−U2,−U3,−U4},
%2 := {±(U1 + U2),±(U1 + U3),±(U2 + U3)}, (5.2.1)

%3 := {U1, U2, U2, U4}.

Note that if ? ∈ %: , then −? ∈ %4−: .
It is shown in [ST21, Propositions 12 and 14] that the sets %1, %2, and %3 determine the poles of

,̃U (B), in the following sense.

Proposition 5.2.2. The Mellin transform ,̃U (B) extends to a meromorphic function of the variable

B = (B1, B2, B3) ∈ C3 with the following properties.

(a) ,̃U (B) has a pole at B 9 = ? − 2X for each ? ∈ % 9 and X ∈ Z≥0. Moreover, ,̃U (B) has no other poles

or polar divisors in C3.

(b) The residue of ,̃U (B) at any of the above poles is a polynomial times a ratio of Gamma functions.

More specifically, for each X ∈ Z≥0, there exists a polynomial& X (1, 2, 3; 4, 5 , 6), of degree at most

3X, such that the following are true.

Res
B1=−U1−2X

,̃U (B) =
1

Γ( B2+B3+U1
2 + X)

[
4∏

:=2

Γ( U:−U1
2 − X)Γ( B2+U1+U:

2 )Γ( B3−U:

2 )
]

· & X

(
B3−U2

2 ,
B3−U3

2 ,
B3−U4

2 ; 1+U1−B2+B3
2 ,

B3−U1
2 − X, B2+B3+U1

2

)
, (5.2.3)

Res
B2=−U1−U4−2X

,̃U (B) =


∏
9∈{1,4}

Γ( B1+U9

2 )



3∏
:=2

Γ( B3−U9

2 )
∏

9∈{1,4}
Γ( U:−U9

2 − X)


· & X

(
B1+U1

2 ,
U3−U4

2 − X, B3−U2
2 ; 1+U1−U2

2 ,
B1+U3

2 − X, B3−U4
2 − X

)
, (5.2.4)

and

Res
B3=U1−2X

,̃U (B) =
1

Γ( B1+B2−U1
2 + X)

[
4∏

:=2

Γ( U1−U:

2 − X)Γ( B1+U:

2 )Γ( B2−U1−U:

2 )
]

· & X

(
B1+U2

2 ,
B1+U3

2 ,
B1+U4

2 ; 1−U1−B2+B1
2 ,

B1+U1
2 − X, B1+B2−U1

2

)
. (5.2.5)

The formulas for the remaining residues are found from each of the above by permuting U (i.e.,
applying Weyl group transformations).
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It may be seen from [ST21, Equation (43)] that &0 is the constant polynomial &0 ≡ 1. Thus the case
X = 0 of the above proposition yields the following special cases, also deduced in [Sta01, Theorem 3.2]:

Res
B1=−U1

,̃U (B) =

4∏
:=2

Γ( U:−U1
2 )Γ( B2+U1+U:

2 )Γ( B3−U:

2 )

Γ( B2+B3+U1
2 )

, (5.2.6)

Res
B2=−U1−U4

,̃U (B) =
©«

4∏
9=1

Γ( B1+U9

2 )ª®¬
©«

3∏
:=2

Γ( B3−U9

2 )
4∏
9=1

Γ( U:−U9

2 )ª®¬
, (5.2.7)

and

Res
B3=U1

,̃U (B) =

4∏
:=2

Γ( U1−U:

2 )Γ( B1+U:

2 )Γ( B2−U1−U:

2 )

Γ( B1+B2−U1
2 )

. (5.2.8)

In Section 6.5 below, we will also need to consider double residues of ,̃U (B) — that is, residues in
any one of the three B 9s of residues in either of the others. To this end we have the following, which is
proved in [ST21, Proposition 15].

Proposition 5.2.9.

(a) For each X1, X2 ∈ Z≥0, there exists 5X1 , X2 (B3, U), a polynomial of degree at most 2X1 + X2, such that

Res
B2=−U1−U4−2X2

(
Res

B1=−U1−2X1

,̃U (B)
)

(5.2.10)

= Γ( U4−U1
2 − X1)

(
3∏

:=2

Γ( U:−U1
2 − X1)Γ( U:−U4

2 − X2)Γ( B3−U:

2 )
)
5X1 , X2 (B3, U).

(b) For each X1, X3 ∈ Z≥0, there is a polynomial 6X1 , X3 (B2, U), of degree at most 2X1 + X3, such that

Res
B3=U2−2X3

(
Res

B1=−U1−2X1

,̃U (B)
)

(5.2.11)

= Γ( U2−U1
2 − X1)

(
4∏

:=3

Γ( U:−U1
2 − X1)Γ( U2−U:

2 − X3)Γ( B2+U1+U:

2 )
)
6X1 , X3 (B2, U).

5.3. Shift equations

We would like to have an expression similar to (5.1.1) for ,̃U (B) in the region where Re(B) < 0.
Although we cannot use the right-hand side of (5.1.1) directly when Re(B) < 0, we can use the fact that
,̃U (B) satisfies the following shift equation that (as will be shown) is a direct corollary of Propositions 7
and 9 from [ST21].

Proposition 5.3.1. Let B = (B1, B2, B3) ∈ C3. Let U = (U1, U2, U3, U4) ∈ C4 with U1 + U2 + U3 + U4 = 0.

Suppose that A1, A2, A3 ≥ 0 are integers. Then

���,̃U (B)
��� ≪ A1∑

ℓ=0

A2∑
:=0

A3∑
9=0

���� &
A1 ,A2 ,A3
9,:,ℓ

B
A1
1 B

A2
2 B

A3
3

,̃U

(
B1 + 2(A1 + 9 + :), B2 + 2A2, B3 + 2(A3 + ℓ)

)���� ,
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where

B1 := B1 (U, B) :=
(
B1 + U1

) (
B1 + U2

) (
B1 + U3

) (
B1 + U4

)
,

B2 := B2 (U, B) :=
(
B2 + U1 + U2

) (
B2 + U1 + U3

) (
B2 + U1 + U4

)
·
(
B2 + U2 + U3

) (
B2 + U2 + U4

) (
B2 + U3 + U4

)
,

B3 := B3 (U, B) :=
(
B3 − U1

) (
B3 − U2

) (
B3 − U3

) (
B3 − U4

)
,

and &
A1 ,A2 ,A3
9 ,:,ℓ

is a polynomial in U and B with combined degree 2(A1 + 2A2 + A3 − 9 − : − ℓ).

Proof. We begin with Proposition 7(a) of [ST21] that states that

,̃U (B1, B2, B3) =
@0 (U, B)
B1 (U, B1)

,̃U (B1 + 2, B2, B3) +
@1 (U, B)
B1 (U, B1)

,̃U (B1 + 2, B2, B3 + 2),

where deg(@8) = 2 − 28. Iterating this formula A1 times gives

���,̃U (B1, B2, B3)
��� ≪ A1∑

ℓ=0

������
Q
(ℓ)
1,A1

(U, B)
B1 (U, B1)A1

,̃U (B1 + 2A1, B2, B3 + 2ℓ)

������ . (5.3.2)

In order to have an equality here, we would need to keep track of various shifts of the polynomial
B1 (U, B1), but since we are only interested in bounds, the version presented here suffices. It is easy to
show that

deg(Q(ℓ)
1,A1

) = (A1 − ℓ) deg(@0) + ℓ deg(@1) = 2(A1 − ℓ).

Similarly, Proposition 9 of [ST21] states that

,̃U (B1, B2, B3) =
?0 (U, B)
B2 (U, B2)

,̃U (B1, B2 + 2, B3) +
?1 (U, B)
B2 (U, B2)

,̃U (B1 + 2, B2 + 2, B3),

where deg(?: ) = 4 − 2: . Iterating this formula A2 times gives

���,̃U (B1, B2, B3)
��� ≪ A2∑

:=0

������
Q
(:)
2,A2

(U, B)
B2 (U, B2)A2

,̃U (B1 + 2:, B2 + 2A2, B3)

������ , (5.3.3)

and

deg(Q(:)
2,A2

) = (A2 − :) deg(?0) + : deg(?1) = 4(A2 − :) + 2: = 4A2 − 2:.

Via the change of variables (B1, B3, U) ↦→ (B3, B1,−U) that preserves ,̃U applied to (5.3.2), we have

���,̃U (B1, B2, B3)
��� ≪ A3∑

9=0

������
Q
( 9)
1,A3

(−U, B)
B3 (U, B3)A3

,̃U (B1 + 2 9 , B2, B3 + 2A3)

������ . (5.3.4)

Applying equations (5.3.2), (5.3.3) and (5.3.4) in succession gives the desired result with

deg(&A1 ,A2 ,A3
9 ,:,ℓ

) = deg(Q(ℓ)
1,A1

) + deg(Q(:)
2,A2

) + deg(Q( 9)
1,A3

) = 2(A1 + 2A2 + A3 − ℓ − : − 9),

as claimed. �
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5.4. Expressing ]" as the inverse Mellin transform of ,̃U

Given the equation (5.0.1) for the Mellin transform of,U, we find by Mellin inversion that

,U (H) =
1

(2c8)3

∭
Re(B)=D

H
3
2−B1

1 H
2−B2
2 H

3
2−B3

3 ,̃U (B) 3B, (5.4.1)

provided that D = (D1, D2, D3) satisfies D 9 > 0 for 9 = 1, 2, 3.
As a matter of notation, for D = (D1, D2, D3) ∈ R3 define

,U (H; D) :=
1

(2c8)3

∭
Re(B 9 )=D 9

H
3
2−B1

1 H
2−B2
2 H

3
2−B3

3 ,̃U (B) 3B,

and if � is a nonempty subset of {1, 2, 3} of cardinality A and ?� = (?8)8∈� ∈ CA define

R
?�
U (H; D) :=

1

(2c8)3−A

∫
Re(B 9 )=D 9

9∉�

Res
B�=?�

(
H

3
2−B1

1 H
2−B2
2 H

3
2−B3

3 ,̃U (B)
) ∏

9∉�

3B 9 ,

where ResB�=?� is the operator that evaluates the iterated residue at each of the points B8 = ?8 with 8 ∈ �:
that is,

Res
B�=?�

:= Res
B81=?81

◦ · · · ◦ Res
B8@=?8@

, (� = (81, . . . , 8@)).

We call R?�
U a single residue term if @ = 1, a double residue term if @ = 2, and a triple residue term if

@ = 3. For 0 = (01, 02, 03) with 0 9 > 0, we call,U (H;−0) the shifted main term.
Note that if D1, D2, D3 > 0, then ,U (H) = ,U (H; D). We now shift the lines of integration in the

B-variable to the left passing poles at Re(B 9 ) = 0,−2,−4, . . .. By the Cauchy Residue Theorem, this
allows us to write ,U (H) in terms of R∗

U. For example, if 0 = (01, 02, 03) with 0 < 0 9 < 2 for each
9 = 1, 2, 3, then

,U (H) = ,U (H;−0) +
∑
?∈%9

1≤ 9≤3

R
(?)
U (H;−0) +

∑
?∈%9

@∈%:

1≤ 9<:≤3

R
(?,@)
U (H;−0) +

∑
?∈%1
@∈%2
A ∈%3

R
(?,@,A )
U (H;−0).

Letting ?1 := −U1 −2X1, ?2 := −U1 −U2 −2X2 and ?3 := −U1 −U2 −U3 −2X3 for some X1, X2, X3 ∈ Z≥0,
as given in Section 5.2, there are polynomials 5

? 9

X 9
(B, U) such that

R
(?1)
U (H;−0) =

∬
Re(B 9 )=−0 9

9=2,3

H
3
2 +?1

1 H
2−B2
2 H

3
2 −B3

3

4∏
9=2

Γ

(
U9−U1

2

)
Γ

(
B2+U1+U9

2

)
Γ

(
B3−U9

2

)

Γ
( B2+B3+U1

2

) 5
?1

X1
(B,U) 3B23B3 , (5.4.2)

R
(?2)
U (H;−0) =

∬
Re(B 9 )=−0 9

9=1,3

H
3
2−B1

1 H
2+?2

2 H
3
2−B3

3

(
2∏
9=1

4∏
:=3

Γ
( U:−U9

2

))
5
?2
X2
(B, U)

· Γ
( B1+U1

2

)
Γ

( B1+U2
2

)
Γ

( B3−U3
2

)
Γ

( B3−U4
2

)
3B13B3. (5.4.3)

All other single residue terms can be obtained from these by observing that, first, the action of the Weyl
group, which acts by permuting the set (U1, U2, U3, U4), acts transitively on each of the sets %1, %2, %3 and
permutes the residue terms accordingly. Explicitly, iff = (12) represents the permutation interchanging
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1 and 2, then R
(f (?1)−X1)
U (H;−0) = R

(?1−X1)
f (U) (H;−0) has the same expression as R(?1−X1)

U (H;−0) except
that the instances of U1 and U2 are interchanged.

Moreover, the involution (U, B1, B2, B3) ↦→ (−U, B3, B2, B1) interchanges the set of single residues at,
say, B1 = −U1 − 2X with those at B3 = U1 − 2X respecting the formulas of Proposition 5.2.9. So, in
particular, we have R

(U1−2X)
U (H1, H2, H3;−0) = R

(−U1−2X)
−U (H3, H2, H1;−0).

It can be similarly shown that for appropriate polynomials 5 (∗,∗)∗,∗ and 5 (?1 , ?2 , ?3)
X , every double residue

term is equivalent to either

R
(?1 , ?2)
U (H;−0) =

∫
Re(B3)=−03

H
3
2+?1

1 H
2+?2

2 H
3
2−B3

3 5
(?1 , ?2)
X1 , X2

(B3, U)

·
(

2∏
9=1

4∏
:= 9+1

Γ
( U:−U9

2

))
Γ

( B3−U4
2

)
Γ

( B3−U3
2

)
3B3, (5.4.4)

or

R
(?1 , ?3)
U (H;−0) =

∫
Re(B2)=−03

H
3
2+?1

1 H
2−B2
2 H

3
2+?3

3 5
(?1 , ?3)
X1 , X3

(B2, U) Γ
( B2+U1+U2

2

)
Γ

( B2+U1+U3
2

)

· Γ
( U4−U3

2

)
Γ

( U4−U2
2

)
Γ

( U4−U1
2

)
Γ

( U3−U1
2

)
Γ

( U2−U1
2

)
3B2, (5.4.5)

and every triple residue term is equivalent to

R
(?1 , ?2 , ?3)
U (H) = H3/2+?1

1 H
2+?2

2 H
3/2+?3

3 5
(?1 , ?2 , ?3)
X (U)

∏
1≤ 9<:≤4

Γ
( U:−U9

2

)
. (5.4.6)

It turns out that the bounds obtained from applying our methods only to the shifted integral,U (H;−0)
when 0 < 0 9 < 2 are not sufficient for our needs. Instead, we will need to obtain bounds for various
shifts of the form 2A 9 − 1 < 0 9 < 2A 9 for A1, A2, A3 ∈ Z≥0. For a given choice of (A1, A2, A3) ∈ Z3

≥0, we
extrapolate the procedure outlined above obtaining poles corresponding to each case of

B 9 = ? 9 − 2X 9 , for each X 9 = 0, . . . , A 9 − 1.

Doing so, we arrive at the following result.

Proposition 5.4.7. Let (A1, A2, A3) ∈ Z3
≥0 be fixed. Let 0 = (01, 02, 03) satisfy 2A 9 − 2 < 0 9 < 2A 9

be fixed (0 9 ≠ 0: if 9 ≠ :). Let %1 = {−U 9 | 9 = 1, . . . , 4}, %2 = {−U 9 − U: | 1 ≤ 9 ≠ : ≤ 4},
%3 = {U 9 | 9 = 1, . . . , 4}, as in (5.2.1). Then, after shifting contours of integration, the GL(4)-Whittaker

function is given by,U (H) =

,U (H;−0) +
∑

? 9 ∈%9−2X 9

9=1,2,3
X 9 ∈{0,1,...,A 9−1}

R
(? 9 )
U (H;−0) +

∑
1≤ 9≠:≤4
? 9 ∈%9−2X 9

?: ∈%:−2X:
X 9 ∈{0,1,...,A 9−1}
X: ∈{0,1,...,A:−1}

R
(? 9 , ?: )
U (H;−0) +

∑
?1∈%1−2X1
?2∈%2−2X2
?3∈%3−2X3

Xℓ ∈{0,1,...,Aℓ−1}
ℓ=1,2,3

R
(?1 , ?2 , ?3)
U (H).

6. Bounds for the test function pZ ,'

Recall (see (3.1.3)) that ?) ,' is given by

?) ,' (H) = ?) ,' (H1, H2, H3) =
1

c3

∭
Re(U9 )=0

?#
) ,' (U) ,U (H)

3U1 3U2 3U3∏
1≤ 9≠: ≤4

Γ
( U9−U:

2

) . (6.0.1)
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Note that in [GK12], instead of ,U (H), one actually has its complex conjugate , U (H). However, one
arrives at the formula here by noting that U is purely imaginary and, therefore,, U (H) = ,−U (H). Hence,

the change of variables U ↦→ −U that leaves ?♯) ,' (U) and the measure 3U1 3U2 3U3

/ ∏
1≤ 9≠: ≤4

Γ
( U9−U:

2

)
invariant leads to the given formula.

6.1. Decomposition of pZ ,' in terms of poles and residues of ,̃U

Define

Γ' (U) :=
∏

1≤ℓ≠<≤4

Γ( 2+'+Uℓ−U<

4 )
Γ( Uℓ−U<

2 ) . (6.1.1)

We now replace ,U (H), on the right side of (6.0.1), by the expression given in Proposition 5.4.7. It
follows from the definition of the test function ?#

) ,' given in (3.1.1), that in doing so, we obtain a shifted
?) ,' term

?) ,' (H;−0) :=

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2 ,U (B;−0) F' (U) Γ' (U) 3U, (6.1.2)

single residue terms of the type

?
9 , X
) ,' (H) :=

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2 F' (U)R

(? 9−2X)
U (H;−0) Γ' (U) 3U,

double residue terms of the type

?
9:, X
) ,' (H) :=

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2 R

(? 9−2X 9 , ?:−2X: )
U (H;−0) F' (U) Γ' (U) 3U,

and triple residue terms of the type

?
123, X
) ,' (H) :=

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2 R

(?1−2X1 , ?2−2X2 , ?3−2X3)
U (H;−0) F' (U) Γ' (U) 3U,

where ?1 = −U1, ?2 = −U1 − U2, ?3 = −U1 − U2 − U3 and X 9 ∈ {0, 1, . . . , A − 1}. Also, note that we use
the notation 3U := 3U1 3U2 3U3. In particular, by equations (5.4.2)–(5.4.6), we see that

?
1,0
) ,' (H) =

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2

∬
Re(B 9 )=−0 9

9=2,3

H
3
2+?1

1 H
2−B2
2 H

3
2−B3

3 F' (U) Γ' (U)

·

4∏
9=2

Γ( U9−U1

2 )Γ( B2+U1+U9

2 )Γ( B3−U9

2 )

Γ( B2+B3+U1
2 )

3B23B3 3U, (6.1.3)

?
2,0
) ,' (H) =

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2

∬
Re(B 9 )=−0 9

9=1,3

H
3
2−B1

1 H
2+?2

2 H
3
2−B3

3

(
2∏
9=1

4∏
:=3

Γ
( U:−U9

2

))
F' (U) Γ' (U)

· Γ
( B1+U1

2

)
Γ

( B1+U2
2

)
Γ

( B3−U3
2

)
Γ

( B3−U4
2

)
3B13B3 3U, (6.1.4)
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?
12,0
) ,' (H) =

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2

∫
Re(B3)=−03

H
3
2+?1

1 H
2+?2

2 H
3
2−B3

3 F' (U) Γ' (U)

·
(

2∏
9=1

4∏
:= 9+1

Γ
( U:−U9

2

))
Γ

( B3−U4
2

)
Γ

( B3−U3
2

)
3B3 3U, (6.1.5)

?
13,0
) ,' (H) =

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2

∫
Re(B2)=−03

H
3
2+?1

1 H
2−B2
2 H

3
2+?3

3 Γ
( B2+U1+U2

2

)
Γ

( B2+U1+U3
2

)

· Γ
( U4−U3

2

)
Γ

( U4−U2
2

)
Γ

( U4−U1
2

)
Γ

( U3−U1
2

)
Γ

( U2−U1
2

)
3B2 F' (U) Γ' (U) 3U, (6.1.6)

?
123,0
) ,' (H) =

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2 H

3/2+?1

1 H
2+?2

2 H
3/2+?3

3

( ∏
1≤ 9<:≤4

Γ
( U:−U9

2

))
F' (U) Γ' (U) 3U. (6.1.7)

Since we are integrating over U on the right-hand side of (3.1.3) and the integrand (and measure) is
invariant under the action of the Weyl group, there are explicitly computable constants 21, 212, 2123 such
that

?) ,' (H) = ?) ,' (H;−0) + 21

∑
1≤ 9≤3

X∈{0,1,...,A−1}

?
9 , X
) ,' (H;−0) + 212

∑
1≤ 9<:≤3

X∈{0,1,...,A−1}2

?
9:, X
) ,' (H;−0)

+ 2123

∑
X∈{0,1,...,A−1}3

?
123, X
) ,' (H;−0). (6.1.8)

Remark 6.1.9. There are no poles in the expressions of the residues given in (6.1.1) to (6.1.6) because
the products of Γ

( U:−U9

2

)
are cancelled by the Gamma functions in the denominator of Γ' (U).

6.2. Philosophy of the proof of Theorem 4.0.3

Recall that Theorem 4.0.3 gives sharp bounds for the ?) ,' function. Given (6.1.8), this can be
achieved by bounding each of the terms on the right-hand side: ?) ,' (H;−0), ?1, X

) ,' (H;−0), ?
2, X
) ,' (H;−0),

?
12, X
) ,' (H;−0), ?23, X

) ,' (H;−0) and ?123, X
) ,' (H;−0) and each possible choice of X. We obtain bounds for each of

these terms in Sections 6.3–6.6, respectively. Theorem 4.0.3 then follows as an immediate consequence.
Before proceeding to those sections, we describe the idea in the special case that 0 = (01, 02, 03)

with 08 < 0 for each 8 = 1, 2, 3. In this case there are no residue terms at all: that is, we need only
bound ?) ,' (H) = ?) ,' (H;−0). Then the basic idea is to insert the formula (5.1.1) into (5.4.1) to get
an expression for ,U (H) as an integral of the ratio of many Gamma functions. We then insert this
into (3.1.3) and estimate each Gamma function using Stirling’s approximation, which for fixed f and
|C | → ∞ says that

Γ(f + 8C) ∼
√

2c |C |f− 1
2 4−

c
2 |C | . (6.2.1)

We call |C |f− 1
2 the polynomial factor of Γ(f + 8C), and 4−

c
2 |C | is called the exponential factor. Through

this process, we can replace the ratio of all of the Gamma factors by a rational function P(B, 0) obtained
as the product of the polynomial factors of the individual Gamma functions times 4−E(B,U) that is the
product of the exponential factors.
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To be completely explicit, after making a simple change of variables in (5.1.1), it is easy to see that
(up to a constant) for Y′ > 0 sufficiently small

,̃U (B) =
∫

Re(C)=−Y′

Γ0(C, U)Γ1(C, B1, U)Γ2(C, B2, U)Γ3(C, B3, U)
Γden(C, B, U)

3C (6.2.2)

where

Γ0(C, U) := Γ
( −C+U3

2

)
Γ

( −C+U4
2

)
,

Γ1(C, B1, U) := Γ
( B1+U1

2

)
Γ

( B1+U2
2

)
Γ

( B1+C
2

)
,

Γ2(C, B2, U) := Γ
( B2+U1+U2

2

)
Γ

( B2+U1+C
2

)
Γ

( B2+U2+C
2

)
Γ

( B2+U3+U4
2

)
,

Γ3(C, B3, U) := Γ
( B3+U1+U2+C

2

)
Γ

( B3+U1+U3+U4
2

)
Γ

( B3+U2+U3+U4
2

)
,

Γden(C, B, U) := Γ
( B1+B2+U1+U2+C

2

)
Γ

( B2+B3+C
2

)
.

