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CONTRIBUTIONS TO THE MATHEMATICAL
THEORY OF EPIDEMICS

IV. ANALYSIS OF EXPERIMENTAL EPIDEMICS OF THE
VIRUS DISEASE MOUSE ECTROMELIA

BY W. 0. KERMACK AND A. G. McKENDRICK

From the Laboratory of the Royal College of Physicians, Edinburgh

(With 4 Figures in the Text)

DURING recent years we have been engaged in the study of the mathematical
theory of the spread of an infectious disease in a community of susceptible
individuals, and some of the earlier results have been published in a series of
papers (Kermack & McKendrick, 1927, 1932, 1933, 1936). We have assumed
that the recovery rate, death-rate, infection rate, etc., are represented by
functions of the period of the disease, and these in particular cases may be
constants. The results obtained even in the absence of definite a priori know-
ledge of the values of these functions or constants allow us to reach certain
qualitative conclusions and to interpret qualitative observations. So far,
however, it has been difficult to apply the theory in a quantitative sense,
chiefly because of the absence of satisfactory data referring to actual diseases.
Such data might refer either to human or animal communities under ordinary
non-experimental conditions, or to the results of animal experiments under
strict control. The data referring to animal and human communities are
usually meagre and far from homogeneous. On the other hand the experi-
mental study of epidemics is still in its infancy and it is only recently that the
pioneer work of Greenwood et al. (1936) has made available a certain amount
of experimental data which though limited in range is of the highest value.
It is obviously desirable to find out whether the theory as developed in our
previous communications can be applied to these data, and if so to work out
the results in a quantitative sense.

The mathematical theory which we have developed accommodates the
experimental fact that an individual who has recovered from a disease is
frequently found to be relatively immune. In the special case where the
immunity is complete so that no second infection ever occurs the theory proves

to be comparatively simple. This is especially so when we can assume that the
community does not reproduce itself by birth, but is recruited solely by immi-
gration. It happens that one of the cases investigated experimentally by
Greenwood et al. (1936) is of this simple type. This is the epidemic of the
virus disease ectromelia in mice which is fully reported in a memoir by the
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above authors, to which the reader is referred for details. Two separate
epidemics are actually reported upon, and referred to as ectromelia 1 and
ectromelia 2. The purpose of the present paper is to discuss the data derived
from these two experiments in the light of our general mathematical theory.

First of all we may recall one or two quantitative results of the theory
which are found to be borne out by the experimental observations. These
results are dependent only upon assumptions of a very general kind. A steady
state condition in the absence of births is possible only when immigration is
maintained at a rate in excess of a certain minimum which we call the threshold
value; when it exceeds this threshold a steady state condition is always possible.
It does not however follow at once that a steady state necessarily exists. Small
deviations inevitably occur, and these may either die out or result in the
system deviating permanently from the steady state condition. It is only
when the first alternative holds that the steady state can actually exist. It
follows that before we can predict that a steady state is really possible, it is
necessary to determine whether or not the theoretical steady state is stable in
the above sense.

In a recent paper (1936) we have found the condition which must be satisfied
in order that the steady state should be stable. In the particular case now under
discussion (no births, complete immunity after an infection), the condition is
that all the real parts of the roots of the following equation should be negative:

K +^+ZF'
(For the meaning of the symbols employed see Kermack & McKendrick (1933,
1936).) We note that for all values of a for which the real part ^0 ,

(X+77

K
it is easily seen that the above equation cannot be satisfied by any value of a
for which R (a) ̂  0. Thus the condition for stability is satisfied. It follows
that in the case of an epidemic of ectromelia or a similar disease a steady state
is possible provided that the immigration rate exceeds a certain value. Such
a steady state does in fact seem to have been reached in the case of ectromelia 1
during the period 1. iii. 32-31. viii. 32, and we shall therefore now consider the
application of the theory to the steady state condition during this period.