Thus by combining (5.4.1) and (6.2.2) into (3.1.3) as described above, we find that

?) ,' (H) =
∭

Re(U9 )=0

4
U2

1
+U2

2
+U2

3
+U2

4
2) 2

∭
Re(B)=Y

∫
Re(C)=−Y′

H
3
2−B1

1 H
2−B2
2 H

3
2−B3

3 F' (U) Γ' (U)

· Γ0(C, U)Γ1(C, B1, U)Γ2(C, B2, U)Γ3(C, B3, U)
Γden(C, B1, B2, B3, U)

3C 3B 3U. (6.2.3)

Applying Stirling’s bound to each of the Gamma functions in (6.2.3) we see that (up to a constant factor
depending at most on ', Y)

?) ,' (H) ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3

∭
R) (0)

·
∭

Re(B)=−0

·
∫

Re(C)=Y′

P(B, U) · F' (U) exp
(
−c

4
E(B, U)

)
3C 3B 3U,

where, for U 9 = ^ 9 + 8g9 ( 9 = 1, 2, 3, 4),

R) (^) :=
{
(8g1 + ^1, 8g2 + ^2, 8g3) | −g1 − g2 − g3 ≤ g3 ≤ g2 ≤ g1 ≤ )1+Y} .

The Weyl group is isomorphic to (4 and acts by permutations on the set {U 9 }4
9=1 leaving the integrand

for ?) ,' (H) invariant. Hence it suffices to restrict the integration over U to the set R) (0).
We will prove below (see Lemma 6.2.5) that the integration in B and C can also be restricted to a

finite volume set R that we call the exponential zero set. As B and C vary within this set, most of the
polynomial terms can be uniformly bounded by a power of something of the form (1 + g: − g9 ), where
9 < : . We prove a very strong bound on the remaining terms (see Lemma A.3) that shows that it too is
bounded by a product of similar factors. This implies that

⨌

(B,C) ∈R

P(B, U) 3C 3B ≪
∏

1≤ 9<:≤4

(
1 + g9 − g:

)1 9,:

where each 1 9 ,: > 0. Then the integration in U over the set R) (0) can be estimated trivially. The main
difference between this outline and the actual proof is that instead of using (6.2.2) directly as above, we
replace it by the expression on the right-hand side of the result of Proposition 5.3.1. Also, instead of
dealing with ?) ,' itself as given in (6.0.1), we individually bound each term on the right-hand side of
(6.1.8).
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In order to describe the exponential zero set, note that since g1 ≥ g2 ≥ g3 ≥ g4, if we let Im(B 9 ) =: b 9
and Im(C1) =: d, the exponential term takes the simplified form

E(B, U) = −6g1 − 4g2 − 2g3 + |d − g4 | + |d − g3 | + |b1 + g1 | + |b1 + g2 | + |b1 + d |
+ |b2 + g1 + g2) | + |b2 + g1 + d) | + |b2 + g2 + d) | + |b2 + g3 + g4) |
+ |b3 + g1 + g2 + d | + |b3 + g1 + g3 + g4 | + |b3 + g2 + g3 + g4 |
− |b1 + b2 + g1 + g2 + d | − |d + b2 + b3 |.

An important observation is the fact that ?) ,' (H) has been defined in such a way that there is at
worst polynomial growth in the integrand. This means the exponential factor is never negative: that is,
E(B, U) ≥ 0 for all B. Since there will be exponential decay for any choice of B such that E(B, U) > 0,
for the purposes of bounding ?) ,' (H), we need only determine when E = 0. Note that this set depends
only on the imaginary parts of B and U.

The expression for E above involves 14 absolute value terms. We can remove each of the 14 absolute
values by replacing |G | with ±G depending on whether G is positive or negative. This leads to an
expression of the form

0 = −6g1 − 4g2 − 2g3 + YC ,1 (d − g4) + YC ,2 (d − g3) + Y1,0 (b1 + g1) + Y1,1 (b1 + g2)
+ Y1,2 (b1 + d) + Y2,0 (b2 + g1 + g2) + Y2,1 (b2 + g1 + d) + Y2,2 (b2 + g2 + d)
+ Y2,3 (b2 + g3 + g4) + Y3,0 (b3 + g1 + g2 + d) + Y3,1 (b3 + g1 + g3 + g4)
+ Y3,2 (b3 + g2 + g3 + g4) − Y2− 1

2
(b1 + b2 + g1 + g2 + d) − Y2+ 1

2
(d + b2 + b3), (6.2.4)

where each of the 14 Ys is equal to ±1. For a particular choice of Ys either the sum on the right-hand side
of (6.2.4) vanishes identically or not. If it does vanish, each Y∗ determines an inequality, and the set of
g1, g2, g3, d, b1, b2, b3 that satisfy all of these inequalities simultaneously is contained in the exponential
zero set. The following lemma shows that there are three such choices of signs and each choice explicitly
determines an exponential zero set.

Lemma 6.2.5. Every solution Y = (YC ,1, YC ,2, . . . , Y2− 1
2
, Y2+ 1

2
) ∈ (±1)14 to (6.2.4) is of the form

YC ,1 = +1, YC ,2 = +1, (6.2.6)

Y1,0 = +1, Y1,1 = Y2− 1
2
, Y1,2 = −1, (6.2.7)

Y2,0 = +1, Y2,1 = Y2− 1
2
, Y2,2 = Y2+ 1

2
, Y2,3 = +1, (6.2.8)

Y3,0 = +1, Y3,1 = Y2+ 1
2
, Y3,2 = −1, (6.2.9)

and Y2− 1
2
≥ Y2+ 1

2
.

In particular, there are three possible exponential zero sets, which we denote as R1,R2,R3. The first

corresponds to the case of (Y2− 1
2
, Y2+ 1

2
) = (+1, +1):

R1 : g4 ≤ d ≤ g3

−g2 ≤ b1 ≤ −d,
−g2 − d ≤ b2 ≤ g1 + g2

g2 ≤ b3 ≤ g1,

the second corresponds to (Y2− 1
2
, Y2+ 1

2
) = (+1,−1):

R2 : g4 ≤ d ≤ g3

−g2 ≤ b1 ≤ −d,
−g1 − d ≤ b2 ≤ −g2 − d

−(g1 + g2) − d ≤ b3 ≤ g2,
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and the third corresponds to (Y2− 1
2
, Y2+ 1

2
) = (−1,−1):

R3 : g4 ≤ d ≤ g3

−g1 ≤ b1 ≤ −g2,
−(g1 + g2) ≤ b2 ≤ −g1 − d

−(g1 + g2) − d ≤ b3 ≤ g2.

Proof. Suppose that Y = (YC ,1, YC ,2, . . . , Y2+ 1
2
) ∈ (±1)14 is a solution to (6.2.4). If we replace every

instance of g4 in (6.2.4) with −g1 − g2 − g3, notice that the coefficient of g3 is (YC ,1 − YC ,2 − 2). This
immediately implies (6.2.6), or equivalently, g4 ≤ d ≤ g3.

Recall that we are assuming that g1 ≥ g2 ≥ g3 ≥ g4. This, together with the fact that g4 ≤ d ≤ g3,
implies that

b1 + g1 ≥ b1 + g2 ≥ b1 + d.

Since Y1,0 = −1 implies that (b1 + g1) ≤ 0, it follows that this would also imply that Y1,1 = Y1,2 = −1.
But it can’t be the case that all three Y1,: are −1 because if so, the coefficient of b1 in (6.2.4) will not
be zero. The same argument implies that Y1,3 = −1, and that the same relations hold for Y3, 9 . Similarly,
+1 = Y2,0 ≥ Y2,1 ≥ Y2,2 ≥ Y2,3 = −1.

Using this information, we now rewrite (6.2.4) as

0 = −5g1 − 3g2 + (g1 − d) + Y1,1 (b1 + g2)
+ 2(g1 + g2) + Y2,1 (b2 + g1 + d) + Y2,2 (b2 + g2 + d)
+ (2g1 + g2 + d) + Y3,1 (b3 + g1 + g3 + g4)
− Y2− 1

2
(b1 + b2 + g1 + g2 + d) + Y2+ 1

2
(d + b2 + b3)

= Y1,1 (b1 + g2) + Y2,1 (b2 + g1 + d) + Y2,2 (b2 + g2 + d) + Y3,1 (b3 − g2)
− Y2− 1

2
(b1 + b2 + g1 + g2 + d) − Y2+ 1

2
(b2 + b3 + d). (6.2.10)

Since the coefficient of b1 is (Y1,1 − Y2− 1
2
), we see that (6.2.7) is satisfied. By similarly looking at the

coefficient of b3, we see that (6.2.9) holds. Using this, (6.2.10) simplifies further to

0 = (Y2,2 − Y2− 1
2
) (b2 + g1 + d) + (Y2,3 − Y2+ 1

2
) (b2 + g2 + d),

which is obviously true if and only if Y2,2 = Y2− 1
2

and Y2,3 = Y2+ 1
2
. This proves (6.2.8). Since it must be

the case that Y2,1 ≥ Y2,2, it follows that Y2− 1
2
≥ Y2+ 1

2
, as claimed.

Suppose that Y corresponds to one of the three admissible solutions to (6.2.10). Considering only the
inequalities that are determined by the Y 9 ,: , the stated inequalities of the three solutions are immediate.
So, in order to complete the proof, we must show that the inequalities imposed by Y2− 1

2
and Y2+ 1

2
are

superfluous: that is, they do not impose any further restriction on b1, b2 or b3.
We check this first in the case that (Y2− 1

2
, Y2+ 1

2
) = (+1, +1), for which

−g2 ≤ b1 ≤ −d,
−g2 − d ≤ b2 ≤ g1 + g2,

−g1 − g2 − d ≤ b3 ≤ g2.

Combining the first and second sets of inequalities, we see that

0 ≤ g1 − g2 = (−g2) + (−g2 − d) + g1 + g2 + d ≤ b1 + b2 + g1 + g2 + d.

That is to say that Y2− 1
2

must be +1. In other words, the condition cut out by Y2− 1
2

is already a consequence
of the fact that Y1,1 = Y2,1 = Y2,2 = +1. In like manner, we see that the inequality required by Y2+ 1

2
= +1

is already true by combining the second and third inequalities above.
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In each of the other two cases (Y2− 1
2
, Y2+ 1

2
) = (+1,−1) or (−1,−1), one similarly shows that the

inequalities imposed by Y2± 1
2

are already satisfied given those imposed by Y 9 ,: . �

Lemma 6.2.5 allows us to restrict the integration in (6.2.3) to the three possible bounded subsets in
the B-variables, and then the integral can be bounded. However, the resulting bound is not strong enough
for our application, thus requiring that we consider 0 = (01, 02, 03) for which there exists at least one
8 ∈ {1, 2, 3} with 08 > 0. In this case, (6.2.2) is no longer valid. Instead, we need to use Proposition 5.3.1.
Although this introduces some technical difficulties, the Gamma-functions that occur are the same as in
(6.2.2), and so Lemma 6.2.5 equally applies. This is carried out in detail in Section 6.3.

6.3. Bounds for the shifted pZ ,' term

Recall that

?
♯
) ,' (U) := 4

U2
1
+U2

2
+U2

3
+U2

4
2) 2 F' (U)

∏
1≤ 9≠: ≤=

Γ
(

2+'+U9−U:

4

)
. (6.3.1)

By the inverse Lebedev-Whittaker transform (see [GK12]), we see that ?) ,' is given by

?) ,' (H) = ?) ,' (H1, H2, H3) =
1

c3

∭
Re(U9 )=0

?#
) ,' (U) ,U (H)

3U1 3U2 3U3∏
1≤ 9≠: ≤4

Γ
(
U9−U:

2

) . (6.3.2)

To obtain a sharp bound for ?) ,' (H), we replace the Whittaker function ,U (H) on the right-hand side
of (6.3.2) by its inverse Mellin transform

,U (H) =
1

(2c8)3

∭
Re(B 9 )=Y

H
3
2−B1

1 H
2−B2
2 H

3
2−B3

3 ,̃U (B) 3B.

Following (6.1.8), we can then shift the lines of integration Re(B) = Y to the left to Re(B) = −0 =

(−01,−02,−03) (with 01, 02, 03 > 0) and express ?) ,' (H) as a sum of residues plus a shifted ?) ,'

integral given by ?) ,' (H,−1) :=

1

(2c28)3

∭
Re(B)=−0

H
3
2−B1

1 H
2−B2
2 H

3
2−B3

3

∭
Re(U9 )=0

?#
) ,' (U) ,̃U (B)

3U1 3U2 3U3∏
1≤ 9≠: ≤4

Γ
( U9−U:

2

) 3B. (6.3.3)

Proposition 6.3.4. Let Y > 0 and ' sufficiently large be fixed. Let A1, A2, A3 be integers. Given any choice

of parameters 01, 02, 03 for which Y ≤ |2A 9 − 0 9 | ≤ 1 − Y for each 9 = 1, 2, 3, we have the bound

��?) ,' (H,−0)
�� ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 · )
Y+4'+9+

3∑
9=1

(X0,A 9−A 9 )
,

where X0,A8 = 1 if A8 = 0 and zero otherwise. The implicit constant depends on A, Y and '.

Proof. In order to obtain good bounds for ?) ,' (H,−0) when

08 ∈ [2A8 − 1 + Y, 2A8 − Y] ∪ [2A8 + Y, 2A8 + 1 − Y], (6.3.5)

it is necessary to have sharp bounds for the growth of ,̃U (B) on the lines Re(B8) = −08 . Such bounds are
known when Re(B8) > 0, and we can backtrack to this situation by use of the shift equation for ,̃U (B)
given in Proposition 5.3.1, which for any C1, C2, C3 ≥ 0 and any B1, B2, B3 ∈ C states that���,̃U (B)

��� ≪ C1∑
ℓ=0

C2∑
:=0

C3∑
9=0

���� &
C1 ,C2 ,C3
9,:,ℓ

B
C1
1 B

C2
2 B

C3
3

,̃U

(
B1 + 2(C1 + 9 + :), B2 + 2C2, B3 + 2(C3 + ℓ)

)���� , (6.3.6)

where deg(&C1 ,C2 ,C3
9 ,:,ℓ

) = 2(C1 + 2C2 + C3 − 9 − : − ℓ).
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Recall that

B1 := B1 (U, B) :=
(
B1 + U1

) (
B1 + U2

) (
B1 + U3

) (
B1 + U4

)
, (6.3.7)

B2 := B2 (U, B) :=
(
B2 + U1 + U2

) (
B2 + U1 + U3

) (
B2 + U1 + U4

)
(6.3.8)

·
(
B2 + U2 + U3

) (
B2 + U2 + U4

) (
B2 + U3 + U4

)
,

B3 := B3 (U, B) :=
(
B3 − U1

) (
B3 − U2

) (
B3 − U3

) (
B3 − U4

)
. (6.3.9)

For each 8 = 1, 2, 3, let

C8 :=

{
A8 if 08 < 2A8 ,

A8 + 1 if 08 > 2A8 .

We see that for 0 = (01, 02, 03),

?) ,' (H,−0) =
C3∑
9=0

C2∑
:=0

C1∑
ℓ=0

?
( 9 ,:,ℓ)
) ,' (H,−0),

where
���? ( 9 ,:,ℓ)) ,' (H,−0)

���
≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3

∭
Re(U9 )=0

4
U2

1
+U2

2
+U2

3
+U2

4
2) 2 ·

��F' (U)
�� · ��Γ' (U)

�� ∭
Re(B)=−0

���� &
C1 ,C2 ,C3
9,:,ℓ

B
C1
1 B

C2
2 B

C3
3

����
·

∫
Re(C)=−Y′

���� Γ0 (C ,U)Γ1 (C ,B1+2(C1+ 9+:) ,U)Γ2 (C ,B2+2C2 ,U)Γ3 (C ,B3+2(C3+ℓ) ,U)
Γden

(
C , (B1+2(C1+ 9+:) ,B2+2C2 ,B3+2(C3+ℓ)) ,U

) ���� 3C 3B 3U.
It follows that

?
( 9 ,:,ℓ)
) ,' (H,−0) ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 · ) Y+2C1+2C2+C3− 9−:−ℓ)
∭

Re(U9 )=0

4
U2

1
+U2

2
+U2

3
+U2

4
2) 2

∭
Re(B)=−0

·
��B−C1

1 B
−C2
2 B

−C3
3

�� ∫
Re(C)=−Y′

�����
Γ
( −C+U3

2

)
Γ
( −C+U4

2

)
Γ
(
B1+2C1+2 9+2:+U1

2

)
Γ
(
B1+2(C1+ 9+:)+U2

2

)
Γ
(
B1+2(C1+ 9+:)+C

2

)
Γ
(
B1+B2+2(C1+C2+ 9+:)+U1+U2+C

2

)
Γ
(
B2+B3+2(C2+C3+ℓ)+C

2

)
�����

·
���Γ (

B2+2C2+U1+U2
2

)
Γ

(
B2+2C2+U1+C

2

)
Γ

(
B2+2C2+U2+C

2

)
Γ

(
B2+2C2+U3+U4

2

)���
·
���Γ (

B3+2(C3+ℓ)+U1+U2+C
2

)
Γ

(
B3+2(C3+ℓ)+U1+U3+U4

2

)
Γ

(
B3+2(C3+ℓ)+U2+U3+U4

2

)���
·
�����
∏
f∈(4

(
1 + Uf (1) + Uf (2) − Uf (3) − Uf (4)

) �����
'
24 ∏

1≤ 9<: ≤4

���Γ (
2+'+U9−U:

4

)���2��Γ( U9−U:

2 )
��2 3C 3B 3U, (6.3.10)

where −Y′ = Re(C) is such that the real part of the arguments of all of the Gamma functions appearing
here are positive. Hence 0 < Y′ < Y.

Note that besides the presence of the additional polynomials B
A8
8 , the Gamma factors occurring in

(6.3.10) are the same as that of (6.2.3). In any event, the exponential zero set is precisely the same as
that determined in Lemma 6.2.5 and can be any one of the three exponential zero sets R1,R2,R3 as
given in Lemma 6.2.5.

Note that we can get from R2 to R1 by making the change of variables

(b2, b3) ↦→ (−b3 − d, b2 − g1).
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Similarly, to go from R2 to R3, one makes the change of variables

(b1, b2) ↦→ (b2 − g1,−b1 + d).

Either of these transformations result in no change in (5.4.1) because it leaves both the measure 3B and
the region over which we are integrating Re(B) = −0 invariant. This implies any bound obtained for a
given R8 holds for each of the other choices as well.

Recall the exponential zero set R2 given by

g4 ≤ d ≤ g3, −g2 ≤ b1 ≤ −d,
− g1 − d ≤ b2 ≤ −g2 − d, −(g1 + g2) − d ≤ b3 ≤ g2.

Recall, also, that Im(U 9 ) = g9 (for 9 = 1, 2, 3, 4 with g4 = −g1 − g2 − g3), Im(C) = d, and Im(B8) = b8 ,
(for 8 = 1, 2, 3). Accordingly, we write B = −0 + 8b, U = 8g with b = (b1, b2, b3) and g = (g1, g2, g3).

We now replace each Gamma factor in the integral (6.3.10) using the Stirling bound (6.2.1). A bound
for the integral is given by integrating over R2 (the exponential zero set) and just using the polynomial
bound coming from the Stirling bound (6.2.1). It follows (up to a constant dependant on 0: , ' and

Y > 0) that ? ( 9 ,:,ℓ)) ,' (H,−0) is bounded by

H
3
2+01

1 H
2+02
2 H

3
2+03

3 · ) Y+2(C1+2C2+C3− 9−:−ℓ)

·
∭

g1≥g2≥g3≥g4

|g1 |, |g2 |, |g3 |, |g4 |≪) 1+Y

g3∫
d=g4

−d∫
b1=−g2

−g2−d∫
b2=−g1−d

g2∫
b3=−g1−g2−d

��B−C1
1 B

−C2
2 B

−C3
3

��

· (1+|g3−d |)−
1
2
(
1+|g4−d |

)− 1
2

(1+|b1+b2+g1+g2+d |)−
1
2 + 9+:+C1−

01
2 +C2−

02
2 (1+|b2+b3+d |)−

1
2 +ℓ+C3−

03
2 +C2−

02
2

·(1+|b1+g1 |) 9+:+C1−
01+1

2 (1+|b1+g2 |) 9+:+C1−
01+1

2
(
1+|b1+d |

) 9+:+C1−
01+1

2

·(1+|b2+g1+g2 |) C2−
02+1

2 (1+|b2+g1+d |) C2−
02+1

2
(
1+|b2+g2+d |

) C2− 02+1
2

·
(
1+|b2+g3+g4 |

) C2− 02+1
2

(
1+|b3+g1+g2+d |

)ℓ+C3− 03+1
2

(
1+|b3+g1+g3+g4 |

)ℓ+C3− 03+1
2

·
(
1+|b3+g2+g3+g4 |

)ℓ+C3− 03+1
2  ' (g) 3b3 3b2 3b1 3d 3g3 3g2 3g1,

where

 ' (g) :=
(
1 + |g1 + g2 − g3 − g4 |

) '
3
(
1 + |g1 + g3 − g2 − g4 |

) '
3

·
(
1 + |g1 + g4 − g2 − g3 |

) '
3 ·

∏
1≤ 9<:≤4

(
1 + g9 − g:

)1+ '
2 . (6.3.11)

Remark 6.3.12. The exponents of (1 + |g9 − d |) etc. should be modified by ±Y as Re(C) = −Y, but we
have absorbed these into the term ) Y . To simplify the exposition, we drop these Ys in what follows since
they do not affect the conclusion.

Lemma 6.3.13. Suppose that 08 = 2A8 + W80′8 , where

W8 =

{
−1 if 08 < 2A8 ,

1 if 08 > 2A8 ,
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and 0 < 0′8 < 1 for each 8 = 1, 2, 3. Throughout the domain of integration, in the integrand for

?
( 9 ,:,ℓ)
) ,' (H,−0) above, the expression

(
1+|b2+g1+g2 |

) C2− 02+1
2

(
1+|b2+g1+d |

) C2− 02+1
2

(
1+|b2+g2+d |

) C2− 02+1
2

(
1+|b2+g3+g4 |

) C2− 02+1
2(

1+|b1+b2+g1+g2+d |
) C2− 02+1

2
(
1+|b2+b3+d |

) C2− 02+1
2

is bounded by a constant multiple of ) Y+ 1+W2
2 . Similarly,

(
1+|b1+g1 |

) 9+:+C1−
01+1

2
(
1+|b1+g2 |

) 9+:+C1−
01+1

2
(
1+|b1+d |

) 9+:+C1−
01+1

2(
1+|b1+b2+g1+g2+d |

) 9+:+C1−
01
2

≪ ) Y+2( 9+:)+ 1+W1
2 ,

and

(
1+|b3+g1+g2+d |

)ℓ+C3− 03+1
2

(
1+|b3+g1+g3+g4 |

)ℓ+C3− 03+1
2

(
1+|b3+g2+g3+g4 |

)ℓ+C3− 03+1
2(

1+|b2+b3+d |
)ℓ+C3− 03

2
≪ ) Y+2ℓ+ 1+W3

2 .

Proof. Note that C8 = A8 + 1+W8
2 . This allows us to simplify many of the exponents. For example,

(
1+|b8+ 5 (g,d) |

) C8− 08+1
2 =

(
1+|b8+ 5 (g,d) |

)W8 1−0′
8

2 ≪
(
1+|b8+ 5 (g,d) |

) 1+W8
4 (6.3.14)

for each of the cases 8 = 1, 2, 3 and 5 (g, d) appearing above.
In a similar manner, one sees that

(
1 + |b1 + b2 + g1 + g2 |

) 1
2− 9−:−C1+

02
2 ≪

(
1 + |b1 + b2 + g1 + g2 |

) 1
2− 9−:− 1+W1

4

≪ )
Y+ 1

2(
1+|b1+b2+g1+g2 |

) 9+:+ 1+W1
4

, (6.3.15)

(
1 + |b2 + b3 + d |

) 1
2−ℓ−C3+

03
2 ≪

(
1+|b2+b3+d |

) 1
2 −ℓ− 1+W3

4 ≪ )
Y+ 1

2(
1+|b2+b3+d |

)ℓ+ 1+W3
4

. (6.3.16)

Successively making the change of variables

b1 ↦→ b1 − g2, b2 ↦→ b2 − g1 − d, b3 ↦→ b3 − g1 − g2 − d, d ↦→ d + g4,

and the substitutions

)1 = g1 − g2, )2 = g2 − g3, )3 = g3 − g4 = g1 + g2 + 2g3,

the bounds of integration in ?
( 9 ,:,ℓ)
) ,' (H,−0) become 0 ≤ )1, )2, )3 ≤ )1+Y , 0 ≤ d ≤ )3, 0 ≤ b1 ≤

)2 + )3 − d, 0 ≤ b2 ≤ )1 and 0 ≤ b3 ≤ )2 + d, and the terms involving b1 are

(
1 + )1 + b1

) 9+:+ 1+W1
4

(
1 + b1

) 9+:+ 1+W1
4

(
1 + )2 + )3 − d − b1

) 9+:+ 1+W1
4

(
1 + b1 + b2

) 9+:+ 1+W1
4

,

which, since 0 ≤ 9 , : and 0 ≤ )8 ≤ )1+Y , is bounded by ) Y+ 1
2+2( 9+:)+ 1+W1

2 , as claimed. The bound for b3

follows in precisely the same fashion, and that for b2 is similar. �
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Putting this together, we obtain the bound

���? ( 9 ,:,ℓ)) ,' (H,−0)
��� ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 )
Y+2(C1+2C2+C3)+

3∑
8=1

1+W8
2

·
∭

g1≥g2≥g3≥g4

|g1 |, |g2 |, |g3 |, |g4 |≪) 1+Y

g3∫
d=g4

−d∫
b1=−g2

−g2−d∫
b2=−g1−d

g2∫
b3=−g1−g2−d

(1 + |g3 − d |)−
1
2
(
1 + |g4 − d |

)− 1
2

·
[
(1 + |b1 + g1 |)

(
1 + |b1 + g2 |) (1 + |b1 + g3 |

) (
1 + |b1 + g4 |

) ]−C1
·
[
(1 + |b2 + g1 + g2 |) (1 + |b2 + g1 + g3 |) (1 + |b2 + g1 + g4 |)

(
1 + |b2 + g2 + g3 |

) ]−C2
·
[ (

1 + |b2 + g2 + g4 |
) (

1 + |b2 + g3 + g4 |
) ]−C2

·
[ (

1 + |b3 − g1 |
) (

1 + |b3 − g2 |
) (

1 + |b3 − g3 |
) (

1 + |b3 − g4 |
) ]−C3

·  ' (g) 3b3 3b2 3b1 3d 3g3 3g2 3g1.

Next, we successively make the change of variables

b1 ↦→ b1 − g2, b2 ↦→ b2 − g1 − d, b3 ↦→ b3 − g1 − g2 − d, d ↦→ d + g4,

and the substitutions

)1 = g1 − g2, )2 = g2 − g3, )3 = g3 − g4 = g1 + g2 + 2g3.

Then by abuse of notation we may replace  ' (g) by  ' ()1, )2, )3), where

 ' ()1, )2, )3) :=
(
1 + )1 + 2)2 + )3

) '
3
(
1 + )1 + )3

) '
3
(
1 + |)1 − )3 |

) '
3

·
(
1 + )1

)1+ '
2
(
1 + )2

)1+ '
2
(
1 + )3

)1+ '
2
(
1 + )1 + )2

)1+ '
2

·
(
1 + )2 + )3

)1+ '
2
(
1 + )1 + )2 + )3

)1+ '
2

≪ ) Y+3+ 13'
6 ·

(
1 + |)1 − )3 |

) '
3
(
1 + )1

)1+ '
2
(
1 + )2

)1+ '
2
(
1 + )3

)1+ '
2
. (6.3.17)

It follows that���? ( 9 ,:,ℓ)) ,' (H,−0)
��� ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+ 13'
6 +3 + 2(C1 + 2C2 + C3) +

3∑
8=1

1 + W8
2

·
∭

0≤)1 ,)2 ,)3≤) 1+Y

)3∫
d=0

)2+)3−d∫
b1=0

)1∫
b2=0

)2+d∫
b3=0

(1 + )3 − d)−
1
2
(
1 + d

)− 1
2

·
[
(1 + b1 + )1)

(
1 + b1) (1 + |b1 − )2 |

) (
1 + )2 + )3 − b1

) ]−C1
·
[ (

1 + b2 + )2 + )3 − d
) (

1 + b2 + )3 − d
)
(1 + |b2 − d |)

]−C2
·
[ (

1 + |b2 − )1 + )3 − d |
) (

1 + )1 + d − b2
) (

1 + )1 − b2 + )2 + d
) ]−C2

·
[ (

1 + )1 + )2 + d − b3
) (

1 + )2 + d − b3
) (

1 + |b3 − d |
) (

1 + b3 + )3 − d
) ]−C3

(
1 + |)1 − )3 |

) '
3
(
1 + )1

)1+ '
2
(
1 + )2

)1+ '
2
(
1 + )3

)1+ '
2 3b3 3b2 3b1 3d 3)3 3)2 3)1.
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Now for 0 ≤ b1 ≤ )2 + )3 − d, 0 ≤ b2 ≤ )1, 0 ≤ b3 ≤ )2 + d and 0 ≤ d ≤ )3,

1 + b1 + )1 ≥ 1 + )1

1 + )2 + )3 − d + b2 ≥ 1 + )2 + )3 − d ≥ 1 + )2

1 + )1 + )2 + d − b2 ≥ 1 + )2 + d ≥ 1 + )2

1 + )1 + )2 + d − b3 ≥ 1 + )1.

Hence, we have the bounds (
1 + b1 + )1

)−C1 ≤
(
1 + )1

)−C1(
1 + )2 + )3 − d + b2

)−C2 ≤
(
1 + )2

)−C2(
1 + )1 + )2 + d − b2

)−C2 ≤
(
1 + )2

)−C2(
1 + )1 + )2 + d − b3

)−C3 ≤
(
1 + )1

)−C3 .
Inserting these bounds, we see that

���? ( 9 ,:,ℓ)) ,' (H,−0)
��� ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 )
Y+ 13'

6 +3+2(C1+2C2+C3)+
3∑
8=1

1+W8
2

·
∭

0≤)1 ,)2 ,)3≤) 1+Y

(
1 + )1

)−C1−C3 (1 + )2
)−2C2

)3∫
d=0

(
1 + )3 − d

)− 1
2
(
1 + d

)− 1
2

·
)2+)3−d∫
b1=0

(
1 + b1

)−C1 (1 + |b1 − )2 |
)−C1 (1 + )2 + )3 − b1

)−C1 3b1

·
)1∫

b2=0

(
1 + b2 + )3 − d

)−C2 (1 + |b2 − d |
)−C2 (1 + |b2 − )1 + )3 − d |

)−C2
·
(
1 + )1 + d − b2

)−C2 3b2

·
)2+d∫

b3=0

(
1 + )2 + d − b3

)−C3 (1 + |b3 − d |
)−C3 (1 + b3 + )3 − d

)−C3 3b3 3d

·
(
1 + |)1 − )3 |

) '
3
(
1 + )1

)1+ '
2
(
1 + )2

)1+ '
2
(
1 + )3

)1+ '
2 3)3 3)2 3)1. (6.3.18)

Let us denote the integral in b8 (1 ≤ 8 ≤ 3), in (6.3.18), by I8 (A8). We have

Lemma 6.3.19. For each 8 = 1, 2, 3, I8 (0) ≪ ) Y+1. Otherwise, if A ≥ 1, we have the following bounds:

I1 (A), I3(A) ≪
(
1 + )2

)−A (
1 + )3

)−A
,

I2(A) ≪
( (

1 + )3
)−2A +

(
1 + )1

)−2A
) (

1 + |)1 − )3 |
)−A
.

Proof. The case of A = 0 is clear given that 0 ≤ )8 ≤ )1+Y . Thus, we may assume now that A ≥ 1. By
expanding the region of integration, since the integrand is positive, we have that

I1 ≪
∫ )2+)3

b1=0

(
1 + b1

)−A (1 + |b1 − )2 |
)−A (

1 + )2 + )3 − b1
)−A

3b1

=

∫ �3

b1=�1

(
1 + |b1 − �1 |

)−A (
1 + |b1 − �2 |

)−A (
1 + |b1 − �3 |

)−A
3b1,
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where

�1 = 0, �2 = )2, �3 = )2 + )3.

Applying Lemma A.3, it follows that

I1 ≪
(
1 + )1

)−A (
1 + )2

)−A (
1 + )3

)−A
.

Replacing d by )3 − d in I1, one finds that I3 = I1, and hence the same bound holds for 8 = 3.
To bound I2, we also expand the region of integration, whence

I2(A2) ≪
)1+d∫

b2=d−)3

(
1 + b2 + )3 − d

)−A (
1 + |b2 − d |

)−A
·
(
1 + |b2 − )1 + )3 − d |

)−A (
1 + )1 + d − b2

)−A
3b2

=

)1∫
b2=0

4∏
ℓ=1

(
1 + |b2 − �ℓ |

)−A
3b2,

where

�1 = d − )3, �2 = d, �3 = d + )1 − )3, �4 = d + )1.

Note that

�2 ≤ �3 ⇐⇒ )3 ≤ )1.

In either event, using Lemma A.3 gives the claimed bound. �

Inserting these bounds into (6.3.18), the integral in the d-variable is

)3∫
d=0

(
1 + d

)− 1
2
(
1 + )3 − d

)− 1
2 3d ≪ 1,

where this bound is obtained via a direct application of Lemma A.1.
Plugging these bounds into (6.3.18), it follows that

��? ( 9 ,:,ℓ)) ,' (H,−0)
�� ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 · )
Y+ 13'

6 +3+2(A1+2A2+A3)+X0,C1+X0,C2+X0,C3+
3∑

8=1

1+W8
2

·
∭

0≤)1 ,)2 ,)3≤) 1+Y

(
1 + )1

)1+ '
2 −C1−C3

( (
1 + )3

)−2C2 +
(
1 + )1

)−2C2
)

·
(
1 + )3

)1+ '
2 −C1−C3 (1 + |)1 − )3 |

) '
3 −C2 (1 + )2

)1+ '
2 −C1−2C2−C3 3)3 3)2 3)1. (6.3.20)

Remark 6.3.21. As long as

1 + '
2

≥ C1 + 2C2 + C3 and
'

3
≥ C2,

each of the terms in the integrand, in (6.3.20), is of the form
(
1 + )9

)U9 for 9 = 1, 2, 3 and some U 9 ≥ 0.
Since the integral is over the domain 0 ≤ )1, )2, )3 ≪ )1+Y , it follows that each of these terms is
bounded by ) U.
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In light of the above remark, we obtain the bound

���? ( 9 ,:,ℓ)) ,' (H,−0)
��� ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 · ) Y+4'+9+X0,C1+X0,C2+X0,C3−(A1+A2+A3) . (6.3.22)

Since 0 ≤ A8 ≤ C8 , it follows that X0,C8 ≤ X0,A8 , and thus (6.3.22) implies the desired result. �

6.4. Bounds for the single residue terms

We need to deal with two types of single residue terms. These are defined in equations (6.4.1) and
(6.4.17). We show in Propositions 6.4.2 and 6.4.18, respectively, that the bounds from each of these are
small.

The first single residue term that we need to consider is

?
1, X
) ,' (H; (−02,−03)) =

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2

∬
Re(B 9 )=−0 9

9=2,3

H
3
2−?1

1 H
2−B2
2 H

3
2−B3

3 & X (B, U)

· F' (U) Γ' (U) ·

4∏
9=2

Γ( U9−U1

2 − X)Γ( B2+U1+U9

2 )Γ( B3−U9

2 )

Γ( B2+B3+U1
2 + X)

3B23B3 3U, (6.4.1)

where& X is a polynomial (see Section 5.2) of degree ≤ 3X, F' (U) is as in (3.1.2), Γ' (U) is as in (6.1.1),
and ?1 = −U1 − 2X for X = 0, 1, . . . , A1 − 1.

Proposition 6.4.2. Let A1 ≥ 1, A2, A3 ≥ 0 be integers, and 0 < Y < 1. Suppose 01, 02, 03 satisfy the

hypotheses of Theorem 4.0.3. If 0 ≤ X ≤ A1 − 1, then���?1, X
) ,A (H; (−02,−03))

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+9+X0,A2+X0,A3−(A1+A2+A3) . (6.4.3)

Proof. In order to bound ?1, X
) ,' (H; (−02,−03)), we will need to shift the lines of integration in the U1

variable. In doing so, we will pick up residues. In other words, we may write

?
1, X
) ,' (H; (−02,−03)) = ?1, X

) ,' (H; (−02,−03), ^) +
∑

Residues,

where

?
1, X
) ,' (H; (−02,−03), ^) :=

∭
Re(U)=^

4
U2

1
+···+U2

4
2) 2

∬
Re(B 9 )=−0 9

9=2,3

H
3
2+U1+2X
1 H

2−B2
2 H

3
2−B3

3

·
Γ

( U2−U1
2 − X

)
Γ

( U2−U1
2

) ·
Γ

(
2+'+U1−U2

4

)
Γ

(
2+'+U2−U1

4

)
Γ

( U1−U2
2

) ·
Γ

(
2+'+U2−U3

4

)
Γ

(
2+'+U3−U2

4

)
Γ

( U2−U3
2

)
Γ

( U3−U2
2

)

·
Γ

( U3−U1
2 − X

)
Γ

( U3−U1
2

) ·
Γ

(
2+'+U1−U3

4

)
Γ

(
2+'+U3−U1

4

)
Γ

( U1−U3
2

) ·
Γ

(
2+'+U2−U4

4

)
Γ

(
2+'+U4−U2

4

)
Γ

( U2−U4
2

)
Γ

( U4−U2
2

)

·
Γ

( U4−U1
2 − X

)
Γ

( U4−U1
2

) ·
Γ

(
2+'+U1−U4

4

)
Γ

(
2+'+U4−U1

4

)
Γ

( U1−U4
2

) ·
Γ

(
2+'+U4−U3

4

)
Γ

(
2+'+U3−U4

4

)
Γ

( U4−U3
2

)
Γ

( U3−U4
2

)
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·
Γ

( B2+U1+U2
2

)
Γ

( B2+U1+U3
2

)
Γ

( B2+U1+U4
2

)
Γ

( B3−U2
2

)
Γ

( B3−U3
2

)
Γ

( B3−U4
2

)
Γ( B2+B3+U1

2 + X)
· F' (U)& X (B, U) 3B2 3B3 3U. (6.4.4)

and the residues that appear depend on the particular choice of ^ = (^1, ^2, ^3). For example, if ^ 9 = 0
for 9 = 1, 2, 3, then equations (6.4.1) and (6.4.4) are the same, meaning there are no residues.

Our goal will be for the given value of 2A 9 − 1 + Y ≤ 0 9 ≤ 2A 9 − Y to shift the lines of integration of
the U variables from Re(U) = 0 to Re(U) = ^ = (^1, ^2, ^3) with

Re(U1 + 2X) = ^1 + 2X = 01, ^2 = 0 = ^3.

To help clarify the structure of the proof, we now give a brief outline of what is to follow. As described
above, in order for the exponent of H1 to be correct, we need to shift the line of integration in the variable
U1 from Re(U1) = 0 to Re(U1) = ^1 = 01 − 2X. In Lemma 6.4.5, we identify the poles that are passed
in making this shift, of which there are three types.

After establishing this lemma, we bound the shifted integral (6.4.4). The residue at any one of the
three types of poles is essentially the same as that at any of the other two up to a simple transformation
that doesn’t effect the rest of the argument. Hence, it suffices to pick any one of the types of poles from
Lemma 6.4.5. Having made a choice, we then show that it is, similar to before, necessary to shift in the
variable U2 in order for the exponent of H1 to be correct. Unlike before, however, we are able to show
in Lemma 6.4.13 that in shifting U2, no further poles are encountered. Hence, it suffices to bound the
shifted terms, which we then do. Since both (6.4.4) and the shifted residue term satisfy (6.4.3), taken
together, this proves the proposition.

Lemma 6.4.5. In shifting the line of integration in U1 from Re(U1) = 0 to Re(U1) = 01 − 2X, poles are

crossed only at the points U1 = @ for

@ ∈



−B2 − U2 − 2(A2 − X2),
−B2 − U3 − 2(A2 − X2),

−B3 − U2 − U3 − 2(A3 − X3)

������
0 ≤ X 9 ≤ A 9
X 9 ≤ A1 − X



. (6.4.6)

Proof. We first consider the ratio

Γ( U9−U1

2 − X)
Γ( U9−U1

2 )Γ( U1−U9

2 )
,

for 9 = 2, 3, or 4. The numerator has a simple pole when
U9−U1

2 − X is a nonpositive integer, but then
U9−U1

2 is also an integer, so that there is a pole in the denominator as well. In other words, this ratio is
holomorphic in U1.

For each of the terms

Γ

(
2 + ' + U 9 − U:

4

)
, (1 ≤ 9 ≠ : ≤ 4)

if ' is sufficiently large, again no poles are crossed.
Examining the term Γ( B2+U1+U9

2 ) with 9 = 2 or 9 = 3, assuming that Re(U 9 ) = 0 and Re(B2) = −02,
we see that poles occur at Re(U1) = ^1, where ^1 = 02 − 2(A2 − X2) for nonnegative integers A2 − X2.
(Note that we have chosen this notation because it enumerates the X2-th pole that is crossed as one starts
at Re(U1) = 0 and moves to Re(U1) = 01 − 2X.) Hence

0 ≤ Re(U1) = 02 − 2(A2 − X2) < 2A2 + 1 − 2(A2 − X2) = 1 + 2X2,

which implies that X2 > −1/2, hence X2 ≥ 0 (since X2 is an integer). And of course X2 ≤ A2, since we
are assuming that A2 − X2 is nonnegative.
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However, since the shift in U1 is going from ^1 = 0 to ^1 = 01 − 2X, the largest value of X2 that can
in fact yield a pole is the one for which

02 − 2(A2 − X2) ≤ 01 − 2X < 02 − 2(A2 − (X2 + 1)).

It’s readily checked that these inequalities imply X2 ≤ A1 − X.
The details for evaluating the poles of Γ( B3−U4

2 ) are similar. We leave the details to the reader. �

Step 1: Bounding the shifted integral ?
1, X
) ,'

Before dealing with the residues, we first bound ?1, X
) ,' (H; (−02,−03), (^1, 0, 0)).

Notice that we may interchange g1, g2 and g3 without affecting the integrand in (6.4.4). Therefore,
we may assume

−g1 − g2 − g3 = g4 ≤ g3 ≤ g2.

It follows that the exponential factor is

E = −2g1 − 4g2 − 2g3 − |b2 + b3 + g1 | + |b2 + g1 + g2 | + |b2 + g1 + g3 |
+ |b2 + g1 + g4 | + |b3 − g2 | + |b3 − g3 | + |b3 − g4 |,

and using the method of Lemma 6.2.5, it is easy to show that there are two possible exponential zero sets:

R+ :=

{
(−02 + 8b2,−03 + 8b3) ∈ C2

���� −g1 − g3 ≤ b2 ≤ g2 + g3
g3 ≤ b3 ≤ g2

}
,

R− :=

{
(−02 + 8b2,−03 + 8b3) ∈ C2

���� −g1 − g2 ≤ b2 ≤ −g1 − g3
g4 ≤ b3 ≤ g3

}
.

The change of variables (b2, b3, g2, g4) ↦→ (b3, b2, g4, g2) relates R+ and R−, so it suffices to consider
just the case of R+.

We replace the Gamma factors with their corresponding polynomial terms to obtain

���?1, X
) ,' (H; (−02,−03), ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 · ) Y+'+3X
∭

|g1 |, |g2 |, |g3 | ≤) 1+Y

0≤g1+g2+2g3≤g1+2g2+g3

(
1+|g1−g2 |

) '+1
2 − 01

2

·
(
1+|g1−g3 |

) '+1
2 − 01

2
(
1+|g1−g4 |

) '+1
2 −01+X (

1+g2−g3

)1+ '
2
(
1+g2−g4

)1+ '
2

·
(
1+g3−g4

)1+ '
2

∬
−g1−g3≤b2≤g2+g3

g3≤b3≤g2

(
1+|b2+g1+g2 |

)− 1+02
2 + 01

2 −X (
1+|b2+g1+g3 |

)− 1+02
2 + 01

2 −X

(
1+|b2+b3+g1 |

)− 1+02+03−01
2

·
(
1+|b2−g2−g3 |

)− 1+02
2

(
1+|b3−g2 |

)− 1+03
2

(
1+|b3−g3 |

)− 1+03
2

(
1+|b3−g4 |

)− 1+03
2 + 01

2 −X

· 3b23b3 3g. (6.4.7)

We make the change of variables

b2 ↦→ b2 − g1 − g3, b3 ↦→ b3 + g3,
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and )9 = g9 − g9+1 (1 ≤ 9 ≤ 3), to get

���?1, X
) ,' (H; (−02,−03), ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+3X
∭

0≤ |)1 |,)2 ,)3≤) 1+Y

(
1+|)1 |

) 1+'−01
2

·
(
1+)2

)1+ '
2
(
1+)3

)1+ '
2
(
1+|)1+)2 |

) 1+'−01
2

(
1+|)1+)2+)3 |

) 1+'
2 −01+X (

1+)2+)3

)1+ '
2

·
)2∫

b3=0

)3∫
b2=0

(
1+b2+)2

)− 1+02
2 + 01

2 −X (
1+b2

)− 1+02
2 + 01

2 −X (
1+)3−b2

)− 1+02
2(

1+b2+b3

)− 1+02+03−01
2

(
1+)2−b3

)− 1+03
2

·
(
1+b3

)− 1+03
2

(
1+b3+)3

)− 1+03
2 + 01

2 −X
3b2 3b3 3)1 3)2 3)3. (6.4.8)

We first examine (6.4.8) in the case A2 = A3 = 0. In this case, we have

1 < 1 + Y ≤ 2(X + 1) − 1 + Y ≤ 2A1 − 1 + Y ≤ 01 ≤ 2A1 + 1 − Y,

and −1 < −1+ Y ≤ 0 9 ≤ 1− Y < 1 (2 ≤ 9 ≤ 3). If we now denote the integral in b2 and b3, in (6.4.8),
by I(g, 0, X) (where g = (g1, g2, g3) and 0 = (01, 02, 03)), then the above estimates on 01, 02, 03 imply
that

I(g, 0, X) ≪ )

∫ )3

b2=0

∫ )2

b3=0

(
1+b2+)2

) 01
2 −X (

1+b2

) 01
2 −X (

1+b2+b3

) 1−01
2

(
1+b3+)3

) 01
2 −X

3b3 3b2.

We note that 01/2 − X > 0 and 1 − 01 < 0. Two applications of Lemma A.3 (to the integrals in b3 and
b2, respectively) then yield

I(g, 0, X) ≪ )
(
1 + )2

) Y+1 (
1 + )2 + )3

)01−2X (
1 + )3

) Y+ 3
2−X .

Putting this back into (6.4.8) yields

���?1, X
) ,' (H; (−02,−03), ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+1+'+3X
∭

0≤ |)1 |,)2 ,)3≤) 1+Y

(
1 + |)1 |

) 1+'−01
2

·
(
1 + )3

) Y+ 5
2+

'
2 −X (1 + |)1 + )2 |

) 1+'−01
2

(
1 + |)1 + )2 + )3 |

) 1+'
2 −01+X

·
(
1 + )2

) Y+2+ '
2
(
1 + )2 + )3

)1+ '
2 +01−2X

3)1 3)2 3)3. (6.4.9)

Assuming that ' is large enough to ensure that the exponents in the above integrand are positive, we
find that ���?1, X

) ,' (H; (−02,−03), ^)
��� ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+1+'+3X · )3 · ) Y+3'+7−01−2X

= H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+11+X−01

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+11−A1 ,

where in the last step we have used that X ≤ A1 − 1 and 2A1 − 1 + Y ≤ 01 imply that X − 01 ≤ −A1. Again,
we’re presently in the case A2 = A3 = 0, whence

11 − A1 = 9 + X0,A2 + X0,A3 − A1 − A2 − A3.