In our present state of knowledge and with the available data the quanti-
tative application of the general theory involving variable coefficients appears
to be impossible. It is of the greatest interest and importance to find out from
the experimental data just how far the simplified form of the theory, in which
these rates are assumed to be independent of the period of the disease, gives an
adequate account of an epidemic. We shall therefore attempt to fit the data
to the theory in this form, that is, we shall assume a constant infectivity
rate k, a specific death rate d, and a recovery rate I.

In the Medical Research Council memoir the chance of surviving at
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174 Mathematical Theory of Epidemics

different cage ages (denoted by lx as is customary in actuarial practice) is
tabulated for various periods of the epidemic, one of which fortunately covers
the steady state period 1. iii. 32-31. viii. 32.

Here lx gives the chance of a mouse introduced into the cage being still
alive on the octh day. In order to calculate lx in terms of the above constants
it is necessary to recognize that a certain number of mice die from non-specific
causes. As the mice when introduced into the cage were usually young mice
not varying greatly in age, it is natural to assume that the chance of a mouse
dying from non-specific causes can be adequately represented as a function of
the cage age, henceforth denoted by 17, in harmony with our previous notation.
The mice within the cage are of three types: the uninfected x, those suffering
from ectromelia y, and the recovered x.

• It is readily found that if X, Y and X are the steady state values of x, y
and x, and if Xv, Yv and Xn denote the chances of a mouse introduced into
the cage being alive on the ijth day as an uninfected, an infected, or a recovered
animal, the following equations hold:

dXv_ . = =
rfi7

rfrj
V — (2)

where Ax =

Let

tv
where Rv = p9 rf^.

= kY, c2 = ljX1,

^ = ^ ' « "

^ is the non-specific death-rate.

*i and Xm = XJe i,

It is easily shown that
dZ'

dY'
diq

dX'
drj

= X2X'-\1Y',

=c2\Y',

(3)

where the suffices -q have for convenience been dropped.
If we note that X' =0 = 1, and Y'r)_0 = X'r]=0— 0, it is readily shown that the

above equations lead to the solution

Y' — -
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W. 0. KERMACK AND A. G. MCKENDBICK 175

If Ny is the chance of an animal being alive on the i)th day of cage life (this is
the same as the lx referred to above) then

-(5)

where c1 = l - c 2 = d/A1.

In the special case where A2 = AX = A, it is not difficult to show that these
equations become

1 (6)

and finally Nr) = {c1(l+\r))e-X7i + ci}e~Iiv. (7)

I. ECTROMELIA 1

In order to test our theory it is necessary to fit equation (5) to the values
of lx experimentally found. Theoretically the best method of carrying this
out would be difficult and laborious, but the following semi-empirical procedure
has been successfully adopted. *

First of all we form an approximate estimate of Xx and A2. For this purpose
we utilize the data provided by the mice which were observed in isolation for
several weeks after the ectromelia 1 experiment was broken up. The following
figures, derived from the table on p. 103 of the memoir, afford a maximum
estimate of the chance of infection of an animal after it has been in the cage
for a given length of time:

age age
n days

1-10
11-20
21-30
31—40
41-50
51-60
61-70
71-80

Fraction
uninfected

0-400
0166
0-166
0-100

0
0033
0100
0033

0-998

It is easily shown that this fraction should be represented by the expression
e~*-w, as Ag (=kY) is the chance of infection of an individual mouse per unit
time, which it is convenient to take as one day. We note that

f
o

so that we obtain a rough estimate of 1/Aa by adding up the ordinates. This
gives 0-998 and as the interval is 10 days, we obtain 1 ^ = 10x0-998 = 9-98,
hence Ag is probably of the order of 0-1. We are also given the time of death
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176 Mathematical Theory of Epidemics

of those of the fifteen animals, introduced into the cage during the 5 days
before the experiment was stopped, which died of ectromelia. The actual
number of those surviving in an infected state after 7 days would be proportional
to e-V/, so that the chance of death on ^th day would be de~x^, whence

y- =J-^ = average number of days survived (8)

Jo
The figures are as follows: 9, 10, 7, 10, 14, 9 and 9, whence l/A1 = 9-7 days, so
that Ax is also of the order 0-1. It follows that for values of 17 greater than 100
the coefficient of cx becomes very small, and so for values of -q greater than 250
it is quite safe to use the expression

We therefore proceed to fit the tail of the lx curve to this expression. On
examination it is found that for the range 150-500, the non-specific death-rate

is proportional to -q, so that Rv[ = \ p^d-q) may be assumed to be of the form
V Jo '

rif, where r is a constant. Evaluation of the constants c2 and r from these
observed figures leads to the values c2 = 0-2 and r = 0-000012. We now determine
the other two constants Ax and A2. Theoretically this may be done by the
method of moments, the zero and first moments being here sufficient. We find

.(9)

A rim I sin 7 v ' M i y " 9 /1 rw

where Ar = ei/i\ e~zl2dz, l,x = —^= and 42 = ~-i=; (10)
h V2r V2r

and iV1=( i?2\La!i? = s - - s i F
i 4 - (A£ 1 -A/ 2 ) . (11)

In practice it is found that the determination of Ax and Aa from these two
equations is laborious and awkward, one difficulty being that the values
obtained are highly sensitive to small changes in N° and N1. It is found more
satisfactory to assume in the first place that Ax = A2 as suggested by the rough
evaluations already given, and to apply the N° equation which in this case
reduces to

or to a first approximation

TT,

where ^ = £1 = ̂ 2-

Whence ^ = lV2r^ "—p» (14)
" h
2
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In order to apply this formula it is necessary to obtain the value N° (which is
readily shown to be the expectation of life at cage age zero). This we have
done by evaluating the following sum

10 {i
roo

and then adding on c2e~rX* dx. This seems preferable to the more obvious
J205

method of adding the lx's over the whole series, not only because it avoids
considerable labour but also because it makes certain that the result will not
be disturbed by errors arising from the curtailment of the series.

We thus find 2V° = 81-295 a value not far removed from that given in the
memoir for the expectation—namely 81-87, whence A = 0-05. If we now calculate
the values of N from equation (7) we find that the calculated figures are too
high at 20 and too low at 50 and 60. This suggests that Ax and \ instead of
being taken as equal should differ somewhat in value. As a guide, we notice
that the equation gives approximately

2 . l l , 1 , 1 . 2 , . „
=TT + TT, whence y + Tr = -p. (15)

We therefore try pairs of values, Aj and A2, such that their harmonic mean is
approximately 0-05. After some trials it was found that a very good fit was
given by Ax = 0-039 and ^ = 0-09. Comparatively small deviations from
those values resulted in the fit being noticeably less good.

Comparison of the observed and calculated figures is shown in Table I and
Figs. 1 and 2. It is appropriate to apply the x2 test to the dx figures, that is
the number of deaths occurring at different cage ages, as these, unlike the
lx's, are not correlated with their neighbours. To do this, however, they must
all be multiplied by the total number of mice involved, namely 552. We find
X2 = 34-22. There are thirty-one different observations, and four constants
have been employed in fitting the curve so that we take n' = 31 — 4 +1,whence
P is 0-16. Actually the greatest contributions to x2 come from the two periods
0-10 and 10-20 days. During the first 10 days lx decreases less rapidly than
the theory predicts, and this is quite clearly due to the fact that the disease
has an incubation period of several days, so that there is a deficiency of deaths
during the first few days of cage life. If we take the interval 0-20 days as one
period we find x2 = 18-56, w' = 27, P = 0-85. The fit is evidently an unusually
good one.

We note that the equation (5) for N is symmetrical in Xx and Ag. It follows
that it is impossible from the above data alone to distinguish between these
two quantities and to say which value is to be attributed to d + l, and which
to TcY. We have therefore two possibilities:

(a) Ax = 0-039, Aa = 0-09,

(6) A^O-09, ^ = 0-039.
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Table I

Cage age
in days

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
300
350
400
450
500
550

Ectromelia

h
Experimental

10000
9511
7435
6073
4683
3876
3305
2828
2470
2252
2110
1936
1790
1739
1676
1584
1539
1447
1431
1397
1362
1291
1254
1199
1125
1086
768
483
243
129
85
57

1. Period 1. iii.

Theoretical
10000
9061
7425
5846
4710
3824
3191
2743
2427
2197
2018
1897
1792
1705
1628
1558
1491
1427
1365
1303
1241
1180
1121
1060
1002
945
679
460
293
176
100
53

32-31. viii. 32

d-.