So in this case, ?1, X
) ,' (H; (−02,−03), ^) satisfies the bound on ?1, X

) ,A (H; (−02,−03)) given by (6.4.3).

https://doi.org/10.1017/fms.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.39


46 Dorian Goldfeld et al.

We now demonstrate that this is true for A2 + A3 ≥ A1 as well. Because

1 + 08 > 2A1 ≥ 0 (1 ≤ 8 ≤ 3) and
01

2
− X > 2A1 − 1

2
− (A1 − 1) = 1/2 > 0,

we have the bounds

(
1 + b 9

)− 1+09

2 ≤
(
1 + b 9

)−A 9 (2 ≤ 9 ≤ 3),(
1 + b 9 + )9

)− 1+09

2 + 01
2 −X ≤

(
1 + )9

)−A 9 (1 + )2 + )3
) 01

2 −X (2 ≤ 9 ≤ 3).

Further,

(
1 + b2

) 01
2 −X

(
1 + b2 + b3

) 01
2 − 1+02+03

2

=

(
1 + b2

1 + b2 + b3

) 01
2 −X (

1 + b2 + b3
) 1+02+03

2 −X ≪ ) Y+ 1+02+03
2 −X ,

the last step because A2 + A3 ≥ A1 implies that 1+02+03
2 − X > 0. So (6.4.8) yields

���?1, X
) ,' (H, (−02,−03), ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X+ 1+02+03
2

∭
0≤ |)1 |,)2 ,)3≤) 1+Y

(
1 + |)1 |

) 1+'−01
2

·
(
1 + )2

)1+ '
2 −A2

(
1 + )3

)1+ '
2 −A3

(
1 + |)1 + )2 |

) 1+'−01
2

(
1 + |)1 + )2 + )3 |

) 1+'
2 −01+X

·
(
1 + )2 + )3

)1+ '
2 +01−2X

)2∫
b3=0

(
1 + b3

)−A3
(
1 + )2 − b3

)−A3 3b3

·
)3∫

b2=0

(
1 + b2

)−A2
(
1 + )3 − b2

)−A23b2 3)1 3)2 3)3

or, by Lemma A.1 applied to the above integrals in b2 and b3,

���?1, X
) ,' (H, (−02,−03), ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X+ 1+02+03
2

·
∭

0≤ |)1 |,)2 ,)3≤) 1+Y

(
1 + |)1 |

) 1+'−01
2

(
1 + )2

)1+XA2 ,0+
'
2 −A2−A3

(
1 + )3

)1+XA3 ,0+
'
2 −A2−A3

·
(
1 + |)1 + )2 |

) 1+'−01
2

(
1 + |)1 + )2 + )3 |

) 1+'
2 −01+X

·
(
1 + )2 + )3

)1+ '
2 +01−2X

3)1 3)2 3)3. (6.4.10)

Assuming again that ' is sufficiently large that the exponents in the above integrals in )1, )2, and )3 are

positive, we find that
���?1, X

) ,' (H, (−02,−03), ^)
���

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+X+ 1+02+03
2 +3+Y+3'+ 9

2−01+X0,A2+X0,A3−2A2−2A3 .

Since 0 9 ≤ 2A 9 + 1 for 2 ≤ 9 ≤ 3 and X − 01 ≤ A1 − 1 − (2A1 − 1) = −A1, we then conclude that

���?1, X
) ,' (H, (−02,−03), ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+9−A1+X0,A2+X0,A3−A2−A3 .
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So, in the case A2 + A3 ≥ A1, we again have a bound on ?1, X
) ,' (H, (−02,−03), ^) that is consistent with the

statement of Proposition 6.4.2.

Step 2: Bounding the residue term at U1 = −B2 − U2 − 2(A2 − X2)

The next step of the proof is to show that all of the residues at the poles U1 = −B2 − U2 − 2(A2 − X2)
contribute smaller bounds. The residue we must bound is:

∭
Re(U2)=0
Re(U3)=0

Re(B2)=−02

4
(B2+U2+2(A2−X2 ) )2+U2

2
+U2

3
+(B2−U3+2(A2−X2 ) )2

2) 2

∫
Re(B3)=−03

H
3
2−B2−U2−2(A2−X2−X)
1 H

2−B2
2 H

3
2−B3

3

·
Γ
(

2+'+U2−U3
4

)
Γ
(

2+'+U3−U2
4

)
Γ( U2−U3

2 ) ·
Γ
(

2+'+B2−2U3+2(A2−X2 )
4

)
Γ
(

2+'−B2+2U3−2(A2−X2 )
4

)
Γ
( −B2+2U3−2(A2−X2 )

2

)
Γ
(
B2−2U3+2(A2−X2 )

2

) ·
Γ
(
B2+2U2

2 +A2−X2−X
)

Γ
(
B2+2U2

2 +A2−X2

)

·
Γ
(

2+'−B2+U2+U3−2(A2−X2 )
4

)
·Γ

(
2+'+B2−U2−U3+2(A2−X2 )

4

)
Γ
( −B2+U2+U3−2(A2−X2 )

2

) Γ
(

2+'−B2−U2−U3−2(A2−X2 )
4

)
Γ
(

2+'+B2+U2+U3+2(A2−X2 ) )
4

)
Γ
( −B2−U2−U3−2(A2−X2 )

2

)

·
Γ
(

2B2+U2−U3+4(A2−X2 )
2 −X

)
Γ
(

2B2+U2−U3+4(A2−X2 )
2

) ·
Γ
(

2+'−B2−2U2−2(A2−X2 )
4

)
Γ
(

2+'+B2+2U2+2(A2−X2 )
4

)
Γ
( −B2−2U2−2(A2−X2 )

2

) ·
Γ
(
B2+U2+U3

2 +A2−X2−X
)

Γ
(
B2+U2+U3

2 +A2−X2

)

·
Γ
(

2+'−2B2−U2+U3−4(A2−X2 )
4

)
Γ
(

2+'+2B2+U2−U3+4(A2−X2 )
4

)
Γ
( −2B2−U2+U3−4(A2−X2 )

2

) · Γ( U3−U2
2 −A2+X2)

Γ( U3−U2
2 )

Γ( B2−U2−U3
2 )

Γ( B2−U2−U3
2 +A2−X2)

·
Γ( B3−U2

2 )Γ( B3−U3
2 )Γ

(
B3−B2+U3

2 −A2+X2

)
Γ( B3−U2

2 −A2+X2+X)
(
F' (U)& X (B, U)

)��
U1=−B2−U2−2(A2−X2) 3B2 3B3 3U. (6.4.11)

We need to shift the line of integration in U2 so that the real part of the exponent of H1 is 01. That is, we
require that

2A1 − 0′1 = 01 = 02 − Re(U2) − 2(A2 − X2 − X) = 0′2 − Re(U2) + 2(X2 + X),

where 0 < 0′1, 0
′
2 < 1. In other words, given the bounds from Lemma 6.4.5, we shift the line in U2 to

Re(U2) = ^2 := 0′2 − 0
′
1 − 2(A1 − X − X2). (6.4.12)

Lemma 6.4.13. In shifting the line of integration in (6.4.11) in the variable U2 from Re(U2) = 0 to

Re(U2) = ^2 as in (6.4.12), no poles are crossed.

Proof. As in the proof of Lemma 6.4.5, we assume that ' is sufficiently large. Then for each of the
Gamma factors involving ', no poles are crossed. Further, for reasons also described in that proof, each
of the factors of the form

Γ
(
− U2

2 + I − X
)

Γ
(
− U2

2 + I
)
Γ

( U2
2 − I

)
is holomorphic in U2. Thus, in moving the line of integration in U2, only the term Γ

( B3−U2
2

)
might

contribute poles.
Regarding this term, we consider two cases. The first is when A2 ≥ A1. In this case, since X2 ≤ A1 − X

by Lemma 6.4.5, we have X2 ≤ A2 − X, so the pole in the denominator factor Γ( B3−U2
2 − A2 + X + X2)

cancels the pole in Γ
( B3−U2

2

)
.

Finally, then, we need to consider the case A2 < A1. Of the triples (A1, A2, A3) under consideration,
the only one satisfying this criterion is the triple (A, 0, 0). Recall that, in the case of this triple, we are
assuming that Re(03) < 0. Also, note that our integral in B3, in (6.4.11), is over the line Re(B3) = −03.
So on our original line of integration in U2, namely Re(U2) = 0, we have that Re(B3 − U2) > 0. But note
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that we are moving this line to the left, since (6.4.12) and the fact that X2 = 0 (since A2 = 0) together
imply that the new line of integration is

Re(U2) = 0′2 − 0′1 − 2(A1 − X) ≤ 0′2 − 0′1 − 2 < 0.

Therefore, in moving this line we are only increasing the real part of B3 − U2 and consequently are not
passing any poles of Γ( B3−U2

2 ). �

In order to bound (6.4.11), we first remark that the exponential factor is

E = −|b2 − 2g3 | + |b3 − g3 | + |b3 − b2 + g3 |,

and it follows that the exponential zero set is

b2 − g3 ≤ b3 ≤ g3 or g3 ≤ b3 ≤ b2 − g3.

Using the first of these,2 and assuming as before that g2 ≥ g3, it is not hard to see that the shifted version
of (6.4.11), to Re(U2) = ^2 := 02 − 01 − 2(A2 − X − X2), is bounded by

H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+3X
∬

−∞<g3≤g2<∞

(
1+g2−g3

) 1+'+01−02
2 −X

2g3∫
b2=−∞

4
−

(b2+g2 )2+g2
2
+g2

3
+(b2−g3 )2

2) 2

·
(
1+2g3−b2

)1+ '
2
(
1+|b2+2g2 |

) 1+'−201+02
2 −A2+X2+X (

1+g2+g3−b2

) 1+'+01−202
2 +A2−X−X2

·
(
1+|2b2+g2−g3 |

) 1+'−01−02
2 +A2−X2

(
1+|b2+g2+g3 |

) 1+'−01
2

·
g3∫

b3=b2−g3

(
1+g2−b3

)A2−X2−X (
1+g3−b3

)− 1+03
2

(
1+b3−( b2−g3)

) 02−03−1
2 −A2+X2 3b3 3b2 3g2 3g3. (6.4.14)

Since (
1 + g2 − b3)−X ≤ (1 + g2 − g3

)−X
and

(
1 + b3 − (b2 − g3)

) X2+1/2 ≤
(
1 + 2g3 − b2

) X2+1/2
,

we find that (6.4.14) is

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+3X
∬

−∞<g3≤g2<∞

(
1+g2−g3

) 1+'+01−02
2 −2X

2g3∫
b2=−∞

4
−

(b2+g2 )2+g2
2
+g2

3
+(b2−g3 )2

2) 2

·
(
1+2g3−b2

) 3+'
2 +X2

(
1+|b2+2g2 |

) 1+'−201+02
2 −A2+X2+X (

1+g2+g3−b2

) 1+'+01−202
2 +A2−X−X2

·
(
1+|2b2+g2−g3 |

) 1+'−01−02
2 +A2−X2

(
1+|b2+g2+g3 |

) 1+'−01
2

·
g3∫

b3=b2−g3

(
1+g2−b3

)A2−X2
(
1+g3−b3

)− 1+03
2

(
1+b3−( b2−g3)

) 02−03−1
2 −A23b3 3b2 3g2 3g3. (6.4.15)

Since A2 − X2 ≥ 0, 1+03
2 > 0, and 02−03−2

2 − A2 < 0 we find, using Lemma A.0.3, that the integral in b3,
in (6.4.15), is

≪
(
1 + 2g3 − b2

) X0,A3−
1+03

2 ·
(
1 + g2 + g3 − b2

)A2−X2 .

2For the other exponential zero set, the answer is virtually identical.
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But then (6.4.15) is

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+3X
∬

−∞<g3≤g2<∞

(
1+g2−g3

) 1+'+01−02
2 −2X

2g3∫
b2=−∞

4
−

(b2+g2 )2+g2
2
+g2

3
+(b2−g3 )2

2) 2

·
(
1+2g3−b2

) 2+'−03
2 +X2+XA3 ,0

(
1+|b2+2g2 |

) 1+'−201+02
2 −A2+X2+X (

1+g2+g3−b2

) 1+'+01−202
2 +2A2−X−2X2

·
(
1+|2b2+g2−g3 |

) 1+'−01−02
2 +A2−X2

(
1+|b2+g2+g3 |

) 1+'−01
2 3b2 3g2 3g3. (6.4.16)

Substituting g9 → g9) (1 ≤ 9 ≤ 2) and b3 → b3) , we find that (6.4.16) is

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+3X+3+ 7
2+3'− 201+302+03

2 +2A2−2X−X2+XA3 ,0 ,

which, because −0 9 < 1 − 2A 9 for 1 ≤ 9 ≤ 3, is

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+X+ 19
2 −2A1−A2−A3−X2+XA3 ,0

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+ 17
2 −A1−A2−A3+XA3 ,0 ,

where in the final step we have used the facts that A1−X ≥ 1 and X2 ≥ 0. So the residue term (6.4.11) also
satisfies the bound given in Proposition 6.4.2. The proof of that proposition is therefore complete. �

The other type of single residue term that we have to consider is

?
2, X
) ,' (H; (−01,−03)) =

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2

∬
Re(B 9 )=−0 9

9=1,3

H
3
2−B1

1 H
2−?2

2 H
3
2−B3

3 F' (U) Γ' (U)& X (B, U)

· ©«
2∏
9=1

4∏
:=3

Γ
(
U:−U9

2 − X
)ª®¬

Γ
( B1+U1

2

)
Γ

( B1+U2
2

)
Γ

( B3−U3
2

)
Γ

( B3−U4
2

)
3B13B3 3U (6.4.17)

where & X is a polynomial (see Section 5.2) of degree ≤ 3X and ?2 = −U1 − U2 − 2X.

Proposition 6.4.18. Let A2 ≥ 1, A1, A3 ≥ 0 be integers, and 0 < Y < 1. Suppose 01, 02, 03 satisfy the

hypotheses of Theorem 4.0.3. If 0 ≤ X ≤ A2 − 1, then

���?2, X
) ,' (H; (−01,−03))

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+9+X0,A1+X0,A3−(A1+A2+A3) . (6.4.19)

Proof. We first rearrange the terms on the right-hand side of (6.4.17) as follows.

?
2, X
) ,' (H; (−01,−03)) =

∭
Re(U9 )=0

4
U2

1
+···+U2

4
2) 2

∬
Re(B 9 )=−0 9

9=1,3

H
3
2−B1

1 H
2+U1+U2+2X
2 H

3
2−B3

3 F' (U)

· & X (B, U)
©«

2∏
9=1

4∏
:=3

Γ( U:−U9

2 − X)
Γ( U:−U9

2 )
Γ( 2+'+U9−U:

4 )Γ( 2+'+U:−U9

4 )
Γ( U9−U:

2 )
ª®¬

·
Γ( 2+'+U1−U2

4 )Γ( 2+'+U2−U1
4 )

Γ( U1−U2
2 )Γ( U2−U1

2 ) ·
Γ( 2+'+U3−U4

4 )Γ( 2+'+U4−U3
4 )

Γ( U3−U4
2 )Γ( U4−U3

2 )
· Γ

( B1+U1
2

)
Γ

( B1+U2
2

)
Γ

( B3−U3
2

)
Γ

( B3−U4
2

)
3B1 3B3 3U.
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The proof follows the very same outline as that of Proposition 6.4.2. First, in order for the exponent of
H2 to match that in the statement of the proposition, we will shift the integration in the U variables from
real part zero to Re(U 9 ) = ^ 9 , such that

02 = Re(U1 + U2 + 2X) = ^1 + ^2 + 2X

lies in the interval (2A2 − 1, 2A2 + 1). We do this by defining

^1 := 02 − 2X and ^2 := 0 =: ^3.

Let g9 = Im(U 9 ). Note that since the above integral is invariant under each of the change of coordinates

(U1, U2) ↦→ (U2, U1), and (U3, U4) ↦→ (U4, U3),

we may assume that g1 ≥ g2 and g3 ≥ g4.
As before, we now use Stirling’s formula to write the Gamma factors in the above integrand as a

product of linear and exponential terms. The exponential factor is 4
c
4 E( b ,g) , where

E = 2g1 + 2g3 − |b1 + g2 | − |b1 + g1 | − |b3 + g1 + g2 + g3 | − |b3 − g3 |,

and from this we readily deduce that the exponential zero set is

R =
{
(b1, b3) | −g1 ≤ b1 ≤ −g2, g4 ≤ b3 ≤ g3

}
.

The polynomial factor is

P(b, g) =
(
1+|g1−g2 |

)1+ '
2
(
1+|g3−g4 |

)1+ '
2
©«

2∏
9=1

4∏
:=3

(
1+|g:−g 9 |

) 1+'
2 −(

^ 9−^:
2 )−Xª®®¬

·
(
1+|b1+g1 |

)− 1+01−^1
2 ·

(
1+|b1+g2 |

)− 1+01−^2
2 ·

(
1+|b3−g3 |

)− 1+03+^3
2 ·

(
1+|b3−g4 |

)− 1+03+^4
2 .

Plugging in the values of ^ 9 given above, and bounding the resulting terms as before, we find that

���?2, X
) ,' (H; (−01,−03), ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+3X
∬

−) 1+Y ≤g4≤g3≤) 1+Y

−) 1+Y ≤g2≤g1≤) 1+Y

(
1 + |g2 − g3 |

) 1+'
2 −X

·
(
1 + g1 − g2)1+ '

2
(
1 + g3 − g4)1+ '

2
(
1 + |g1 − g4 |

) 3+'
2 −2A2+X (1 + |g1 − g3 |

) 2+'
2 −A2

·
(
1 + |g2 − g4 |

) 2+'
2 −A2

−g2∫
b1=−g1

(
1 + |b1 + g1 |

) 1
2−A1+A2−X (1 + |b1 + g2 |

)−A1 3b1

·
g3∫

b3=g4

(
1 + |b3 − g3 |

)−A3
(
1 + |b3 − g4 |

) 1
2−A3+A2−X 3b3 3g2 3g3. (6.4.20)

Note that the integral in b3 is bounded by ) Y+ 1
2+A2−X (1 + g3 − g4

) X0,A3−A3 , and the integral in b1 is

bounded by ) Y+ 1
2+A2−X (1 + g1 − g2

) X0,A1−A1 . Plugging in these bounds and simplifying, we find that this
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shifted term is bounded as follows:���?2, X
) ,' (H; (−01,−03), ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+1+2A2+X

·
∬

−) 1+Y ≤g4≤g3≤) 1+Y

−) 1+Y ≤g2≤g1≤) 1+Y

(
1+|g2−g3 |

) 1+'
2 −X (

1+g1−g2

)1+ '
2 +X0,A1

−A1
(
1+g3−g4

)1+ '
2 +X0,A3

−A3

·
(
1+|g1−g4 |

) 3+'
2 −2A2+X (

1+|g1−g3 |
) 2+'

2 −A2
(
1+|g2−g4 |

) 2+'
2 −A2 3g2 3g3

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+10+X0,A1+X0,A3−A1−A2−A3−(A2−X)

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+9+X0,A1+X0,A3−A1−A2−A3 ,

since A2 − X ≥ 1.
In analogy to Lemma 6.4.5, it is easy to show that in shifting Re(U1) from zero to ^1, poles are

crossed at U1 = @ for

@ ∈
{

−B1 − 2(A1 − X1)
−B3 − U2 − U3 − 2(A3 − X3)

���� 0 ≤ X 9 ≤ A 9
X 9 ≤ A2 − X

}
.

In what follows, the method holds equally well for either of these two types of residues. For concreteness,
we consider the residue at U1 = −B1 − 2(A1 − X1). This gives

∬
Re(U9 )=^ 9

9=2,3

4
(B1+2(A1−X1 ) )2+U2

2
+U2

3
+(B1+U2+U3+2(A1−X1 ) )2

2) 2

∬
Re(B 9 )=−0 9

9=1,3

H
3
2−B1

1 H
2−B1+U2−2(A1−X1−X)
2 H

3
2−B3

3

·
(
F' (U)& X (B, U)

)���
U1=−B1−2(A1−X1)

Γ( U3−U2
2 −X)

Γ( U3−U2
2 )

Γ
(

2+'+U2−U3
4

)
Γ
(

2+'+U3−U2
4

)
Γ( U2−U3

2 )

·
Γ
(
U3+B1

2 +A1−X1−X
)

Γ
(
U3+B1

2 +A1−X1

) Γ
(

2+'−B1−U3−2(A1−X1 )
4

)
Γ
(

2+'+U3+B1+2(A1−X1 )
4

)
Γ( −B1−U3

2 −A1+X1)
Γ
(

2B1−U2−U3
2 +2(A1−X1)−X

)
Γ
(

2B1−U2−U3
2 +2(A1−X1)

)

·
Γ
(

2+'−2B1+U2+U3
4 −A1+X1

)
Γ
(

2+'+2B1−U2−U3
4 +A1−X1

)
Γ
( −2B1+U2+U3

2 −2(A1−X1)
) Γ

(
2+'−B1−2(A1−X1 )+2U2+U3

4

)
Γ
(

2+'+B1+2(A1−X1 )−2U2−U3
4

)
Γ
( −B1+2U2+U3

2 −A1+X1

)

·
Γ
(
B1−2U2−U3

2 +A1−X1−X
)

Γ
(
B1−2U2−U3

2 +A1−X1

) Γ( 2+'−B1−2(A1−X1 )−U2
4 )Γ( 2+'+B1+2(A1−X1 )+U2

4 )Γ( 2+'−B1−2(A1−X1 )+U2+2U3
4 )

Γ( −B1−2(A1−X1 )−U2
2 )Γ( B1+2(A1−X1 )+U2

2 )Γ( −B1+U2+2U3
2 −A1+X1)

·
Γ( 2+'+B1+2(A1−X1)−U2−2U3

4 )
Γ( B1−U2−2U3

2 + A1 − X1)
· Γ

( B1+U2
2

)
Γ

( B3−U3
2

)
Γ

( B3−B1+U2+U3
2 −A1 + X1

)
3B13B3 3U.

Strictly speaking, this is what we want to bound in the case that ^2 = ^3 = 0, but as before we need to
shift the line of integration in the U2 variable to Re(U2) = ^2 such that the real part of the exponent of
H2 is 2+ 02. This means 02 = Re(−B1 +U2 −2(A1 − X1 − X)) = 01 + ^2 −2(A1 − X1 − X), or in other words,

^2 = 2(A2 − X − X1) + 0′2 − 0
′
1 (6.4.21)

where −1 < 0′9 = 0 9 − 2A 9 < 1( 9 = 1, 2).
This implies that Re(U2) gets shifted to the right. Just as in the case of Lemma 6.4.13, one can show

in this case that no poles are crossed in moving Re(U2). So it suffices to bound the above for these values
of ^2 and ^3.

The exponential factor is 4−
c
4 E, where

E = |b1 − g2 − 2g3 | − |b3 − g3 | − |b3 − b1 + g2 + g3 |,
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which leads to two exponential zero sets: the first is

R : g3 ≤ b3 ≤ b1 − g2 − g3,

and the second is similar but the inequalities are reversed.
The polynomial factor (coming from the Gamma factors specifically) is

P =
(
1 + |b1 + g2 |

) 1+'+20′
1
−0′

2
2 −A1+A2−X−X1

(
1 + |g2 − g3 |

) 1+'−0′
1
+0′

2
2 −A2+X1

·
(
1 + |b1 + g3 |

) 1+'+0′
1

2 −X−X1
(
1 + |−2b1 + g2 + g3 |

) 1+'+0′
1
+0′

2
2 −A2−X1

·
(
1 + |−b1 + 2g2 + g3 |

) 1+'−0′
1
+20′

2
2 −2A2+X+X1

(
1 + |−b1 + g2 + 2g3 |

)1+ '
2

·
(
1 + |b3 − g3 |

) −1+0′
3

2 −A3
(
1 + |−b1 + b3 + g2 + g3 |

) −1−0′
2
+0′

3
2 +A2−A3−X .

Note that the presence of the exponential term means we can restrict the integral to the set of
|g2 |, |g3 |, |b1 | ≤ )1+Y . Then the integral that we seek to bound is

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+3X+ 1
2

∭
|g2 |, |g3 |, |b1 | ≤) 1+Y

g2+2g3≤b1

(
1+|b1+g2 |

) 1+'+20′
1
−0′

2
2 −A1+A2−X−X1

·
(
1+|g2−g3 |

) 1+'−0′
1
+0′

2
2 −A2+X1

(
1+|b1+g3 |

) 1+'+0′
1

2 −X−X1
(
1+|−2b1+g2+g3 |

) 1+'+0′
1
+0′

2
2 −A2−X1

·
(
1+|−b1+2g2+g3 |

) 1+'−0′
1
+20′

2
2 −2A2+X+X1

(
1+|−b1+g2+2g3 |

)1+ '
2

·
b1−g2−g3∫
b3=g3

(
1+|b3−g3 |

)−A3
(
1+|−b1+b3+g2+g3 |

)A2−A3−X 3b3 3b1 3U2 3U3

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+3+ 8
2+0′1+

3
2 0

′
2+X0,A3−A1−A2−A3−(A2−X)−X1

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+ 17
2 +X0,A3−A1−A2−A3 ,

since A2 − X ≥ 1, X1 ≥ 0. �

6.5. Bounds for the double residue terms

We need to consider two types of double residue terms: ?12, (X1 , X2)
) ,' (H;−03) and ?