Experimental
489

2076
1362
1390
807
571
477
358
218
142
174
146
51
63
92
45
92
16
34
35
71
37
55
74
39
318
285
240
114
44
28

Theoretical
939
1636
1579
1136
886
633
448
316
230
179
121
105
87
77
70
67
64
62
62
62
61
60
60
58
57
266
219
167
117
77
47

It is easy to show that in a steady state

and the total population

(16)

m<-~ + y—V" (£2^, —4iA£2),-. (17)

Inserting the values of X1, A2, m, c1; c2 and r in these equations we have for
case (a) Z = 33-72, 7 = 73-95, Z = 131-82, and 2V = 239-49, whence k = X2/Y =
0-00122; also ^ = 0-8, c2 = 0-2, and so 1 = 0-0078 and d = 0-0312: and for case (b)
Z = 75-92, 7 = 31-95, Z = 131-82, and iV = 239-49, whence £ = 0-00122; also
c1 = 0-08, c2 = 0-02, and so 1 = 0-019 and d = 0-072.

It is interesting to note that the number uninfected in case (a) is approxi-
mately equal to the number who were ill in case (b) and vice versa. The
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number who recover and also the infectivity rate k are unaltered. These results
follow at once from the approximate formulae

^ m m

and

lx

10000'

9000

8000

7000

6000

5000

4000

3000

2000

1000

k is approximately equal to - (19)

ft
40 80 120 160 200 240 280 320 360 400 440

20 60 100 140 180 220 260 300 340 380 420

Cage age in days

Fig. 1. lx. Ectromelia 1. 1. iii. 32-31. viii. 32.

I I
40 80 120 160 200 240 280 320 360 400 440

20 60 100 140 180 220 260 300 340 380 420

Cage age in days

Fig. 2. dx. Ectromelia 1. 1. iii. 32-31. viii. 32.

which are readily deduced if we replace Â  by its approximate value l/£. The
total number N (which in a steady state is m times the expectation N°) is
23949 in both cases. This is in good agreement with the observed value which
during the period fluctuated between 225 and 254 and averaged 243-1. This

https://doi.org/10.1017/S0022172400034902 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400034902


180 Mathematical Theory of Epidemics

agreement indicates that the population during this interval had in fact

attained a steady state condition. It may readily be shown that 7- + r- S^ves

to a first approximation the average cage age at death of those who die of the
specific disease. This is a quantity which could be easily observed over any
given period of time without disturbing the experiment. It does not however
appear to be recorded in the memoir, but if available it would form a valuable
check both on the above calculations, and on the constancy of the conditions
of the experiment from time to time. One would expect that this quantity would
be much less subject to error than l/X1 or l/\ separately. It is evident in the
above fitting of the life table that the values of Ax and \ , as deduced, are
sensitive to relatively small changes in the slope of the curve during the
period 20-80 days. One cannot therefore attach very great confidence to the
accuracy of the separate values which have been obtained, but the quantity

Y + Y is much less dependent on chance irregularities in the curve. Of course

data from a much larger epidemic carried on in a steady state over a longer
period would allow of much more precise determination of both \ and X^
separately. Moreover, we could, in theory at least, determine which value
referred to Ax, and which to \ , because the average cage age at death of the
sick who died of ectromelia is symmetrical in \ and Aj only to a first approxi-
mation, and therefore its exact value would afford a criterion for distinguishing
the two possibilities, provided that the data were sufficiently accurate. The
problem would be most simply settled by interrupting the epidemic during
the steady state condition and observing the individual animals in isolation.
In the case of ectromelia 1, the experiment was actually interrupted in
February 1934, and the remaining mice, 110 in number, were isolated in
separate cages and kept under observation. It is upon the data so obtained
that the estimates of Ax and \ on pp. 175 and 176 were based. However, in
reference to the steady state period, these can only be regarded as very
rough estimates, for evidently a very profound disturbance was introduced—
presumably by the heat wave in August 1932—and the conditions obtaining in
February 1934 were different from those present during the steady state period.
The total number, for example, had fallen from about 250 to about 100. It is
for this reason that we have employed these estimates only as a rough guide.