13, (X1 , X3)
) ,' (H;−02).

They are obtained by taking residues at B2 = −U1 − U4 − 2X2 and B3 = U2 − 2X3, respectively, of the
single residue term ?

1, (X1)
) ,' (H) defined by (6.4.1).

Specifically, write

?1 = −U1 − 2X1, ?2 = −U1 − U4 − 2X2, ?3 = U2 − 2X3, (6.5.1)

where 0 ≤ X 9 ≤ A 9 − 1 for 1 ≤ 9 ≤ 3. Then we find from Proposition 5.2.9 that

?
12, (X1 , X2)
) ,' (H;−03) =

∭
Re(U)=0

4
U2

1
+···+U2

4
2) 2

∫
Re(B3)=−03

H
3
2−?1

1 H
2−?2

2 H
3
2−B3

3 F' (U) Γ' (U)

· 5X1 , X2 (B3, U)Γ(
U2−U1

2 − X1)Γ( U3−U1
2 − X1)Γ( U4−U1

2 − X1)
· Γ( U2−U4

2 − X2)Γ( U3−U4
2 − X2)Γ( B3−U2

2 )Γ( B3−U3
2 ) 3B3 3U, (6.5.2)
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and

?
13, (X1 , X3)
) ,' (H;−02) =

∭
Re(U)=0

4
U2

1
+···+U2

4
2) 2

∫
Re(B2)=−02

H
3
2−?1

1 H
2−B2
2 H

3
2−?3

3 F' (U) Γ' (U)

· 6X1 , X3 (B2, U)Γ(
U2−U1

2 − X1)Γ( U3−U1
2 − X1)Γ( U4−U1

2 − X1)
· Γ( U2−U3

2 − X3)Γ( U2−U4
2 − X3)Γ( B2+01+U3

2 )Γ( B2+01+U4
2 ) 3B2 3U, (6.5.3)

where deg 5X1 , X2 ≤ 2X1 + X2 and deg 6X1 , X3 ≤ 2X1 + X3. (See Section 5.2.)
In what follows, we show that the bounds on (6.5.2) and (6.5.3) are ‘small.’
We begin with (6.5.2). We have:

Proposition 6.5.4. Let A1, A2 ≥ 1, A3 ≥ 0 be integers, and 0 < Y < 1. Suppose 01, 02, 03 satisfy the

hypotheses of Theorem 4.0.3. If 0 ≤ X 9 ≤ A 9 − 1 for 1 ≤ 9 ≤ 2, then

���?12, (X1 , X2)
) ,' (H;−03)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+ 13
2 +XA3 ,0−A1−A2−A3 . (6.5.5)

Proof. The proof is similar, in spirit and in many of the details, to that of Proposition 6.4.2.
More specifically: to obtain the desired bound on ?12, (X1 , X2)

) ,' (H;−03), we will need to shift the lines
of integration in both the U1 and U2 variables, so that the resulting exponents of H1 and H2 have real
parts as stated in the proposition. In doing so, we will pick up residues. That is, we will have

?
12, (X1 , X2)
) ,' (H;−03) = ?12, (X1 , X2)

) ,' (H;−03, ^) +
∑

Residues, (6.5.6)

where

?
12, (X1 , X2)
) ,' (H;−03, ^) :=

∭
Re(U)=^

4
U2

1
+···+U2

4
2) 2

∫
Re(B3)=−03

H
3
2+U1+2X1

1 H
2+U1+U4+2X2
2 H

3
2−B3

3

Γ( 2+'+U1−U2
4 )Γ( 2+'+U2−U1

4 )Γ( U2−U1
2 −X1)Γ( 2+'+U2−U3

4 )Γ( 2+'+U3−U2
4 )Γ( B3−U2

2 )Γ( B3−U3
2 )

Γ( U1−U2
2 )Γ( U2−U1

2 )Γ( U2−U3
2 )Γ( U3−U2

2 )

·
Γ( 2+'+U1−U3

4 )Γ( 2+'+U3−U1
4 )Γ( U3−U1

2 −X1)
Γ( U1−U3

2 )Γ( U3−U1
2 )

Γ( 2+'+U2−U4
4 )Γ( 2+'+U4−U2

4 )Γ( U2−U4
2 − X2)

Γ( U2−U4
2 )Γ( U4−U2

2 )

·
Γ( 2+'+U1−U4

4 )Γ( 2+'+U4−U1
4 )Γ( U4−U1

2 −X1)
Γ( U1−U4

2 )Γ( U4−U1
2 )

Γ( 2+'+U3−U4
4 )Γ( 2+'+U4−U3

4 )Γ( U3−U4
2 − X2)

Γ( U3−U4
2 )Γ( U4−U3

2 )
· F' (U) 5X1 , X2 (B3, U) 3B3 3U, (6.5.7)

and the residues that appear depend on the particular choice of ^ = (^1, ^2, ^3). We’ve grouped the
Gamma factors, above, in a manner that will be convenient for what follows.

Because we want the exponents of H1 and H2, in (6.5.7), to have real parts 3/2 + 01 and 2 + 02,
respectively, we will choose ^ = (^1, ^2, ^3) ∈ R3 such that

Re(U1 + 2X1) = ^1 + 2X1 = 01, Re(U1 + U4 + 2X2) = −^2 − ^3 + 2X2 = 02.

Specifically, we will define

^ = (^1, ^2, ^3) = (01 − 2X1,−02 + 2X2, 0) (and ^4 = −^1 − ^2 − ^3). (6.5.8)

For this value of ^, we will obtain an estimate of the desired magnitude for ?12, (X1 , X2)
) ,' (H;−03, ^).
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It will remain to estimate the residues that appear in (6.5.6). To do so we first identify the poles;
see also Lemma 6.5.15 below. We then show that, for these residue terms, the desired exponents on the
H 9s can be obtained by shifting lines of integration, without passing additional poles. Finally, using this
information, we show that the residue terms are small.

Step 1: Bounding the shifted integral ?
12, (X1 , X2)
) ,'

Before estimating the residue terms in (6.5.6), we obtain a bound of the desired magnitude on the
shifted integral ?12, (X1 , X2)

) ,' (H;−03, ^), with ^ = (^1, ^2, ^3) as in (6.5.8).
Note that, from any of the grouped combinations of Gamma functions in (6.5.7) except for the

second one, the contribution to the exponential factor in Stirling’s formula is zero. This is because
absolute values of imaginary parts from the numerator of any such combination cancel those from the
denominator. So, again, the only one of these terms that contributes to the exponential factor is the
second one, which contributes a factor of

4−
c
2 ( |g2−g3 |/4+|g3−g2 |/4+|b3−g2 |/2+|b3−g3 |/2−|g2−g3 |/2−|g3−g2 |/2) = 4−

c
4 ( |b3−g2 |+ |b3−g3 |− |g2−g3 |) .

But the integrand in (6.5.7) is invariant under U2 ↔ U3, so we may assume that g2 ≥ g3, whence the
exponential factor in question is simply

4−
c
4 ( |b3−g2 |+ |b3−g3 |−g2+g3) .

It is then easily seen that there is just one exponential zero set, namely

R := {(−03 + 8b3) ∈ C|g3 ≤ b3 ≤ g2} .

Replacing the Gamma factors with their corresponding polynomial terms, in (6.5.7), then gives

���?12, (X1 , X2)
) ,' (H;−03, ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X2

·
∭

|g1 |, |g2 |, |g3 | ≤) 1+Y

0≤g2−g3

(
1+|g1−g2 |

) '+1+^2−^1
2 −X1

(
1+|g1−g3 |

) '+1+^3−^1
2 −X1

(
1+|g1−g4 |

) '+1+^4−^1
2 −X1

·
(
1+g2−g3

) 2+'
2

(
1+|g2−g4 |

) '+1+^2−^4
2 −X2

(
1+|g3−g4 |

) '+1+^3−^4
2 −X2

·
∫ g2

b3=g3

(
1+g2−b3

) −1−03−^2
2

(
1+b3−g3

) −1−03−^3
2 3b3 3g. (6.5.9)

The change of variables

b3 ↦→ b3 + g3, )9 = g9 − g9+1 (1 ≤ 9 ≤ 3)

applied to (6.5.9) then gives

���?12, (X1 , X2)
) ,' (H;−03, ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X2

∭
0≤ |)1 |,)2 , |)3 | ≤) 1+Y

·
(
1+|)1 |

) '+1+^2−^1
2 −X1

(
1+|)1+)2 |

) '+1+^3−^1
2 −X1

(
1+|)1+)2+)3 |

) '+1+^4−^1
2 −X1

(
1+)2

) 2+'
2

·
(
1+|)2+)3 |

) '+1+^2−^4
2 −X2

(
1+|)3 |

) '+1+^3−^4
2 −X2

·
∫ )2

b3=0

(
1+)2−b3

) −1−03−^2
2

(
1+b3

) −1−03−^3
2 3b3 3)1 3)2 3)3. (6.5.10)
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Now Lemma A.1 and the fact that ^3 = 0 (see also (6.5.8)) tell us that∫ )2

b3=0

(
1 + )2 − b3

) −1−03−^2
2

(
1 + b3

) −1−03−^3
2 3b3

≪ (1 + )2)−min
{

1+03+^2
2 ,

1+03+^3
2 , 03+

^2+^3
2

}
+Y

= (1 + )2)−
1+03+^2

2 + 1
2 max{0, ^2 , 1−03 }+Y . (6.5.11)

But
^2 = −02 + 2X2 ≤ 1 − 2A2 − Y + 2(A2 − 1) = −1 − Y < 0,

and
−2A3 + Y ≤ 1 − 03 ≤ 2 − 2A3 − Y;

from this information, it follows that

max{0, ^2, 1 − 03} ≤ 2XA3 ,0.

So by (6.5.11),∫ )2

b3=0

(
1 + )2 − b3

) −1−03−^2
2

(
1 + b3

) −1−03−^3
2 3b3 ≪ (1 + )2)−

1+03+^2
2 +XA3 ,0+Y . (6.5.12)

Then (6.5.10) gives

���?12, (X1 , X2)
) ,' (H;−03, ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X2

∭
0≤ |)1 |,)2 , |)3 | ≤) 1+Y

(1+|)1 |)
'+1+^2−^1

2 −X1

·
(
1+)2

) '+1−03−^2
2 +XA3 ,0

+Y
(1+|)1+)2 |)

'+1+^3−^1
2 −X1 (1+|)1+)2+)3 |)

'+1+^4−^1
2 −X1

·
(
1+|)2+)3 |

) '+1+^2−^4
2 −X2

(
1+|)3 |

) '+1+^3−^4
2 −X2 3)1 3)2 3)3. (6.5.13)

It’s straightforward to estimate the above integral, using the facts that, on the indicated domains of
integration,

)1, )2, )3 ≪ )1+Y ,

and the length of each domain of integration is also ≪ )1+Y . We thereby find that���?12, (X1 , X2)
) ,' (H;−03, ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+6+X1+X2+XA3 ,0−01−02−
03
2 .

But we’re assuming that −03 ≤ 1 − 2A3, and

X 9 − 0 9 ≤ X 9 + 1 − 2A 9 = (X 9 + 1 − A 9 ) − A 9 ≤ −A 9 for 9 = 1, 2.

So our above estimate reads���?12, (X1 , X2)
) ,' (H;−03, ^)

��� ≪H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+ 13
2 +XA3 ,0−A1−A2−A3 , (6.5.14)

which gives us a bound of the desired magnitude of ?12, (X1 , X2)
) ,' (H;−03, ^) in (6.5.6).

Step 2: Bounding the residue terms

Our next step is to estimate the residues in (6.5.6). Recall: these are the residues at the poles that one
crosses in moving the lines of integration in (6.5.2), to transform it into (6.5.7).
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We first locate these poles.

Lemma 6.5.15. Suppose the lines of integration, in (6.5.2), are shifted from Re(U1, U2, U3) = (0, 0, 0)
to Re(U1, U2, U3) = (01 − 2X1,−02 + 2X2, 0). Then:

(a) No poles are crossed in the U1 variable.

(b) For a fixed B3, any pole crossed in the U2 variable belongs to the set

{B3 + 2X3 | X3 ∈ Z≥0, max{0, A3 − (A2 − X2)} ≤ X3 ≤ A3} . (6.5.16)

Proof. First we consider the factors

Γ
( 2+'+U9−U:

4

)
(1 ≤ 9 ≠ : ≤ 4),

in the integrand of (6.5.7). If ' is sufficiently large, then no poles of these factors will be crossed in
moving our lines of integration in U1 and U2.

Nor do any of the terms of the form

Γ( U:−U9

2 − X=)
Γ( U9−U:

2 )Γ( U:−U9

2 )

give rise to any poles. Indeed, if the numerator of this term has a pole, then
U:−U9

2 − X= is a nonpositive
integer, whence

U:−U9

2 ∈ Z, so this numerator pole will be cancelled by a pole from either Γ( U9−U:

2 ) or
Γ( U:−U9

2 ) in the denominator.
The only factors remaining to consider are the factors

Γ( B3−U2
2 ) and Γ( B3−U3

2 ),

and since we are not shifting the line of integration in U3, we need only examine the former of these
factors.

In particular, part (a) of our lemma is proved.
Regarding Γ( B3−U2

2 ): for fixed B3, this factor has poles, as a function of U2, whenever

U2 = B3 + 2X3 (X3 ∈ Z≥0). (6.5.17)

But for such an U2 to lie between the initial line of integration ReU2 = 0 and the terminal line
ReU2 = −02 + 2X2, we must have

−02 + 2X2 ≤ ReU2 = Re (B3 + 2X3) = −03 + 2X3 ≤ 0. (6.5.18)

But

−03 + 2X3 ≥ −02 + 2X2 =⇒ X3 ≥ 03 − 02

2
+ X2 ≥ A3 − A2 + X2 − 1 + Y,

the last inequality because 2A 9 − 1 + Y ≤ 0 9 ≤ 2A 9 + 1 − Y. Since X3 is an integer, this implies
X3 ≥ A3 − A2 + X2. On the other hand,

− 03 + 2X3 ≤ 0 =⇒ X3 ≤ 03

2
≤ A3 +

1

2
− Y, (6.5.19)

so that X3 ≤ A3. So part (b) of our lemma is proved. �

To complete our proof of Proposition 6.5.4, then, we need only show that the residue at each of the
above poles in the variable U2 is sufficiently small.
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For ease of notation, let us denote such a pole by Û2, for some fixed X3 as described in the above
lemma. We also write Û4 := −U1 − Û2 − U3, and Û := (U1, Û2, U3, Û4). Then by (6.5.2) and (6.5.7), the
residue at Û2 has the following form:

Res
U2=Û2

(
?

12, (X1 , X2)
) ,' (H;−03, ^)

)

=
(−1) X3

X3!

∬
Re(U1)=01−2X1

Re(U3)=0

4
U2

1
+Û2

2
+U2

3
+Û2

4
2) 2

∫
Re(B3)=−03

H
3
2+U1+2X1

1 H
2−Û2−U3+2X2
2 H

3
2−B3

3

·
Γ( 2+'+U1−Û2

4 )Γ( 2+'+Û2−U1
4 )Γ( Û2−U1

2 − X1)
Γ( U1−Û2

2 )Γ( Û2−U1
2 )

Γ( 2+'+Û2−U3
4 )Γ( 2+'+U3−Û2

4 )Γ( B3−U3
2 )

Γ( Û2−U3
2 )Γ( U3−Û2

2 )

·
Γ( 2+'+U1−U3

4 )Γ( 2+'+U3−U1
4 )Γ( U3−U1

2 − X1)
Γ( U1−U3

2 )Γ( U3−U1
2 )

Γ( 2+'+Û2−Û4
4 )Γ( 2+'+Û4−Û2

4 )Γ( Û2−Û4
2 − X2)

Γ( Û2−Û4
2 )Γ( Û4−Û2

2 )

·
Γ( 2+'+U1−Û4

4 )Γ( 2+'+Û4−U1
4 )Γ( Û4−U1

2 − X1)
Γ( U1−Û4

2 )Γ( Û4−U1
2 )

Γ( 2+'+U3−Û4
4 )Γ( 2+'+Û4−U3

4 )Γ( U3−Û4
2 − X2)

Γ( U3−Û4
2 )Γ( Û4−U3

2 )
· F' (Û) 5X1 , X2 (B3, Û) 3B3 3U3 3U1. (6.5.20)

We want our bound on (6.5.20) to contain the factor H3/2+01

1 H
2+02
2 H

3/2+03

3 , as usual. To effect this, we will
move the line of integration in U3, in (6.5.20), from ReU3 = 0 to Re(2− Û2 − U3 + 2X2) = 2 + 02, which
is to say, to the line

Re(U3) = −02 − Û2 + 2X2 = −02 + 03 + 2X2 − 2X3. (6.5.21)

The crucial observation here is that, in moving this line, we do not cross any poles. This is by arguments
very similar to those employed in the proof of the above lemma. The only additional argument we need to
make here regards the term Γ( B3−U3

2 ), in (6.5.20). But if this factor contributes a pole, then B3 −U3 ∈ 2Z;
since B3 − Û2 = −2X3 is also in 2Z, we conclude that U3 − Û2 ∈ 2Z, whence the pole from either the
term Γ( Û2−U3

2 ) or the term Γ( U3−Û2
2 ) in the denominator of (6.5.20) cancels the pole from Γ( B3−U3

2 ).
So in estimating (6.5.20), we may replace the line of integration Re(U3) = 0 with the line given by

(6.5.21). The estimation is then similar to that of (6.5.7).
Specifically: as was the case with (6.5.7), the only grouped combination of Gamma functions in

(6.5.20) that contributes to the exponential factor in Stirling’s formula is the second one. In the present
case, since Im Û2 = Im B3 = b3, these Gamma functions contribute a factor of

4−
c
2 ( |b3−g3 |/2−|b3−g3 |/2) = 40.

In other words, our exponential zero set entails no restrictions on our integration in b3 = Im(B3).
We now write

(_1, _2, _3, _4) := (ReU1,Re Û2,ReU3,Re Û4)
= (01 − 2X1,−03 + 2X3,−02 + 03 + 2X2 − 2X3,−01 + 02 + 2X1 − 2X2). (6.5.22)
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Then (6.5.20) yields

Res
U2=Û2

(
?

12, (X1 , X2)
) ,' (H;−03, ^)

)
≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X2

·
∭

g1 ,g3 , b3∈R

4
U2

1
+Û2

2
+U2

3
+Û2

4
2) 2

(
1 + |g1 − b3 |

) '+1+_2−_1
2 −X1

(
1 + |g1 − g3 |

) '+1+_3−_1
2 −X1

·
(
1 + |2g1 + g3 + b3 |

) '+1+_4−_1
2 −X1

(
1 + |b3 − g3 |

) 1+'−03−_3
2

(
1 + |2b3 + g1 + g3 |

) '+1+_2−_4
2 −X2

·
(
1 + |2g3 + g1 + b3 |

) '+1+_3−_4
2 −X2 3b3 3g3 3g1. (6.5.23)

The factor

4
U2

1
+Û2

2
+U2

3
+Û2

4
2) 2

in (6.5.23) is of exponential decay in g1 if |g1 | ≫ )1+Y , and similarly for the variables g3 and b3. So for
our estimate, we may restrict attention to the domain where |g1 |, |g3 |, |b3 | ≪ )1+Y . On such a domain,
each of the other factors in our integrand is ≪ )2+Y , where 2 is the exponent on that factor. So (6.5.23)
implies

Res
U2=Û2

(
?

12, (X1 , X2)
) ,' (H;−03, ^)

)
≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X2

·
∭

|g1 |, |g3 |, |b3 |≪) 1+Y

) Y+4'+3+ −03−3_1+2_2+_3−_4
2 −3X1−2X2 3b3 3g3 3g1

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+6−01−02−03+X1+X2+X3 . (6.5.24)

By (6.5.19), we have X3 − 03 ≤ 1
2 − A3; also, X 9 − 0 9 ≤ A 9 − 1 + 1− 2A 9 = −A 9 for 9 = 1, 2. Then (6.5.24)

yields

Res
U2=Û2

(
?

12, (X1 , X2)
) ,' (H;−03, ^)

)
≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+ 13
2 −A1−A2−A3 .

In other words, the sum of the residue terms in (6.5.6) also has a bound of the magnitude stipulated in
Proposition 6.5.4. This completes the proof of that proposition. �

We now turn to our estimate of the term (6.5.3). The analysis here is similar to that of (6.5.2), but
different enough that some detail is merited.

We have:

Proposition 6.5.25. Let A1, A3 ≥ 1, A2 ≥ 0 be integers, and 0 < Y < 1. Suppose 01, 02, 03 satisfy the

hypotheses of Theorem 4.0.3. If 0 ≤ X 9 ≤ A 9 − 1 for 9 = 1, 3, then

���?13, (X1 , X3)
) ,' (H;−02)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+ 13
2 +XA2 ,0−A1−A2−A3 . (6.5.26)

Proof. To obtain the desired bound on ?13, (X1 , X3)
) ,' (H;−03), we will need to shift the lines of integration

in both the U1 and U2 variables, so that the exponents of H1 and H3 become 3/2 + 01 and 3/2 + 03,
respectively. In doing so, we will pick up residues, whence

?
13, (X1 , X3)
) ,' (H;−02) = ?13, (X1 , X3)

) ,' (H;−02, ^) +
∑

Residues, (6.5.27)
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where

?
13, (X1 , X3)
) ,' (H;−02, ^) :=

∭
Re(U)=^

4
U2

1
+···+U2

4
2) 2

∫
Re(B2)=−02

H
3
2+U1+2X1

1 H
2−B2
2 H

3
2−U2+2X3

3

· F' (U) 6X1 , X3 (B2, U) ·
Γ( 2+'+U1−U2

4 )Γ( 2+'+U2−U1
4 )Γ( U2−U1

2 − X1)
Γ( U1−U2

2 )Γ( U2−U1
2 )

·
Γ( 2+'+U2−U3

4 )Γ( 2+'+U3−U2
4 )Γ( U2−U3

2 − X3)
Γ( U2−U3

2 )Γ( U3−U2
2 )

Γ( 2+'+U1−U3
4 )Γ( 2+'+U3−U1

4 )Γ( U3−U1
2 − X1)

Γ( U1−U3
2 )Γ( U3−U1

2 )

·
Γ( 2+'+Û2−U4

4 )Γ( 2+'+U4−Û2
4 )Γ( Û2−U4

2 − X3)
Γ( Û2−U4

2 )Γ( U4−Û2
2 )

Γ( 2+'+U1−U4
4 )Γ( 2+'+U4−U1

4 )Γ( U4−U1
2 − X1)

Γ( U1−U4
2 )Γ( U4−U1

2 )

·
Γ( 2+'+U4−U3

4 )Γ( 2+'+U3−U4
4 )Γ( B2+U1+U3

2 )Γ( B2+U1+U4
2 )

Γ( U4−U3
2 )Γ( U3−U4

2 )
3B2 3U, (6.5.28)

and the residues that appear depend on the particular choice of ^ = (^1, ^2, ^3). As before, we’ve grouped
the Gamma factors in an auspicious manner.

To obtain the desired exponents on H1 and H3, in (6.5.28), we will choose ^ = (^1, ^2, ^3) ∈ R3 such
that

Re(U1 + 2X1) = ^1 + 2X1 = 01, Re(−U2 + 2X3) = −^2 + 2X3 = 03,

by putting

^ = (^1, ^2, ^3) = (01 − 2X1,−03 + 2X3, 0) (and ^4 = −^1 − ^2 − ^3). (6.5.29)

For this value of ^, we will obtain an estimate of the desired magnitude for ?13, (X1 , X3)
) ,' (H;−02, ^).