II. FLUCTUATIONS ABOUT STEADY STATE LEVEL

In discussing the fluctuations about the steady state level, it is sufficiently
approximate to take the non-specific death-rate as constant and equal to the
mean non-specific death-rate actually observed in the steady state condition
over all cage ages. This procedure is justified by the fact that the non-specific
death-rate is in any case small compared with either Xx or Ag. The mean

Irvalue in question, p, is readily shown to be approximately 2 J-, i.e. about
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0-004. This is of the order of a tenth of the values of Xt and A^ It is not
difficult to show that the course of a small disturbance about the steady state
is given by the expression

x^X + A^^ + A ^ and y=Y + B1e^t + B2e
Oi^,

where Ax, A2, B1 and B2 are constants adjusted in conformity with the initial
disturbance, and ax and Og are the two roots of the quadratic

a2 + (A2+/3)a + (A1+p)A2 = 0. (20)
(It may easily be shown that equation (1) reduces to this quadratic in the case
of constant coefficients.) In this quadratic it is sufficiently approximate to put

p = 0. The period is then — , and the damping factor is Ag/2. In the
V ^ A A V

two cases considered above, the periods are 112-4 and 163-0 days and the
damping factors 0-0195 and 0-045 respectively. These both represent highly
damped vibrations, the amplitude in the course of one period being reduced
to one-eighth and one-thousandth respectively of its original value.

It is interesting to examine the diagram given on p. 71 of the memoir in
the light of this result. The graph shows the fluctuations in the 6-day death-
rates of mice dying after a herd experience of 0-30 days, and on the same
diagram are given the 6-monthly death-rates from measles of children from
0-5 years of age. Both curves exhibit recurring maxima, the ectromelia death-
rates showing about 49 in 990 days and the measles 43 in 70 years. This gives
for ectromelia an average period of about 20 days which is very much shorter
than the theoretical period of either 112 or 163 days obtained above. Clearly the
fluctuations shown in the figure are not to be explained as the intrinsic oscilla-
tions of the system. Not only does the observed period differ from the theoretical
but the intrinsic oscillations would be highly damped and difficult to detect.

We think there is no doubt that the ectromelia fluctuations shown in the
figure are essentially random in character, and that the relatively large
amplitudes observed are a result of the smallness of the numbers involved. It
can be shown that a random series satisfies certain criteria; thus, for example,
on the average every third observation would be maximal, that is, greater
than those immediately preceding and following. This question will be dis-
cussed more fully in a subsequent publication, but it may be stated here that
the ectromelia death-rates, though possibly not completely random, are
sufficiently nearly so, to enable us to exclude any periodic oscillation. This is
in agreement with the views of Greenwood et al. (1936).

III. ECTROMELIA 2

It is natural to enquire whether similar results are obtained with the
epidemic ectromelia 2. This experiment was carried out practically simul-
taneously with ectromelia 1, and is stated to have run a very similar course.
Like ectromelia 1, ectromelia 2 would seem to have reached an approximately
steady state between 1. iv. 32 and 1. viii. 32, but unfortunately the corre-
sponding life table has been calculated not for this period but for the period
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182 Mathematical Theory of Epidemics

1. v. 32 and 20. x. 32; consequently the table includes the epoch of the heat-
wave which profoundly disturbed the course of the epidemic. In fact the
population decreased from about 350 to about 250 in approximately 8 weeks.
It is not surprising therefore that an attempt to apply the theory to this life
table does not lead to a satisfactory result. We find r = 0-000012, c2 = 0-166 and

r- + 7" approximately equal to 27-4 days, but we have not been able to arrive

at two values of Ax and Aj which make the 2V curve agree at all closely with
the observed lx values. We therefore directed our attention to the preceding
period 1. xi. 31 to 30. iv. 32. This period was evidently not one in which the
population was in a steady state condition as the numbers increased from
200 to 310 during the 6 months, yet there is no indication of any abrupt change
in the conditions during the period. When the lx curve was examined by the
method already described in detail it was found that r = 0-00000609, c2 = 0-3507,

TT- + ^- = 22 days, whence if A1 = A2 = A, we find A = 0-091.