Subsequently we will, as before, show that the residues in (6.5.27) are small.

Step 1: Bounding the shifted integral ?
13, (X1 , X2)
) ,'

Here we estimate the term ?
13, (X1 , X3)
) ,' (H;−02, ^), with ^ = (^1, ^2, ^3) as in (6.5.29).

Only the last grouped combination of Gamma functions, in (6.5.28), contributes to the exponential
factor in Stirling’s formula, for the same reasons as we discussed in the proof of Proposition 6.5.4. In
the present case, this last term contributes a factor of

4−
c
2 ( |g4−g3 |/4+|g3−g4 |/4+|b2+g1+g3 |/2+|b2+g1+g4 |/2−|g4−g3 |/2−|g3−g4 |/2) = 4−

c
4 ( |b2+g1+g3 |+ |b2+g1g4 |− |g3−g4 |) .

As the integrand in (6.5.28) is invariant under U3 ↔ U4, we may assume that g3 ≥ g4, so that the
exponential factor in question equals

4−
c
4 ( |b2+g1+g3 |+ |b2+g1+g4 |−g3+g4) .

Then the corresponding exponential zero set is seen to be

R := {(−02 + 8b2) ∈ C| − g1 − g3 ≤ b2 ≤ −g1 − g4} .
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We replace the Gamma factors in (6.5.28) with their corresponding polynomial terms; we get

���?13, (X1 , X3)
) ,' (H;−02, ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X3

∭
|g1 |, |g2 |, |g3 | ≤) 1+Y

0≤g1+g2+2g3

·
(
1+|g1−g2 |

) '+1+^2−^1
2 −X1

(
1+|g1−g3 |

) '+1+^3−^1
2 −X1

(
1+|g1−g4 |

) '+1+^4−^1
2 −X1

·
(
1+|g2−g3 |

) '+1+^2−^3
2 −X3

(
1+|g2−g4 |

) '+1+^2−^4
2 −X3

(
1+g3−g4

) 2+'
2

·
∫ −g1−g4

b2=−g1−g3

(
1+b2+g1+g3

) −1−02+^1+^3
2

(
1−( b2+g1+g4)

) −1−02+^1+^4
2 3b2 3g. (6.5.30)

The change of variables

b2 ↦→ b2 − g1 − g3, )9 = g9 − g9+1 (1 ≤ 9 ≤ 3)

applied to (6.5.30) then gives

���?13, (X1 , X3)
) ,' (H;−02, ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X3

∭
0≤ |)1 |, |)2 |,)3≤) 1+Y

·
(
1+|)1 |

) '+1+^2−^1
2 −X1

(
1+|)1+)2 |

) '+1+^3−^1
2 −X1

(
1+|)1+)2+)3 |

) '+1+^4−^1
2 −X1

(
1+|)2 |

) '+1+^2−^3
2 −X3

·
(
1+|)2+)3 |

) '+1+^2−^4
2 −X3

(
1+)3

) 2+'
2

·
∫ )3

b2=0

(
1 + b2

) −1−02+^1+^3
2

(
1+)3−b2

) −1−02+^1+^4
2 3b2 3)1 3)2 3)3. (6.5.31)

Now by Lemma A.1, we find that

∫ )3

b2=0

(
1 + b2

) −1−02+^1+^3
2

(
1 + )3 − b2

) −1−02+^1+^4
2 3b2

≪ (1 + )3)−min
{

1+02−^1−^3
2 ,

1+02−^1−^4
2 , 02−

2^1+^3+^4
2

}
+Y

= (1 + )3)
−1−02+2^1+^3+^4

2 + 1
2 max{−^1−^4 , −^1−^3 , 1−02 }+Y . (6.5.32)

Further, it follows from (6.5.29) that

−^1 − ^4, −^1 − ^3 ≤ 0,

and that 1 − 02 < 0 unless A2 = 0, in which case 1 − 02 < 2. In either case, 1 − 02 < 2XA2 ,0. So (6.5.31)
and (6.5.32) give

���?13, (X1 , X3)
) ,' (H;−02, ^)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X3

∭
0≤ |)1 |, |)2 |,)3≤) 1+Y

·
(
1+|)1 |

) '+1+^2−^1
2 −X1

(
1+|)1+)2 |

) '+1+^3−^1
2 −X1

(
1+|)1+)2+)3 |

) '+1+^4−^1
2 −X1

(
1+|)2 |

) '+1+^2−^3
2 −X3

·
(
1+|)2+)3 |

) '+1+^2−^4
2 −X3

(
1+)3

) '+1−02+2^1+^3+^4
2 +XA2 ,0

+Y
3)1 3)2 3)3. (6.5.33)

Then, because

)1, )2, )3 ≪ )1+Y

https://doi.org/10.1017/fms.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.39


Forum of Mathematics, Sigma 61

on the indicated domains of integration, and because the length of each domain of integration is also
≪ )1+Y , we see that���?13, (X1 , X3)

) ,' (H;−02, ^)
��� ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+6+X1+X3+XA2 ,0−01−
02
2 −03 .

But our assumptions on the 0 9s and X 9s imply that X 9 − 0 9 ≤ −A 9 for 9 = 1, 3 and − 02
2 ≤ 1

2 − A2, so we
conclude that ���?13, (X1 , X3)

) ,' (H;−02, ^)
��� ≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+ 13
2 +XA2 ,0−A1−A2−A3 , (6.5.34)

which gives us a bound of the desired magnitude in (6.5.27).

Step 2: Bounding the residue terms

Next, we estimate the residues in (6.5.27), which arise from moving the lines of integration in (6.5.3),
to get (6.5.28).

The locations of the poles in question are as follows.

Lemma 6.5.35. Suppose the lines of integration, in (6.5.3), are shifted from Re(U1, U2, U3) = (0, 0, 0)
to Re(U1, U2, U3) = (01 − 2X1,−03 + 2X3, 0). Then:

(a) For a fixed B2 and U3, any pole crossed in the U1 variable belongs to the set

{−B2 − U3 − 2X2 | X2 ∈ Z≥0, max{0, A2 − (A1 − X1)} ≤ X2 ≤ A2} . (6.5.36)

(b) For a fixed B2 and U3, any pole crossed in the U2 variable belongs to the set

{B2 − U3 + 2X2 | X2 ∈ Z≥0, max{0, A2 − (A3 − X3)} ≤ X2 ≤ A2} . (6.5.37)

Proof. As before, no poles will arise from the factors

Γ
(

2+'+U9−U:

4

)
(1 ≤ 9 ≠ : ≤ 4)

in (6.5.28), if ' is sufficiently large.
Nor will any of the terms of the form

Γ( U:−U9

2 − X=)
Γ( U9−U:

2 )Γ( U:−U9

2 )

give rise to any poles, for the same reasons as before. The only terms remaining to consider are the factors

Γ( B2+U1+U3
2 ) and Γ( B2+U1+U4

2 ) = Γ( B2−U2−U3
2 ).

The former of these factors will give rise to poles when we shift the line of integration in U1; the latter
will do so when we shift the line in U2.

Consider the first of these factors, Γ( B2+U1+U3
2 ). For fixed B2 and U3, this factor has poles, as a function

of U1, whenever

U1 = −B2 − U3 − 2X2 (X2 ∈ Z≥0). (6.5.38)

But for such an U1 to lie between the initial line of integration ReU1 = 0 and the terminal line
ReU1 = 01 − 2X1, we must have

0 ≤ ReU1 = Re (−B2 − U3 − 2X2) = 02 − 2X2 ≤ 01 − 2X1. (6.5.39)
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But

02 − 2X2 ≤ 01 − 2X1 =⇒ X2 ≥ 02 − 01

2
+ X1 ≥ A2 − A1 + X1 − 1 + Y.

As X2 is a nonnegative integer, we therefore have X2 ≥ max{0, A2 − A1 + X1}. On the other hand,

02 − 2X2 ≥ 0 =⇒ X2 ≤ 02

2
≤ A2 +

1

2
− Y, (6.5.40)

so that X2 ≤ A2. So part (a) of our lemma is proved.
Part (b) is similar: as a function of U2, Γ( B2−U2−U3

2 ) has poles, for fixed B2 and U3, whenever

U2 = B2 − U3 + 2X2 (X2 ∈ Z≥0). (6.5.41)

But for such an U2 to lie between ReU2 = 0 and ReU2 = −03 + 2X3, we must have

−03 + 2X3 ≤ ReU2 = Re (B2 − U3 + 2X2) = −02 + 2X2 ≤ 0. (6.5.42)

We conclude from (6.5.42) and the fact that X3 is a nonnegative integer that

max{0, A2 − (A3 − X3)} ≤ X2 ≤ A2,

so part (b) of our lemma is proved. �

Therefore, to complete our proof of Proposition 6.5.25, it will suffice to show that the residue at each
of the above poles in U1 or U2 is sufficiently small.

We will consider the poles in U1 only; those in U2 may be treated in a very similar fashion. Let us,
then, denote such a pole in U1 by Ũ1, for some fixed X2 and U3 as described in part (a) of the above
lemma. We also write Ũ4 := −Ũ1 − U2 − U3, and Ũ := (Ũ1, U2, U3, Ũ4). Then by (6.5.3) and (6.5.28), the
residue at Ũ1 has the following form:

Res
U1=Ũ1

(
?

13, (X1 , X3)
) ,' (H;−02, ^)

)

=
(−1) X2

X2!

∭
Re(U2)=−03+2X3

Re(U3)=0

4
Ũ2

1
+U2

2
+U2

3
+Ũ2

4
2) 2

∫
Re(B2)=−02

H
3
2−B2−U3−2X2+2X1

1 H
2−B2
2 H

3
2−U2+2X3

3

·
Γ( 2+'+Ũ1−U2

4 )Γ( 2+'+U2−Ũ1
4 )Γ( U2−Ũ1

2 − X1)
Γ( Ũ1−U2

2 )Γ( U2−Ũ1
2 )

Γ( 2+'+U2−U3
4 )Γ( 2+'+U3−U2

4 )Γ( U2−U3
2 − X3)

Γ( U2−U3
2 )Γ( U3−U2

2 )

·
Γ( 2+'+Ũ1−U3

4 )Γ( 2+'+U3−Ũ1
4 )Γ( U3−Ũ1

2 − X1)
Γ( Ũ1−U3

2 )Γ( U3−Ũ1
2 )

Γ( 2+'+Û2−Ũ4
4 )Γ( 2+'+Ũ4−Û2

4 )Γ( Û2−Ũ4
2 − X3)

Γ( Û2−Ũ4
2 )Γ( Ũ4−Û2

2 )

·
Γ( 2+'+Ũ1−Ũ4

4 )Γ( 2+'+Ũ4−Ũ1
4 )Γ( Ũ4−Ũ1

2 − X1)
Γ( Ũ1−Ũ4

2 )Γ( Ũ4−Ũ1
2 )

Γ( 2+'+Ũ4−U3
4 )Γ( 2+'+U3−Ũ4

4 )Γ( B2−U2−U3
2 )

Γ( Ũ4−U3
2 )Γ( U3−Ũ4

2 )
· F' (U) 6X1 , X3 (B2, Ũ) 3B2 3U3 3U2. (6.5.43)

In order that our bound on (6.5.43) contain the factor H3/2+01

1 H
2+02
2 H

3/2+03

3 , we now move the line of
integration in U3, in (6.5.43), from ReU3 = 0 to Re(3/2− B2−U3−2X2+2X1) = 3/2+01, or equivalently

Re(U3) = −01 + 02 + 2X1 − 2X2. (6.5.44)

In moving this line, we do not cross any poles. This is by the same kinds of arguments as were used
above. In particular we note that, if the factor Γ( B2−U2−U3

2 ) has a pole, then B2 − U2 − U3 ∈ 2Z; since
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B2 + Ũ1 + U3 = B2 − U2 − Ũ4 = −2X2 is also in 2Z (by assumption), we conclude that U3 − Ũ4 ∈ 2Z,
whence the pole from either the term Γ( Ũ4−U3

2 ) or the term Γ( U3−Ũ4
2 ) in the denominator of (6.5.43)

cancels the pole from Γ( B2−U2−U3
2 ).

So in estimating (6.5.43), we may replace the line of integration Re(U3) = 0 with the line given
by (6.5.44). The estimation then proceeds as follows. First, the only grouped combination of Gamma
functions in (6.5.43) that contributes to the exponential factor in Stirling’s formula is the last one. Since

Im Ũ4 = Im (−Ũ1 − U2 − U3) = Im (B2 − U2) = b2 − g2,

these Gamma functions contribute a factor of

4−
c
2 ( |b2−g2−g3 |/2−|b2−g2−g3 |/2) = 40.

So our exponential zero set here places no restrictions on our domain of integration in b2 = Im(B2).
Next, we write

(_1, _2, _3, _4) := (Re Ũ1,ReU2,ReU3,Re Ũ4)
= (01 − 2X1,−03 + 2X3,−01 + 02 + 2X1 − 2X2,−02 + 03 + 2X2 − 2X3). (6.5.45)

Then (6.5.43) yields

Res
U1=Ũ1

(
?

13, (X1 , X3)
) ,' (H;−02, ^)

)
≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X3

·
∭

g2 ,g3 , b2∈R

4
Ũ2

1
+U2

2
+U2

3
+Ũ2

4
2) 2

(
1+|g2+g3+b2 |

) '+1+_2−_1
2 −X1

(
1+|2g3+b2 |

) '+1+_3−_1
2 −X1

·
(
1+|2b2−g2+g3 |

) '+1+_4−_1
2 −X1

(
1+|g3−g2 |

) '+1+_2−_3
2 −X3

(
1+|2g2−b2 |

) '+1+_2−_4
2 −X3

·
(
1+|b2−g2−g3 |

) '+1−02−_2−_3
2 3b2 3g3 3g2. (6.5.46)

The factor

4
Ũ2

1
+U2

2
+U2

3
+Ũ2

4
2) 2

in (6.5.46) is of exponential decay in g2 if |g2 | ≫ )1+Y , and similarly for the variables g3 and b2. So
for our estimate, we need only consider the domain where |g2 |, |g3 |, |b2 | ≪ )1+Y . On this domain, each
of the other factors in the integrand of (6.5.46) is ≪ )2+Y , where 2 is the exponent on that factor. So
(6.5.46) implies

Res
U1=Ũ1

(
?

13, (X1 , X3)
) ,' (H;−02, ^)

)
≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+2X1+X3

·
∭

|g2 |, |g3 |, |b2 |≪) 1+Y

) Y+3'+3+ −02−3_1+2_2−_3
2 −3X1−2X3 3b2 3g3 3g2

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+6−01−02−03+X1+X2+X3 .

So, by (6.5.40) and the assumptions X 9 − 0 9 ≤ A 9 − 1 + 1 − 2A 9 ≤ −A 9 for 9 = 1, 3, we have

Res
U1=Ũ1

(
?

13, (X1 , X3)
) ,' (H;−02, ^)

)
≪ H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+ 13
2 −A1−A2−A3 .

So the sum of the residue terms in (6.5.27) also has a bound of the magnitude described in Proposition
6.5.25, and the proposition is proved. �
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6.6. Bounds for the triple residue terms

There is only one type of triple residue term to consider, namely ?123, (X1 , X2 , X3)
) ,' (H). This term may be

obtained by taking the residue, at B3 = U2 − 2X3, of the double residue term ?
12, (X1 , X2)
) ,' (H;−03) defined

by (6.5.2). Thus

?
123, (X1 , X2 , X3)
) ,' (H) =

∭
Re(U)=0

4
U2

1
+···+U2

4
2) 2 H

3
2+U1+2X1

1 H
2+U1+U4+2X2
2 H

3
2−U2+2X3

3 F' (U) Γ' (U)

· ℎX1 , X2 , X3 (U)Γ(
U2−U1

2 − X1)Γ( U3−U1
2 − X1)Γ( U4−U1

2 − X1)
· Γ( U2−U4

2 − X2)Γ( U3−U4
2 − X2)Γ( U2−U3

2 − X3) 3U, (6.6.1)

where ℎX1 , X2 , X3 is a polynomial of degree at most 2X1 + X2.

Proposition 6.6.2. Let A1, A2, A3 be positive integers, and 0 < Y < 1. Suppose 01, 02, 03 satisfy the

hypotheses of Theorem 4.0.3. If 0 ≤ X 9 ≤ A 9 − 1 for 1 ≤ 9 ≤ 3, then

���?123, (X1 , X2 , X3)
) ,' (H)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+6−A1−A2−A3 . (6.6.3)

Proof. To obtain the desired bound on ?123, (X1 , X2 , X3)
) ,' (H), we shift the lines of integration in the U 9s to

Re (U) = ^, where ^ = (^1, ^2, ^3) is such that the resulting exponents of H1, H2, and H3 have real parts
as indicated in the proposition. We do so by choosing

^ = (01 − 2X1,−03 + 2X3,−02 + 03 + 2X2 − 2X3) (and ^4 = −^1 − ^2 − ^3). (6.6.4)

Then

?
123, (X1 , X2 , X3)
) ,' (H) =

∭
Re(U)=^

4
U2

1
+···+U2

4
2) 2 H

3
2+U1+2X1

1 H
2+U1+U4+2X2
2 H

3
2−U2+2X3

3 F' (U) ℎX1 , X2 , X3 (U)

·
Γ( 2+'+U1−U2

4 )Γ( 2+'+U2−U1
4 )Γ( U2−U1

2 − X1)
Γ( U1−U2

2 )Γ( U2−U1
2 )

Γ( 2+'+U2−U3
4 )Γ( 2+'+U3−U2

4 )Γ( U2−U3
2 − X3)

Γ( U2−U3
2 )Γ( U3−U2

2 )

·
Γ( 2+'+U1−U3

4 )Γ( 2+'+U3−U1
4 )Γ( U3−U1

2 − X1)
Γ( U1−U3

2 )Γ( U3−U1
2 )

Γ( 2+'+U2−U4
4 )Γ( 2+'+U4−U2

4 )Γ( U2−U4
2 − X2)

Γ( U2−U4
2 )Γ( U4−U2

2 )

·
Γ( 2+'+U1−U4

4 )Γ( 2+'+U4−U1
4 )Γ( U4−U1

2 − X1)
Γ( U1−U4

2 )Γ( U4−U1
2 )

Γ( 2+'+U3−U4
4 )Γ( 2+'+U4−U3

4 )Γ( U3−U4
2 − X2)

Γ( U3−U4
2 )Γ( U4−U3

2 )
3U.

(6.6.5)

Notice that, in this case, there are no poles crossed in moving the lines of integration, and therefore no
residue terms to consider. This is for reasons encountered in prior situations: if ' is large enough, then
none of the terms

Γ( 2+'+U:−U9

4 )Γ( 2+'+U9−U:

4 )

in (6.6.5) will give rise to any poles; moreover, any pole in the numerator of a factor

Γ( U:−U9

2 − X=)
Γ( U9−U:

2 )Γ( U:−U9

2 )

will be canceled by a pole in the denominator.
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So we need only bound the right-hand side of (6.6.5), and we do so in the usual way. We get

���?123, (X1 , X2 , X3)
) ,' (H)

��� ≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+'+2X1+X2

·
∭

|g1 |, |g2 |, |g3 | ≤) 1+Y

(
1+|g1−g2 |

) '+1+^2−^1
2 −X1

(
1+|g1−g3 |

) '+1+^3−^1
2 −X1

(
1+|g1−g4 |

) '+1+^4−^1
2 −X1

·
(
1+g2−g3

) '+1+^2−^3
2 −X3

(
1+|g2−g4 |

) '+1+^2−^4
2 −X2

(
1+|g3−g4 |

) '+1+^3−^4
2 −X2 3g

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+2X1+X2

∭
|g1 |, |g2 |, |g3 | ≤) 1+Y

)3'+3+ −3^1+3^2+^3−^4
2 −3X1−2X2−X3 3g

≪ H
3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+6−01−02−03+X1+X2+X3 .

But we’re assuming 1 ≤ X 9 ≤ A 9 − 1 and −0 9 ≤ 1 − 2A 9 , whence X 9 − 0 9 ≤ A 9 , for 1 ≤ 9 ≤ 3. It follows
that ���?123, (X1 , X2 , X3)

) ,' (H)
��� ≪H

3
2+01

1 H
2+02
2 H

3
2+03

3 ) Y+4'+6−A1−A2−A3 ,

which proves our proposition. �

7. Bounding the contribution from the continuous spectrum

Let 2 ≤ = ≤ 4. Assuming that U = (U1, . . . , U=) ∈ C=, we define

?
♯, (=)
) ,' (U) :=




4
U2

1
+···+U2

=

2) 2

∏
1≤ 9≠: ≤=

Γ
(

2+'+U9−U:

4

)
if = = 2, 3,

4
U2

1
+···+U2

=

2) 2 F' (U)
∏

1≤ 9≠: ≤=
Γ

(
2+'+U9−U:

4

)
if = = 4,

(7.0.1)

where F' (U) is as in (3.1.2). In the case of = = 4, we will sometimes drop = from the notation.
Suppose that q is a Maass cusp form for GL(=) with Langlands parameterU(q) := U = (U1, . . . , U=) ∈

C=. Then we define

ℎ
(=)
) ,' (q) :=

��?♯, (=)) ,' (U)
��2

∏
1≤ 9≠:≤=

Γ
(

1+U9−U:

2

) . (7.0.2)

Theorem 7.0.3 (Weyl Law for GL(2) and GL(3)). Suppose that = = 2 or = = 3. Let {q1, q2, . . .} be

an orthogonal basis of Maass cusp forms for GL(=) ordered by eigenvalue. Then there exists a constant

2= such that

∑
9

ℎ
(=)
) ,' (q 9 )

!(1,Ad q 9 )
∼ 2= )

=(=−1)'
2 + (=+2) (=−1)

2 . (7.0.4)

Remark 7.0.5. In the case of = = 3 this is Theorem 1.3 of [GK13]. The case of = = 2 is well known, but
we remark that it can be proved by the same method as for GL(3) (see [Gol]). The point is that the main

term for the left-hand side of (7.0.4) is
��?♯, (=)) ,'

��2, which can be easily estimated using Stirling’s estimate
for the Gamma function.
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Suppose that 4 = =1 + · · · + =A is a partition of 4 and Φ = (q1, . . . , qA ), where, for 1 ≤ 9 ≤ A , q 9 is
a Maass cusp form for SL(= 9 ,Z) if = 9 > 1, while q 9 is the constant function (properly normalized) if
= 9 = 1. Let P = P=1 ,...,=A . Then we define

EP,Φ :=

∫
Re(B1)=0

· · ·
∫

Re(BA−1)=0

��P,Φ
(!, B) · ��P,Φ

(", B) ·
��?#

) ,'

(
U

P,Φ
(B)

) ��2 3B1 · · · 3BA−1,

and

EPMin :=

∫
Re(B1)=0

∫
Re(B2)=0

∫
Re(B3)=0

��PMin
(!, B) ��PMin

(", B) ·
���?#

) ,'

(
U

PMin
(B)

)���2 3B1 3B2 3B3.

Remark 7.0.6. In the above integrals, U
P,Φ

(B), U
PMin

(B) denote the Langlands parameters of the

Eisenstein series �P,Φ(6, B), �PMin (6, B), respectively. Also, ��P,Φ
(!, B), ��P,Φ

(", B) denote the !Cℎ

and " Cℎ Fourier coefficient of �P,Φ(6, B), and similarly for �PMin (6, B).

Thus, if we define

EP :=
∑
Φ

2!,",P · EP,Φ,

then the contribution to the Kuznetsov trace formula coming from the Eisenstein series (defined in
Section 3.7) is given by

E := 21EPMin + 22EP2,1,1 + 23EP2,2 + 24EP3,1 ,

for constants 21, 22, 23, 24 > 0.

Theorem 7.0.7. Suppose the Ramanujan Conjecture (at∞) for GL(=) with = ≤ 3: that is, the Langlands

parameters are all purely imaginary. Let ! = (ℓ, 1, 1) and " = (<, 1, 1). Then

|EPMin
| ≪Y (ℓ<) Y · )3+8'+Y , |EP2,1,1 | ≪Y (ℓ<) 7

64+Y · )2+8'+Y ,

|EP2,2 | ≪Y (ℓ<) 7
32+Y · )5+8'+Y , |EP3,1 | ≪Y (ℓ<) 2

5+Y · )6+8'+Y ,

as ) → ∞ for any fixed Y > 0.