Calculating the values of iV̂  from the equation

N^ic^l+X^e-^ + c^e-^, (21)

we obtain the following figures for Nv ( = lx), and for the deaths at the various
cage ages dx (Table II and Figs. 3 and 4). As before, we may compare the
calculated and observed dxs by the %2 test. The total number involved was

Table II
Ectromelia 2. Period 1. xi. 31-30. iv. 32

uage age
in days

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
300
350
400
450

Experimental

10000
9322
6479
4817
4217
3912
3630
3513
3351
3228
3228
3159
3136
3136
3078
3046
2885
2741
2628
2590
2552
2552
2516
2516
2479
2406
2054
1603
1337
1030

Theoretical

10000
8494
6460
5059
4256
3839
3607
3500
3409
3354
3306
3261
3213
3164
3112
3058
3001
2941
2879
2815
2749
2681
2611
2541
2469
2397
2027
1663
1324
1022

Experimental

678
2843
1662
600
305
282
117
162
123
0
69
23
0
58
32
161
144
113
38
38
0
36
0
37
73
353
450
266
307
—

Theoretical

1506
2034
1401
803
417
232
107
91
55
48
45
48
49
52
54
57
60
62
64
66
68
70
71
72
72
370
364
339
302
—
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543, and taking the period 0-20 as one we find x

2 = 54-0, w' = 28, P = 0-004.
This value of P is not satisfactory but it is to be noted that a large contribu-
tion comes from the portion of the curve between 150-250 days. In fact the

10000;

9000

8000

7000

6000

5000

4000

3000

2000

1000

0 -4- -4- -4- - I - 1- -4- -4- -4- -4-
40 80 120 160 200 240 280 320 360 400 440

20 60 100 140 180 220 260 300 340 380 420
Cage age in days

Fig. 3. lx. Ectromelia 2. 1. xi. 31-30. iv. 32.

2800

2600

2400

2200

2000

1800

1600

1400-

1200

$ 1000

800

600

400

200

0

I

40 80 120 160 200 240 280 320 360 400 440
20 60 100 140 180 220 260 300 340 380 420

Cage age in days

Fig. 4. dx. Ectromelia 2. 1. xi. 31-30. iv. 32.

observed dx figures over this period rise to a maximum and fall again in a way
which it seems quite impossible to accommodate on any simple theory. It is
probable that some disturbing factor must have intruded; if we omit this
period and consider the other 300 days we find x2 = 25-2, n' = 18, P = 0-09. The
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Ny curve as shown in Fig. 3 closely follows the observed lx curve and it does
not seem probable that substantially better agreement would be obtained by
taking unequal values for Aĵ  and Ag. The values A ^ A ^ 0-091 give X = 32-66,
Y = 32-82, X = 353-04, N = 418-52, £ = 0-00277, 1 = 0-0391 and d = 0-0591. The
theoretical period is 79-4 days and the damping factor 0-045. It will be noticed
that the value of N is much greater than the observed value (210 rising to 310).
We have already pointed out that the theoretical value of N is in fact m times
the expectation of life at zero cage age. This result holds generally in a steady
state condition and is not dependent on a particular epidemiological theory.
It follows that an expectation of life of 140 days necessarily leads to
iV = 402 days. (The expectation of life given in the memoir is 125-8 days, and
this would correspond to N = 377-4 days. The discrepancy between the two
estimates is probably dependent upon different methods of treating the higher
cage ages.) Whichever estimate be adopted, the resulting value of N is above
the actual number of the population at any time within the period. This is
obviously due to the circumstance that the experiment had not been continued
for a sufficiently long time for a steady state level to establish itself, and this
is borne out by the fact that the numbers continued to mount steadily
throughout the period.

DISCUSSION

In applying the above theory to the observed data we have found it
desirable to treat the first 20 days of cage life as a single unit, because it is
obvious from the trend of the lx figures that the fall during the first 10 days is
unduly slow. It is fairly certain that this discrepancy between observation and
theory arises from the fact that the disease has a latent or incubation period
of 4 or 5 days. It is thus impossible for specific deaths to occur during the
first 4-5 days of cage life. The deaths which ought to have occurred according
to theory during this period have been, as it were, postponed. It might have
been better to have attempted to fit the curve from the fifth day onwards, but
this procedure would appear to involve an undue degree of arbitrariness.
Apart from the initial period the agreement between theory and observation
in the case of ectromelia 1 is extremely satisfactory, whilst for ectromelia 2
it is as good as could be expected in view of the not altogether satisfactory
nature of the data.

The memoir refers to the fact that in attempting to interpret epidemio-
logical phenomena, the real difficulty is to be able to distinguish the factors
that are really important. There is no doubt that in any actual epidemic the
interplay of all the various effects is a highly complicated one. A complete
theory which attempts to deal with the whole phenomena would be un-
workable mathematically and too complicated to apply in practice. As is
the case in practically all applied sciences, it is essential to guess or otherwise
decide upon the really important factors and then to construct an idealized
theory in which the factors which have been neglected may be subsequently
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accommodated by a posteriori modifications. From this point of view it is a
matter of considerable importance to find that the essential features of the cage
experience of the individual mice can be adequately accounted for by the
modification of the general theory in which the infectivity, specific death, and
recovery rates are represented by constant coefficients. We do not suggest
that the postulates of the theory which we have applied in the preceding pages
are completely fulfilled in the experimental epidemics, we suggest however
that they are approximately fulfilled. We find a satisfactory agreement on
points which we can test; we therefore suggest that other conclusions from the
deductive method which cannot be tested easily may also be approximately
valid, and so we may be able to predict what will happen in cases which cannot
be tested experimentally. These considerations justify the procedure of
developing, at some length, the simplified theory based on constant coefficients
and applying it to the explanation of the qualitative features of epidemics and
even as far as may be to the calculation of the actual values of the coefficients
in question.

It is one of the obvious criticisms of experimental work such as that
embodied in the memoir that though exceedingly laborious and costly it
nevertheless refers only to a particular species of animal and even then only
to one or two diseases affecting the species. It is not at all immediately
evident how far the results have any direct bearing on epidemics of human
disease. It appears to us that this difficulty can only be met by developing the
more theoretical side pari passu with the experimental, and analysing the
latter in the light of the results obtained theoretically. It seems to us that
possibly the most useful information of a general character which might be
expected to accrue from the experimental work is the assistance it can give us
in assessing the relative importance of the many complex factors. In particular
the indication which it affords us of the substantial adequacy of the constant
rate theory would seem to be most valuable. This result is all the more
important because it is of a type which might be expected to hold generally,
and not to be' limited to the particular case.

We think it of interest to direct attention to the remarkable symmetry in
respect of X1 and \ , which appears in the above results. This symmetry is in
fact so complete up to first approximation that it has been found impossible
to obtain from the life table any reliable criterion for distinguishing those

constants from each other. Equation (19) gives ~ = -4=—=^. Let us now
A2 mk mk

imagine d and I to be fixed, then \ will depend only on the product mk. Thus
the life table depending only upon X1 and \ will remain unchanged if we vary
m and k in such a way that their product remains constant. If now we consider
this product as fixed we may interchange X1 and A2 without disturbing the life
table. In other words for a constant mk there are two values of A1, that is, of
d + l, which give the same life table. If we change from one value of d +1 to
the other we approximately interchange the numbers of uninfected and sick,
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the lower value of d +1 corresponding to a higher number of sick, in the steady
state. However the average cage age of the sick at death remains approxi-
mately constant.