Proof. We require the following standard notation for completed L-functions. Let

Z∗(F) = c− F
2 Γ

(F
2

)
Z (F) = Z∗ (1 − F), (F ∈ C).

For a Maass cusp form q on GL(2) with spectral parameter 1
2 + E, define the completed L-function

!∗ (B, q) associated with q by

!∗ (F, q) := c−FΓ
(F + E

2

)
Γ

(F − E
2

)
!(F, q) = !∗(1 − F, q), (F ∈ C).

If q1, q2 are Maass cusp forms on GL(2) with spectral parameters 1
2 + E and 1

2 + E′, respectively, then
the completed L-function for the Rankin-Selberg convolution !(F, q1 × q2) is given by

!∗ (F, q1 × q2) = c−2FΓ

(
F + E + E′

2

)
Γ

(
F − E + E′

2

)

· Γ
(
F + E − E′

2

)
Γ

(
F − E − E′

2

)
!(F, q1 × q2). (7.0.8)
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Table 1. Fourier coefficients of SL(4, Z) Langlands Eisenstein series..

Partition
Maass form Φ

spectral pars.

B variables of �P,Φ

U = Langlands pars.
First coefficient ��P,Φ

(
(1, 1, 1), B

)
(up

to a constant factor)
<Cℎ Hecke eigenvalue
_�P,Φ

(
(<, 1, 1), B

)

4 = 1+1+1+1

B = 1
4 + (B1, B2, B3, B4)

U1 = 3B1 + 2B2 + B3
U2 = −B1 + 2B2 + B3
U3 = −B1 − 2B2 + B3
U4 = −B1 − 2B2 − 3B3

( ∏
1≤ 9<:≤4

Z∗ (1 + U 9 − U: )
)−1

∑
21222324=<

2
U1
1 2

U2
2 2

U3
3 2

U4
4

4 = 2 + 1 + 1
q on GL(2)

1
2 + E

B =
(
1 + B1,− 1

2 + B2, B3
)

U1 = B1 + E
U2 = B1 − E
U3 = B2

U4 = −2B1 − B2

(
!(1,Ad q) 1

2

���Γ (
1
2 + E

)���
·Z∗ (1 + 2B1 + 2B2)
·!∗ (1 + B1 + B2, q)

·!∗ (1 + 3B1 + B2, q)
)−1

∑
212223=<

_q (21)2B1
1

· 2B2
2 2

−2B1−B2
3

4 = 2 + 2
Φ = (q1, q2)

on
GL(2) × GL(2)

1
2 + E, 1

2 + E′

B = (1 + B1, −1 − B1)
U1 = B1 + E
U2 = B1 − E
U3 = −B1 + E′
U4 = −B1 − E′

(
!(1,Ad q1)

1
2 !(1,Ad q2)

1
2

·
���Γ (

1
2 + E

)
Γ

(
1
2 + E′

)���
·!∗

(
1 + 2B1, q1 × q2

) )−1

∑
2122=<

_q1 (21)

·_q2 (22)
(
21
22

)B1

[-6pt]
4 = 3 + 1
q on GL(3)
1
3 + (E, E′)

B =
(

1
2 + B1,− 3

2 − 3B1
)

U1 = B1 + 2E + E′
U2 = B1 − E + E′
U3 = B1 − E − 2E′

U4 = −3B1

(
!(1,Ad q) 1

2 ·
���Γ (

1+3E
2

)���
·
���Γ (

1+3E′

2

)
Γ

(
1+3E+3E′

2

)���
·!∗(1 + 4B1, q)

)−1

∑
2122=<

_q (21, 1) 2B1
1 2

−3B1
2

Finally, for a Maass cusp form q on GL(3) with spectral parameter 1
3 + (E, E′) define the completed

L-function !∗ (F, q) associated with q by

!∗ (F, q) := c−
3F
2 Γ

(
F+E+2E′

2

)
Γ

(
F+E−E′

2

)
Γ

(
F−2E−E′

2

)
!(F, q) = !∗(1 − F, q).

Recall the adjoint L-function of a Maass cusp form q is defined by !(F,Ad q) := ! (F,q×q)
Z (F) .

Table 1 (see [GMW]) lists, for each partition, the Maass form Φ (with its associated spectral
parameters), the values of B-variables, Langlands parameters, and the Fourier-Whittaker coefficients of
the SL(4,Z) Eisenstein series �P,Φ.Note that �P1,1,1,1 ,Φ := �PMin .

Remark 7.0.9. The formulas given here for the first coefficient are valid when the form q or q 9 is a
Maass cusp form.

Following Table 1 of Fourier coefficients of SL(4,Z) Langlands Eisenstein series, we now list the
integrals arising in the contribution of the continuous spectrum decomposition of the inner product of
two Poincaré series given in Proposition 3.7.4. For the rest of the proof, and for each partition of 4, we
will give the Langlands parameter UP,Φ(B) := (U1, U2, U3, U4) for (P,Φ) and then use Theorem 7.0.3
to obtain the result.
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In each case below we will use the fact that for any 1 ≤ 9 , : ≤ 4 and Re(U 9 ) = Re(U: ) = 0,���Γ (
2+'+U9−U:

4

)���4���Γ (
1+U9−U:

2

)���2 ∼ 2
(
1 + |U 9 − U: |

)'
(7.0.10)

for some constant 2. This follows trivially from Stirling’s estimate.
We also will use the bound of Luo-Rudnick-Sarnak (see [LRS99]) for the <Cℎ-Fourier coefficient of

a GL(=) (= ≥ 2) Maass cusp form q:

_q (<, 1, . . . , 1) ≪ <
1
2−

1
=2+1

+Y
. (7.0.11)

Note that this is proved in [Gol15] as well. In the special case of GL(2), Kim and Sarnak prove in the
appendix of [Kim96] that

_q (<) ≪ <
7
64+Y . (7.0.12)

The integral EPMin :

The Langlands parameters for �P"8=
(B) with B = (B1, B2, B3) these are given by

U%Min (B) = (U1, U2, U3, U4),

U1 = 3B1 + 2B2 + B3, U2 = −B1 + 2B2 + B3, U3 = −B1 − 2B2 + B3, U4 = −B1 − 2B2 − 3B3.

Therefore, using Table 1 and the fact that for any Y > 0

_�PMin

(
(<, 1, 1), B

)
=

∑
21222324=<

2
U1
1 2

U2
2 2

U3
3 2

U4
4 ≪ <Y (7.0.13)

whenever Re(U 9 ) = 0 ( 9 = 1, 2, 3, 4), we see that

EPMin =

∫
Re(B1)=0

∫
Re(B2)=0

∫
Re(B3)=0

��PMin
(!, B) ��PMin

(", B) ·
��?#

) ,'

(
UPMin (B)

)��2 3B13B23B3

≪
∫

Re(B1)=0

∫
Re(B2)=0

∫
Re(B3)=0

4
U2

1
+U2

2
+U2

3
+U2

4
) 2 · (ℓ<) Y∏

1≤ 9<:≤4

��Z (1 + U 9 − U: )
��2 ·

∏
1≤ 9<:≤4

���Γ (
2+'+U9−U:

4

)���4���Γ (
1+U9−U:

2

)���2

·
( (

1 + |U1 + U2 − U3 − U4 |
) (

1 + |U1 + U3 − U2 − U4 |
) (

1 + |U1 + U4 − U2 − U3 |
) ) 2'

3

|3B1 3B2 3B3 |.

If we make the change of variables

U1 = 3B1 + 2B2 + B3, U2 = −B1 + 2B2 + B3, U3 = −B1 − 2B2 + B3,

(which implies thatU4 = −B1−2B2−3B3) in the above integral, it follows from the Jacobian transformation
that 3B1 3B2 3B3 maps to 3U1 3U2 3U3

32 .
Now, we have the Vinogradov (see [Vin58]) bound

1

|Z (1 + 8C) | ≪
(
1 + |C |

) Y
, (C ∈ R), (7.0.14)
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which together with the above coordinate change imply that

�PMin ≪(ℓ<) Y
∭

Re(U)=0
|U | ≤)

∏
1≤ 9<:≤4

(
1 + |U 9 − U: |

)'+Y ( (
1 + |U1 + U2 − U3 − U4 |

)

·
(
1 + |U1 + U3 − U2 − U4 |

) (
1 + |U1 + U4 − U2 − U3 |

) ) 2'
3 |3U1 3U2 3U3 |.

Next, make the change of variables U1 → U1), U2 → U2), U3 → U3). It easily follows that

�PMin ≪ (ℓ<) Y )8'+3+Y .

The integral EP2,1,1 ,Φ:

We take q to be a GL(2) Maass cusp form with spectral parameter 1
2 + E, where E ∈ C is pure

imaginary. The Langlands parameters U
P2,1,1 ,Φ

(B) for �P2,1,1 ,Φ (B) with B = (B1, B2, B3) are given by

U = (U1, U2, U3, U4) where

U1 = B1 + E, U2 = B1 − E, U3 = B2, U4 = −2B1 − B2.

It follows that

EP2,1,1 ,Φ :=

∫
Re(B1)=0

∫
Re(B2)=0

��P2,1,1 ,Φ
(!, B) · ��P2,1,1 ,Φ

(", B) ·
��?#

) ,' (U)
��2 3B13B2

=

∫
Re(B1)=0

∫
Re(B2)=0

4
(B1+E )2+(B1−E )2+B2

2
+(2B1+B2 )2

) 2 · _�P2,1,1 ,Φ
(!, B) _�P2,1,1 ,Φ

(", B)

·
( (

1 + |4B1 |
) (

1 + |2B1 + 2B2 + 2E |
) (

1 + |2B1 + 2B2 − 2E |
) ) 2'

3

·

���Γ (
2+'+B1−B2−E

4

)
Γ

(
2+'+B1−B2+E

4

)
Γ

(
2+'+3B1+B2−E

4

)
Γ

(
2+'+3B1+B2+E

4

) ���4��!∗(1 + B1 − B2, q)!∗(1 + 3B1 + B2, q)
��2

·

���Γ (
2+'+2E

4

)
Γ

(
2+'+2B1+2B2

4

) ���4
!(1,Ad q)

���Γ (
1+2E

2

)���2 ��Z∗ (1 + 2B1 + 2B2)
��2 3B1 3B2,

from which we obtain the bound

EP2,1,1 ,Φ ≪
4

2E2

) 2

���Γ (
2+'+2E

4

)���4 )2'

!(1,Ad q)
���Γ (

1+2E
2

)���2
∫

Re(B1)=0

∫
Re(B2)=0

4
2B2

1
+B2

2
+(2B1+B2 )2

) 2

·

���Γ (
2+'+B1−B2−E

4

)
Γ

(
2+'+B1−B2+E

4

)
Γ

(
2+'+3B1+B2−E

4

)
Γ

(
2+'+3B1+B2+E

4

) ���4��Γ (
1+B1−B2−E

2

)
Γ

(
1+B1−B2+E

2

)
Γ

(
1+3B1+B2−E

2

)
Γ

(
1+3B1+B2+E

2

) ��2

·
_�P2,1,1 ,Φ

(!, B) _�P2,1,1 ,Φ
(", B)

���Γ (
2+'+2B1+2B2

4

) ���4���Γ (
1+2B2−2B1

2

)
Z (1 + 2B1 + 2B2)!(1 + B1 − B2, q)!(1 + 3B1 + B2, q)

���2 |3B13B2 |.
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Here
_�P2,1,1 ,Φ

(
(<, 1, 1), B

)
=

∑
212223=<

_q (21) · 2B1
1 2

B2
2 2

−2B1−B2
3 ≪ <

7
64+Y ,

by the bound for _q (2) given in (7.0.12). It follows from [HL94], [HR95], [GLS04] that

!(1 + 8C, q) ≫ (1 + |E | + |C |)−Y .

It then follows from the above bound, Stirling’s estimate for the Gamma function and (7.0.14), that

EP2,1,1 ,Φ ≪ (ℓ<) 7
64+Y · )2+7'+Y ·

4
2E2

) 2

���Γ (
2+'+2E

4

)���4
!(1,Ad q 9 )

���Γ (
1+2E

2

)���2

= (ℓ<) 7
64+Y · )2+8'+Y ·

ℎ
(2)
) ,' (q 9 )

!(1,Ad q 9 )
.

To bound EP2,1,1 , we simply sum EP2,1,1 ,Φ over all Maass cusp forms Φ for SL(2,Z) using the Weyl law
for GL(2) given in Theorem 7.0.3. The stated result follows.

The integral EP2,2 ,Φ: Here, we take Φ = (q1, q2) to be Maass cusp forms for GL(2) with spectral

parameters 1
2 + E,

1
2 + E′, respectively. The Langlands parameters U

P2,2 ,Φ
for �P2,2 ,Φ(B) with B = (B1, B2)

are given by
U1 = B1 + E, U2 = B1 − E, U3 = −B1 + E′, U4 = −B1 − E′.

It follows that

?
♯, (4)
) ,' (U) = 4

2B2
1
+E2+E′2

) 2 · Γ
(

2+'+2E
4

)
Γ

(
2+'+2E′

4

) ∏
X, X′∈{±1}

���Γ(
2+'+2B1+XE+X′E′

4

)���2

·
( (

1 + 4|B1 |
) (

1 + 2|E + E′ |
) (

1 + 2|E − E′ |
) ) '

3
.

Using this and the fact that

!∗ (1 + 2B1, q1 × q2) = c−2(1+2B1)!(1 + 2B1, q1 × q2)
∏

X, X′∈{±1}

����Γ
(1 + 2B1 + XE + X′E′

2

)���� ,
we see that

EP2,2 ,Φ ≪ )2'+Y ℎ
(2)
) ,' (q1)

!(1,Ad q1)
ℎ
(2)
) ,' (q2)

!(1,Ad q2)

∫
Re(B1)=0

���_�P2,2 ,Φ
(!, B) _�P2,2 ,Φ

(", B)
���

|!(1 + 2B1, q1 × q2) |2

· 4
4B2

1
) 2

∏
X, X′∈{±1}

���Γ (
2+'+2B1+XE+X′E′

4

)���4���Γ (
1+2B1+XE+X′E′

2

)���2 |3B1 |,

and by the bounds for _q1 (2), _q2 (2) given in (7.0.12),

_�P2,2 ,Φ

(
(<, 1, 1), B

)
=

∑
2122=<

_q1 (21) _q2 (22) ·
(
21

22

)B1

≪ <
7
32+Y .

It follows from [HR95], [Mor85] that

1

!(1 + 2B1, q1 × q2)
≪

(
1 + |B1 | + |a | + |a′ |

) Y
.
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Note that the bound for the case that |Im(B1) | is small involves the non-existence of Siegel zeros that is
proved in [HR95] while the case when |Im(B1) | is large was first proved in [Mor85]. See also [GL18],
[HB19].

Applying these bounds, the Theorem 7.0.3 bound, together with Stirling’s bound to estimate the
integral in B1, we find, as claimed, that

|EP2,2 | ≪ (ℓ<) 7
32+Y · ) Y+6'+1

∑
(q1 ,q2)

ℎ
(2)
) ,' (q1)

!(1,Ad q1)
ℎ
(2)
) ,' (q2)

!(1,Ad q2)
≪ (ℓ<) 7

32+Y · ) Y+8'+3.

The integral EP3,1 ,Φ:

Let V = (V1, V2, V3) and 1
3+(E, E′) denote the Langlands and spectral parameters, respectively, associated

with a Maass cusp form q on GL(3). Here

V1 = 2E + E′, V2 = −E + E′, V3 = −E − 2E′.

The Langlands parameters U
P3,1 ,Φ

(B) for �P3,1 ,Φ (B) with B = (B1,−3B1) are given by U = (U1, U2, U3, U4)
where

U1 = B1 + V1, U2 = B1 + V2, U3 = B1 + V3, U4 = −3B1.

Note that in this case, since

4∑
9=1

U2
9 = 9B21 +

3∑
9=1

(B1 + V 9 )2 = 12B21 +
3∑
9=1

V2
9

and B1, V1, V2, V3 are purely imaginary, we have

?
♯
) ,' (U) = ?

♯, (3)
) ,' (V) · 4

6B2
1

) 2 ·
3∏

:=1

���Γ (
2+'+4B1−V:

4

)���2 · ( (1 + |V1 − V2 − V3 − 4B1 |
)

·
(
1 + |V1 + V2 − V3 + 4B1 |

) (
1 + |V1 − V2 + V3 + 4B1 |

) ) '
3

where ?♯, (3)) ,' (V) is defined by (7.0.1).
This allows us to write

EP3,1 ,Φ :=

∫
Re(B1)=0

��P3,1 ,Φ
(!, B) · ��P3,1 ,Φ

(", B) ·
��?#

) ,' (U)
��2 3B1

=

∫
Re(B1)=0

_�P3,1 ,Φ
(!, B) · _�P3,1 ,Φ

(", B)
!(1,Ad q) · |!∗ (1 + 4B1, q) |2

· ℎ (3)) ,' (V) · 4
12B1
) 2

·
3∏

:=1

���Γ (
2+'+4B1+V:

4

)���4 · ( (1 + |V1 − V2 − V3 − 4B1 |
)

·
(
1 + |V1 + V2 − V3 + 4B1 |

) (
1 + |V1 − V2 + V3 + 4B1 |

) ) 2'
3
3B1

where, using (7.0.11), ∑
2122=<

_q (21, 1) · 2B1
1 2

−3B1
2 ≪ <

2
5+Y . (7.0.15)
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In the above

!∗ (1 + 4B1, q) = c−
3+12B1

2 !(1 + 4B1, q)
3∏
9=1

Γ
(

1+4B1+V 9

2

)
.

It follows from [Mor85] and [HR95] that for every Y > 0

!(1 + 4B1, q) ≫Y
1(

1 + |B1 | + |E | + |E′ |
) Y , (7.0.16)

where the implied constant in the ≫Y symbol is effective unless q is a self-dual Maass cusp form that is
not a symmetric square lift from GL(2). Note that the bound for the case that |Im(B1) | is small involves
the non-existence of Siegel zeros that is proved in [HR95] while the case when |Im(B1) | is large was
first proved in [Mor85]. See also [Sar04].

Let {q1, q2, . . .} be the Maass cusp forms for GL(3) ordered by eigenvalue, and setL 9 := !(1,Ad q 9 ).
It follows from (7.0.15) and (7.0.16) that

∑
9

EP3,1 ,q 9
=

∑
9

ℎ
♯, (3)
) ,' (V ( 9) )

L 9

∫
Re(B1)=0

_�P3,1 ,q 9
(!, B) · _�P3,1 ,q 9

(", B)
|!(1 + 4B1, q 9 ) |2

4
12B2

1
) 2

·
3∏

:=1

����Γ ( 2+'+4B1+V ( 9)
:

4

) ����
4

����Γ ( 1+4B1+V ( 9)
:

2

) ����
2

·
( (

1 + |V1 − V2 − V3 − 4B1 |
)

·
(
1 + |V1 + V2 − V3 + 4B1 |

) (
1 + |V1 − V2 + V3 + 4B1 |

) ) 2'
3
3B1

≪ (ℓ<) 2
5+Y · )2'

∑
9

ℎ
(3)
) ,' (V ( 9) )

L 9

∫
Re(B1)=0

4
12B2

1
) 2

!(1 + B1, q 9 )

3∏
:=1

����Γ ( 2+'+4B1+V ( 9)
:

4

) ����
4

����Γ ( 1+4B1+V ( 9)
:

2

) ����
2

|3B1 |.

Using Stirling’s estimate for the Gamma functions here, it easy to see that

3∏
:=1

����Γ ( 2+'+4B1+V ( 9)
:

4

) ����
4

����Γ ( 1+4B1+V ( 9)
:

2

) ����
2

≪
3∏

:=1

(
1 + |4B1 + 2V ( 9)

:
|
)'
.

Combining this with the previous bounds and Theorem 7.0.3, we find, as claimed, that

EP3,1 ≪
∑
9

��EP3,1 ,q 9

�� ≪ (ℓ<) 2
5+Y · )6+8'+Y . �

Remark 7.0.17. As outlined in [Blo13], it should be possible to obtain bounds for the more general
case of ! = (ℓ1, ℓ2, ℓ3) and " = (<1, <2, <3) using the relations for the GL(4) Hecke operators.
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Appendix A. Integral bounds

Lemma A.1. Suppose that 4, 5 are real numbers. Then

)∫
G=0

3G(
1 + ) − G

)4 (
1 + G

) 5 ≪ (1 + ))−min
{
4, 5 , 4+ 5 −1

}
+Y

for any ) ≥ 0 and Y > 0, and the implied constant does not depend on ) .

Proof. We consider the integrals

) /2∫
G=0

(1 + ) − G)−4 (1 + G)− 5 3G and

)∫
G=) /2

(1 + ) − G)−4 (1 + G)− 5 3G

individually. Since

) /2∫
G=1

G− 5 3G ≪
{
)− 5 +1 + 1 if 5 ≠ 1,

log) + 1 if 5 = 1,

it follows in the case of 5 ≠ 1 that

) /2∫
G=0

(1 + ) − G)−4 (1 + G)− 5 3G ≪ (1 + ))−4
(
1 + (1 + ))− 5 +1) .

In like fashion, we find that if 4 ≠ 1,

)∫
G=) /2

(1 + ) − G)−4 (1 + G)− 5 3G ≪ (1 + ))−4− 5 +1 + (1 + ))− 5 .

Putting this together proves the result. In the case that 4 = 1 or 5 = 1, the logarithm contributes ) Y as
claimed. �

Lemma A.2. Assume �1 ≤ �2 ≤ · · · ≤ �: . Then for any Y > 0

�:∫
G=�1

:∏
8=1

(
1 + |G − � 9 |

)−4 9 3G ≪
(
1 + �: − �1

) Y

·
:−1∑
9=1

(
1 + � 9+1 − � 9

)−min
{
4 9 ,4 9+1 ,4 9+4 9+1−1

} ∏
8≠ 9 , 9+1

(
1 + |�∗

9 (8) − �8 |
)−48 ,

where

�∗
9 (8) :=




� 9 if 8 < 9 and 48 > 0,

� 9+1 if 8 < 9 and 48 < 0,

� 9+1 if 8 > 9 + 1 and 48 > 0,

� 9 if 8 > 9 + 1 and 48 < 0.
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Proof. First,

�:∫
G=�1

=

:−1∑
9=1

� 9+1∫
G=� 9

.

For every 9 = 1, 2, . . . , : − 1, we have

� 9+1∫
� 9

:∏
8=1

(
1 + |G − �8 |

)−483G ≪
� 9+1∫
� 9

(
1 + G − � 9

)−4 9
(
1 + � 9+1 − G

)−4 9+1

·
9−1∏
8=1

(
1 + G − �8

)−48 :∏
ℓ= 9+2

(
1 + �8 − G

)−4ℓ 3G.
For each of the terms with 8 < 9 and any � 9 ≤ G ≤ � 9+1,

(
1 + G − �8

)−48 ≪
{(

1 + � 9 − �8

)−48 if 48 > 0,(
1 + � 9+1 − �8

)−48 otherwise.

A similar bound holds for the terms with ℓ > 9 +1. So in order to complete the proof, we need the bound

� 9+1∫
� 9

(
1 + G − � 9

)−4 9
(
1 + � 9+1 − G

)−4 9+1 3G

≪
(
1 + �: − �1

) Y (
1 + � 9+1 − � 9

)−min
{
4 9 ,4 9+1 ,4 9+4 9+1−1

}
,

which follows from Lemma A.1 by a simple change of variables. �

Lemma A.3. Assume �1 ≤ �2 ≤ · · · ≤ �: . Suppose that 1 ≤ 9m8= < 9m0G ≤ : . Then for any Y > 0,

� 9max∫
G=� 9min

:∏
8=1

(
1 + |G − � 9 |

)−4 9 3G ≪
(
1 + � 9max − �min

) Y

·
9max−1∑
9= 9min

(
1 + � 9+1 − � 9

)−min
{
4 9 ,4 9+1 ,4 9+4 9+1−1

} ∏
8≠ 9 , 9+1

(
1 + |�∗

9 (8) − �8 |
)−48 ,

where

�∗
9 (8) :=




� 9 if 8 < 9 and 48 > 0,

� 9+1 if 8 < 9 and 48 < 0,

� 9+1 if 8 > 9 + 1 and 48 > 0,

� 9 if 8 > 9 + 1 and 48 < 0.