A few words may be added as to the significance of some of the constants
which appear in the above theory. The deadliness of the disease is measured

by ci = -j—5, and not simply by d. The quantity \ , or d +1, represents as it

were the rate of the disease process in the individual; in other words 1/Aj
measures the average period which elapses from the time when an individual
becomes infected until the termination of his illness by either recovery or
death. In comparing ectromelia 2 with ectromelia 1, it will be seen that in the
former the general death-rate measured by r is lower, and that the deadliness
of the disease process is less. This is in conformity with the statement in the
memoir that "on the whole ectromelia 2 had a lower rate of mortality than
ectromelia 1". On the other hand the time required for an individual entering
the cage to become infected and then either to recover or die of the disease

i- + -r is shorter in the case of ectromelia 2. Ectromelia 2 would therefore

A2
c l
ft!
X
Y
X
N
I
I
A
N"
1 1

T
Damping factor
r

Case (a)
0039
009
0-8
0-2

33-72
73-95

131-82
239-49

0-00122
0-0078
00312

79-83

36-5

112-4
00195
0-000012

Table of numerical values
Ectromelia 1

Period 1. iii. 32-31. viii. 32

Case (6)
0-09
0039
0-8
0-2

75-92
31-95

131-82
239-49

0-00122
0019
0072

79-83

36-5

1630
0-045
0-000012

Ectromelia 2
Period 1. xi. 31-

30. iv. 32
0091
0091
0-6493
0-3507

32-66
32-82

35304
418-52

0-00277
00391
00591

139-51

220

79-4
0045
0-00000609

The chance that an individual may become infected by a particular infected individual in a
day is k.

The chance that an individual entering the cage may become infected in a day is kY = X2

(Dudley's "infection pressure").
The average period during which a mouse (ultimately infected) remains uninfected is therefore

1/A2 days.
The average period during which an infected mouse carries the disease is approximately

^ - e . I/A, days.

The deadliness of the disease, i.e. the chance that a mouse which becomes infected will die

of the disease, is approximately -=—=, that is, Cj, and that it will recover is approximately -j—-,

that is, c%.

The average cage age at death of the mice which die of the disease is approximately T- + v- days.
A A
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appear to have been a more rapid but less lethal infection. These comparisons
of course only refer to the periods actually analysed.

It is an obvious extension of the above work, to apply it to the other experi-
mental epidemics dealt with in the memoir. These, however, refer to bacterial
diseases in which presumably complete immunity is not conferred by an
attack of the disease. Consequently equations (2) must be replaced by a
somewhat more complicated set involving five unknown parameters instead of
four, and the fitting .of these to the data would be rather more difficult.
However, it is hoped to deal with this problem in a subsequent communication.

SUMMARY

1. The experimental data obtained by Greenwood et al. (1936) relating to
epidemics of the virus disease ectromelia in mice have been examined in the
light of mathematical theory. Attention has been directed in particular to the
life tables calculated from the observed data, which give the chance of survival
and death after various periods of cage life.

2. The life table relating to ectromelia 1 during the steady state phase
from 1. iii. 32 to 31. viii. 32 shows very close agreement over the range 0-550
days with that predicted by the theoretical equation which involves only four
arbitrary constants. A slight discrepancy over the first few days is evidently
due to the fact that representation of the death-rate and the recovery rate by
constant coefficients does not accommodate an incubation period. The values
of the constants obtained from the data give a measure of the essential
characteristics of the epidemic.

3. General agreement, though not so complete, is also found when the
theory is applied to ectromelia 2 during the period 1. xi. 31-30. iv. 32. During
this phase however, although conditions were otherwise apparently uniform, a
steady state had not actually been attained. On the other hand the equations
do not apply so satisfactorily to the obviously inhomogeneous period 1. v. 32-
20. x. 32.

4. In the present analysis the assumption of constant rates gives a
satisfactory account of the progress of an infection in a susceptible com-
munity. This result suggests that for many purposes the assumption of
constant rates may be adequate.

5. The short period fluctuations observed in the ectromelia epidemic were
probably random in character and have no relationship to periodic fluctuations
such, for example, as those detected by Brownlee in the case of measles.
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