Proof. First,

� 9max∫
G=� 9min

=

9max−1∑
9= 9min

� 9+1∫
G=� 9

.
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For every 9 = 1, 2, . . . , : − 1, we have

� 9+1∫
� 9

:∏
8=1

(
1 + |G − �8 |

)−483G ≪
� 9+1∫
� 9

(
1 + G − � 9

)−4 9
(
1 + � 9+1 − G

)−4 9+1

·
9−1∏
8=1

(
1 + G − �8

)−48 · :∏
ℓ= 9+2

(
1 + �8 − G

)−4ℓ 3G.
For each of the terms with 8 < 9 and any � 9 ≤ G ≤ � 9+1,

(
1 + G − �8

)−48 ≪
{(

1 + � 9 − �8

)−48 if 48 > 0,(
1 + � 9+1 − �8

)−48 otherwise.

A similar bound holds for the terms with ℓ > 9 +1. So in order to complete the proof, we need the bound

� 9+1∫
� 9

(
1 + G − � 9

)−4 9
(
1 + � 9+1 − G

)−4 9+1 3G

≪
(
1 + �: − �1

) Y · (1 + � 9+1 − � 9

)−min
{
4 9 ,4 9+1 ,4 9+4 9+1−1

}
,

which follows from Lemma A.1 by a simple change of variables. �

Appendix B. Kloosterman sums on GL(4) by Bingrong Huang

B.1. Introduction

The classical Kloosterman sum is given by

((<, =; 2) =
∑∗

3 (mod 2)
4
(<3 + =3̄

2

)
,

where 33̄ ≡ 1 (mod 2) and 4(G) = 42c8G , which arises when one computes the Fourier expansion of
the GL(2) Poincaré series. Weil [Wei48] obtained the algebreo-geometric estimate

|((<, =; 2) | ≤ gcd(<, =, 2)1/221/2g(2),

where g(·) is the divisor function. Bump, Friedberg and Goldfeld [BFG88] introduced Poincaré series
for GL(=), = ≥ 2, and showed in the case = = 3 that certain ‘GL(3) Kloosterman sums’ arise in the
Fourier expansion. Friedberg [Fri87] and Stevens [Ste87] extended this result to all =, studying GL(=)
Poincaré series and their related GL(=) Kloosterman sums, from the classical and adelic points of
view, respectively. Friedberg, following the work of Larsen (= = 3) [BFG88], obtained upper bounds
for GL(=) in certain cases. Stevens [Ste87] gave a nontrivial estimate for the GL(3) Kloosterman sum
corresponding to the long element of the Weyl group. By their results, we get nontrivial upper bounds
for all GL(3) Kloosterman sums.

In this appendix, we consider all GL(4) Kloosterman sums. We will write Q? for the completion of
Q at a place ? and write A for the adeles of Q. Let � = GL(4). Let , be the Weyl group of �. Let

* =

{(
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

)}
be the standard unipotent group, and let

UF = (F−1 ·* · F) ∩*, *̄F = (F−1 · C* · F) ∩*, F ∈ ,.
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Table B.1. Main results for GL(4) Kloosterman sums..

Weyl element Compatibility conditions Upper bounds of the Kloosterman sum

F1 =

(
1

1
1

1

)
<1 = =1, <2 = =2,

<3 = =3;

21 = 22 = 23 = 1

X21 ,1X22 ,1X23 ,1X<1 ,=1X<2 ,=2X<3 ,=3

F2 =

( −1
1

1
1

)
=1 =

2123<2

22
2

, =2 =
22<3

22
1

;

21 |22 |23

• Friedberg [Fri87, Theorem C];

• g(212223)^2 (<1, 23/22)1/4(<2, 22/21)1/2

·(<3, =3, 21)3/4(212223)3/4

F3 =

(
1

1
1

−1

)
=3 =

2123<2

22
2

, =2 =
22<1

22
3

;

23 |22 |21

• Similar to Friedberg [Fri87, Theorem C];

• g(212223)^2 (<3, 21/22)1/4(<2, 22/23)1/2

·(<1, =1, 23)3/4(212223)3/4

F4 =

(
1

1
1

1

)
=1 =

<322

22
1

, =3 =
<122

22
3

;

21 |22, 23 |22

212223

F5 =

( −1
1

1
1

)
=2 =

2123<2

22
2

212223

F6 =

(
1

1
1

−1

)
=3 =

22<1

22
3

;

23 |22

212223

F7 =

( −1
1

1
1

)
=1 =

22<3

22
1

;

21 |22

212223

F8 =

(
1

1
1

1

) • g(212223)^8 (<1=3, [21, 22, 23])1/2

·(<2=2, [21, 22, 23])1/2(<3=1, [21, 22, 23])1/2

·min
{
[21, 23]1/2 (21, 23)22 , 2123 (21, 23)21/2

2

}
• g(212223)^8 (<1=3, [21, 22, 23])1/2

·(<2=2, [21, 22, 23])1/2

·(<3=1, [21, 22, 23])1/2(212223)9/10

Let 21, . . . , 23 be non-zero integers, and set

2 = diag(1/23, 23/22, 22/21, 21).

Following Stevens [Ste87, §2], we define

� (2F) := * (Q?)2F* (Q?) ∩ � (Z?), - (2F) := * (Z?)\� (2F)/*̄F (Z?).

By the Bruhat decomposition we have natural maps

D : - (2F) → * (Z?)\* (Q?), D′ : - (2F) → *̄F (Q?)/*̄F (Z?).

defined by the relation G = D(G)2FD′(G) for G ∈ - (2F). Let k : * (A)/* (Q) ↦→ C∗ be a character of
* (A) that is trivial on* (Q). Every such character has the form k = k# for some # = (=1, =2, =3) ∈ Q3,
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where k# is given by

k#

(
1 G1 ∗ ∗
0 1 G2 ∗
0 0 1 G3
0 0 0 1

)
= b (=1G1 + =2G2 + =3G3)

and b : A → C∗ is the standard additive character. We can write k =
∏

? k? , where k? is a character
of* (Q?) that is trivial on* (Z?). The local Kloosterman sum is defined by

 ;? (k? , k
′
?; 2, F) =

∑
G∈- (2F)

k? (D(G)) · k ′
? (D′(G)).

The global Kloosterman sum is defined by  ; (k, k ′; 2, F) = ∏
?  ;? (k? , k

′
? , 2, F). Our main results

for  ; (k" , k# ; 2, F) are in Table B.1.
It was shown in Friedberg [Fri87, §1] that the Kloosterman sums are non-zero only if F ∈ , is of

the form F =
©«

�:1
�:2

...
�:A

ª®®¬
, where the �: are : × : identity matrices and :1 + · · · + :A = = (may have

some minus sign to make its determinant 1).
For the case F = F1, we have  ; (k" , k# ; 2, F1) = X21 ,1X22 ,1X23 ,1X<1 ,=1X<2 ,=2X<3 ,=3 , where X<,= =

1 if < = =, and X<,= = 0 otherwise.
For the case F = F2 or F3, Friedberg [Fri87] gave some very nice bounds for GL(=) Kloosterman

sums attached toF =
( ±1
�=−1

)
. For = = 3, this is due to Larsen, see [BFG88, Appendix]. Then Friedberg

[Fri87, §4] generalized it to all =. In some applications, we may need to give a bound with power saving
in terms of all 21, 22, 23. One can modify Friedberg’s proof to give such a bound in the case = = 4. Note
that the main situation is when 2 9 = ? 90, 0 ≥ 1, 1 ≤ 9 ≤ 3, in which case (212223)3/4 agrees with

2
9/2 9
9 in [Fri87]. In the proof, we need Deligne’s deep theorems from algebraic geometry [Del77]. For

the case F = F3, one can use the involution operator ] : 6 ↦→ F8
C6−1F8 to get the result.

By [DR98, Theorem 0.3 (i)], we have the ‘trivial’ bound

 ; (k, k ′; 2, F) ≤ #- (2F) ≤ 212223. (B.1)

We use this for F = F 9 , with 4 ≤ 9 ≤ 7. In fact, this kind of bound holds for a general Kloosterman sum.

B.2. Stevens’ approach

In this section, we follow Stevens’ approach [Ste87] to bound the GL(4) long element Kloosterman
sums. For F ∈ , , we define F( 9), 9 ∈ {1, 2, 3, 4} by the formula

F · 4 9 = ±4F ( 9) ,

where 41, 42, 43, 44 is the standard basis of column vectors. Let a1, a2, a3, a
′
1, a

′
2, a

′
3 ∈ Z? and define the

characters k, k ′ of* (Q?)/* (Z?) by

k

(
1 D1 ∗ ∗

1 D2 ∗
1 D3

1

)
= b (a1D1 + a2D2 + a3D3), k ′

(
1 D1 ∗ ∗

1 D2 ∗
1 D3

1

)
= b (a′1D1 + a′2D2 + a′3D3). (B.2)

Fix

2 = diag(?−C , ?C−A , ?A−B, ?B). (B.3)

We will use the same notation as in Stevens [Ste87, §4]. And we need Definition 4.9 and Theorem 4.10
in [Ste87]. Note that = in [Ste87] will be our 2F.
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Our main result in this appendix is the following theorem.

Theorem B.4. Let  ;? (k, k ′; 2, F8) be the local Kloosterman sum attached to the long element F8.

Let k, k ′ be as in (B.2), ℓ = max(A, B, C), r = max(C, B), f = min(C, B), and

�8 = 64(|a1a
′
3 |
−1
? , ?

ℓ)1/2(|a2a
′
2 |
−1
? , ?

ℓ)1/2(|a3a
′
1 |
−1
? , ?

ℓ)1/2(r + 1) (A + 1)2(f + 1)2.

Then

| ;? (k, k ′; 2, F8) | ≤ �8 min(?A+f+r/2, ? r+2f+A/2). (B.5)

In particular, we have | ;? (k, k ′; 2, F8) | ≤ �8?
9(C+A+B)/10.

Suppose we are given U, V, W ∈ Z×? , and nonnegative integers 0, 1, 2, 3, 4, 5 3 satisfying

0 ≤ B, 3 ≤ B, 4 = B, 5 ≤ A, 1 + 2 ≤ max(C, 5 ); (B.6)



G = −W?A− 5 ∈ Z? ,
H = ?A (V?−B − W?−0− 5 ) ∈ Z? ,
I = ?C (W?− 5 − ?−1−2) ∈ Z?;

(B.7)

{
_ = ?A (V?−1−B − UW?−3− 5 ) ∈ Z×? ,
` = ?C (W?−0− 5 + U?−3−2 − ?−0−1−2 − V?−B) ∈ Z×? .

(B.8)

Hence, by _ ∈ Z×? , we have

1 ≤ A, 0 + 5 ≤ max(A, B). (B.9)

Then there is an element G3, 5 ,U,V,W
0,1,2

∈ - (2F8) for which

D′(G3, 5 ,U,V,W
0,1,2

) =
(

1 ?−0 U?−3 V?−B

1 ?−1 W?− 5

1 ?−2

1

)
(mod * (Z?)). (B.10)

Indeed, we have the matrix identity

©«
`−1

I_−1 `_−1

GV−1 HV−1 _V−1

?B ?B−0 U?B−3 V

ª®¬
=

(
1 D1 *4 D5

1 D2 D6
1 D3

1

)
2F8

(
1 ?−0 U?−3 V?−B

1 ?−1 W?− 5

1 ?−2

1

)
, (B.11)

where

D1 = `−1?A−C (?−0−1 − U?−3), *4 = −`−1?B−A−0,

D2 = _−1?C−A (U?B−2−3 − V), D5 = `−1?−B ,

D3 = −V−1W?A−B− 5 , D6 = _−1?C−B (W?− 5 − ?−1−2).

(B.12)

Write (B.11) as 6 = D2F8D
′. Then we have

6 ] = F8
C6−1F8 =

©«
V−1

−U_−1 ?B−3 V_−1

(U?A−3−?A−0−1)`−1 −H`−1 _`−1

?C −?C−2 −I `

ª®¬
,

3Note that here we use 2 in two meanings, one for a matrix, and another for a nonnegative integers. However, one can easily
determine what it means in the context.
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and its Bruhat decomposition is

(
1 −D1 ∗ ∗

1 −D2 ∗
1 −D3

1

) (
?−B

?B−A

?A−C

?C

)
F8

(
1 −?−2 ∗ ∗

1 −?−1 ∗
1 −?−0

1

)
.

Since 6 ∈ - (2F8), we have 6 ] ∈ - ((2F8) ]) ⊆ � (Z?), hence

2 ≤ C, 0 + 1 ≤ max(A, 3), U?A−3 − ?A−0−1 ∈ Z? . (B.13)

Let k, k ′ be characters of * (Q?)/* (Z?). For 0, 1, 2, and 3, 5 , U, V, W satisfying (B.6)–(B.9) and

(B.13), let -3, 5 ,U,V,W
0,1,2

(2F8) = ) (Z?) ∗ G3, 5 ,U,V,W0,1,2
be the orbit through G3, 5 ,U,V,W

0,1,2
, and let

(
3, 5 ,U,V,W
0,1,2

(k, k ′; 2, F8) =
∑

G∈-3, 5 ,U,V,W

0,1,2
(2F8)

k(D(G))k ′(D′(G))

be the Kloosterman sum restricted to this orbit. For 0, 1, 2 satisfying (B.6), (B.9) and (B.13), let
-0,1,2 (2F8) =

⋃
3, 5 ,U,V,W

-
3, 5 ,U,V,W
0,1,2

(2F8), where 3, 5 run over nonnegative integers, and U, V, W run

over the elements of Z×? satisfying (B.6)–(B.8). Let

(0,1,2 (k, k ′; 2, F8) =
∑

G∈-0,1,2 (2F8)
k(D(G))k ′(D′(G)).

Lemma B.14. We have - (2F8) =
∐

0,1,2 -0,1,2 (2F8), where 0, 1, 2 ≥ 0 run over integers satisfying

(B.6), (B.9), and (B.13).

Proof. See Stevens [Ste87, Lemmas 5.2 and 5.7]. �

Lemma B.15. Let ℓ = max(B, A, C), and 0 ≤ B, 1 ≤ A, 2 ≤ C be nonnegative integers. Then

|(0,1,2 (k, k ′; 2, F8) |

≤ 64(|a1a
′
3 |
−1
? , ?

ℓ)1/2(|a2a
′
2 |
−1
? , ?

ℓ)1/2(|a3a
′
1 |
−1
? , ?

ℓ)1/2?−
0+1+2

2 #(-0,1,2 (2F8)).

Proof. The involution ] sends -0,1,2 (2F8) to -2,1,0 ((2F8) ]). Composing k and k ′ with ] has the
effect of replacing (a1, a2, a3) by (−a3,−a2,−a1) and (a′1, a′2, a′3) by (−a′3,−a′2,−a′1). Applying ] to 2F8

reverses the roles of C and B. Thus we may assume C ≥ B without loss of generality.
Let ℓ = max(A, C). The conditions (B.6)–(B.9) and (B.13) imply that the matrix entries of D(G) and

D′(G) lie in ?−ℓZ?/Z? for every G ∈ - (2F8). Indeed, by Lemma B.14, it is enough to verify this for

G = G
3, 5 ,U,V,W
0,1,2

. Note that ` = ?−B?C (U?B−3−2 − V) + ?−0?C (W?− 5 − ?−1−2) = ?−B_D2?
A + ?−0I ∈ Z×? .

We have D2 ∈ ?−AZ? . The claim is now easily verified.
Now let S be a finite subset of Z2

≥0 × (Z×?)3 such that -0,1,2 (2F8) is the disjoint union of the

-
3, 5 ,U,V,W
0,1,2

(2F8) with (3, 5 , U, V, W) ∈ S. Then as in [Ste87, Th. 4.10] we have

(0,1,2 (k, k ′; 2, F8) = ?−3ℓ (1 − ?−1)−3
∑

(3, 5 ,U,V,W) ∈S
#
(
-
3, 5 ,U,V,W
0,1,2

(2F)
)
(F8

(
\
3, 5 ,U,V,W
0,1,2

; ℓ
)
, (B.16)
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where (F8 is defined in [Ste87, Def. 4.9], and \3, 5 ,U,V,W
0,1,2

: �F8 (ℓ) → C× is the character given by

\
3, 5 ,U,V,W
0,1,2

(_ × _′) = 4
(
a1D1_1 + a2D2_2 + a3D3_3 + a′1?−0_′1 + a′2?−1_′2 + a′3?−2_′3

)

= 4

(
(−a1`

−1?ℓ+A−C (?−0−1 − U?−3))_1 + (a2_
−1?ℓ+C−A (U?B−2−3 − V))_2

?ℓ

+
(a3V

−1W?ℓ+A−B− 5 )_3 + a′1?ℓ−0_′1 + a′2?ℓ−1_′2 + a′3?ℓ−2_′3
?ℓ

)
.

By Example 4.12 in Stevens [Ste87], we have

(F8 (\
3, 5 ,U,V,W
0,1,2

; ℓ) = (2 (a1`
−1?ℓ+A−C (?−0−1 − U?−3), a′3?ℓ−2; ?ℓ )

· (2 (a2_
−1?ℓ+C−A (U?B−2−3 − V), a′2?ℓ−1; ?ℓ)

· (2 (−a3V
−1W?ℓ+A−B− 5 , a′1?

ℓ−0; ?ℓ ), (B.17)

where (2 is the classical GL(2)-Kloosterman sum. By Weil [Wei48], we have the inequality

|(2 (<, =; ?ℓ ) | ≤ 2(gcd(|< |−1
? , |=|−1

? , ?
ℓ))1/2?ℓ/2, (B.18)

for <, = ∈ Z? . In order to apply this bound, we first note

gcd(|a3?
ℓ+A−B− 5 |−1

? , |a′1?ℓ−0 |−1
? , ?

ℓ ) ≤ gcd(|a3a
′
1 |−1

? , ?
ℓ)?ℓ−0,

gcd(|a2?
ℓ+C−A (U?B−2−3 − V) |−1

? , |a′2?ℓ−1 |−1
? , ?

ℓ ) ≤ gcd(|a2a
′
2 |−1

? , ?
ℓ)?ℓ−1 ,

gcd(|a1?
ℓ+A−C (?−0−1 − U?−3) |−1

? , |a′3?ℓ−2 |−1
? , ?

ℓ ) ≤ gcd(|a1a
′
3 |−1

? , ?
ℓ)?ℓ−2 .

Hence we have

|(F8 (\
3, 5 ,U,V,W
0,1,2

; ℓ) | ≤ 8(|a1a
′
3 |
−1
? , ?

ℓ)1/2(|a2a
′
2 |
−1
? , ?

ℓ)1/2(|a3a
′
1 |
−1
? , ?

ℓ)1/2?3ℓ− 0+1+2
2 .

This inequality, together with (B.16), gives

|(0,1,2 (k, k ′; 2, F8) | ≤ 8(|a1a
′
3 |−1

? , ?
ℓ)1/2(|a2a

′
2 |−1

? , ?
ℓ)1/2(|a3a

′
1 |−1

? , ?
ℓ)1/2

· (1 − ?−1)−3?−
0+1+2

2

∑
(3, 5 ,U,V,W) ∈S

#
(
-
3, 5 ,U,V,W
0,1,2

(2F8)
)
.

(B.19)

The sum appearing on the right-hand side is equal to #(-0,1,2 (2F8)). Since ? ≥ 2, we have (1−?−1)−3 ≤
8, by (B.19), we prove the lemma. �

Proof of Theorem B.4. By the involution ], we can assume C ≥ B without loss of generality. Let

� = 64(|a1a
′
3 |−1

? , ?
ℓ)1/2(|a2a

′
2 |−1

? , ?
ℓ)1/2(|a3a

′
1 |−1

? , ?
ℓ)1/2(A + 1) (B + 1).

At first, we deal with the case C ≥ A .

• If 0 + 1 + 2 ≤ C and 3 + 5 ≤ A , then #(3, 5 ) ≤ (B + 1) (A + 1), #(U, W, V) ≤ ?3+B+ 5 , so

#(-0,1,2 (2F8)) ≤ (A + 1) (B + 1)?0+1+2+3+ 5 +B ≤ (A + 1) (B + 1)?A+B+0+1+2 .

Hence by Lemma B.15, we have |(0,1,2 (k, k ′; 2, F8) | ≤ �?A+B+C/2.
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• If 0 + 1 + 2 ≤ C and 3 + 5 > A , then we assume that 3 + 5 = A + : , : ≥ 1. Note that 3 ≤ B, 5 ≤ A ,
we have : ≤ B. By (B.8), we have 1 + B = 3 + 5 = A + : . Since _ ∈ Z×? , we have #{(U, W, V)} ≤
?3+ 5 +(B−:) = ?A+B . Hence

|(0,1,2 (k, k ′; 2, F8) | ≤ �?A+B+
0+1+2

2 ≤ �?A+B+C/2.

• If 0 + 1 + 2 > C and 3 + 5 ≤ A , then by (B.8) and a similar argument as above, we have #{(U, W, V)} ≤
? (3−<)+ 5 +B . Hence

|(0,1,2 (k, k ′; 2, F8) | ≤ �?3−<+ 5 +B+ 0+1+2
2 ≤ �?A+B+C/2.

• If 0 + 1 + 2 > C and 3 + 5 > A , then we have #{(U, W, V)} ≤ ? (3−<)+ 5 +(B−:) . Hence

|(0,1,2 (k, k ′; 2, F8) | ≤ �?3−<+ 5 +B−:+ 0+1+2
2 ≤ �?A+B+C/2.

Note that in this case, we always have A + B + C/2 ≤ C + 2B + A/2. Theorem B.4 now follows from the
equality  ;? (k, k ′; 2, F8) =

∑
0≤B,1≤A ,2≤C

(0,1,2 (k, k ′; 2, F8).

Now we handle the case A > C. By a similar argument as above, we obtain

|(0,1,2 (k, k ′; 2, F8) | ≤ �?A+B+C/2.

If C is small, this bound is not good enough. So we need to bound this in other way.

• If 5 > C, then by (B.7), we have 1+ 2 = 5 , and 0+ 5 ≤ A . By (B.8), we have #(U, W) ≤ ?3+ 5 −(0+ 5 −C) .
If 3 + 5 ≤ A , then we have

|(0,1,2 (k, k ′; 2, F8) | ≤ �?3+ 5 −(0+ 5 −C)+B+ 0+1+2
2 ≤ �?C+B+3+ 1+2

2

≤ �?C+B+ 3
2 +

3+ 5

2 ≤ �?C+3B/2+A/2.

• If 5 > C and 3 + 5 > A , then by writing 3 + 5 = A + : , 1 ≤ : ≤ B, we have

|(0,1,2 (k, k ′; 2, F8) | ≤ �?3+ 5 −(0+ 5 −C)+B−:+ 0+1+2
2

≤ �?C+B+ 3
2 +

3+ 5

2 −: ≤ �?C+3B/2+A/2.

• If 5 ≤ C and 0 + 1 + 2 > A . Since ` ∈ Z×? , we have #(U, W) ≤ ?3+ 5 −(0+1+2−C) . Then by the same
argument on the size of 3 + 5 , we have

|(0,1,2 (k, k ′; 2, F8) | ≤ �?A+C+B−
0+1+2

2 ≤ �?C+B+A/2.

• If 5 ≤ C, and 0 + 1 + 2 ≤ A , then we have

|(0,1,2 (k, k ′; 2, F8) | ≤ �?3+ 5 +B+ 0+1+2
2 ≤ �?C+2B+A/2.

This proves (B.5).
We now give a proof of the second claim. If A + f + r/2 ≤ r + 2f + A/2 – that is, A ≤ r + 2f

– then f + A ≤ 4r, so A + f + r/2 ≤ 9(r + A + f)/10. If A + f + r/2 > r + 2f + A/2 – that is,
A > r + 2f – then 9f < 3A and r + 11f < 4A , so r + 2f + A/2 < 9(r + A + f)/10. This proves
min(?A+f+r/2, ? r+2f+A/2) ≤ ?9(C+A+B)/10, as claimed, and hence Theorem B.4. �

Remark B.20. The result is not optimal. To improve the bound in some cases, one may use the stationary
phase formulas as Dabrowski and Fisher did for GL(3), see [DF97].
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Remark B.21. Stevens’ method can be used to bound other Kloosterman sums as well. It’s not too hard
to prove bounds similar to (B.1). But to improve these ‘trivial’ bounds, one may need new ideas.
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