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Abstract. Let K be a function field and C a non-isotrivial curve of genus g > 2 over K. In this
paper, we will show that if C has a global stable model with only geometrically irreducible fibers,
then Bogomolov conjecture over function fields holds.
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1. Introduction

Let k be a field,X a smooth projective surface over k, Y a smooth projective curve
over k, and f : X ! Y a generically smooth semistable curve of genus g > 2
over Y . Let K be the function field of Y , K the algebraic closure of K , and C

the generic fiber of f . For D 2 Pic1(C)(K), let jD : CK ! Pic0(C)K be an
embedding defined by jD(x) = x � D. Then, we have the following conjecture
due to Bogomolov.

CONJECTURE 1.1 (Bogomolov conjecture over function fields). If f is non-
isotrivial, then, for any embedding jD , the image jD(C(K)) is discrete in terms of
the semi-norm k kNT given by the Neron–Tate height pairing on Pic0(C)(K), i.e.,
for any point P 2 Pic0(C)(K), there is a positive number " such that the set

fx 2 C(K) j kjD(x)� PkNT 6 "g

is finite.

In this paper, we will prove the above conjecture under the assumption that the
stable model of f : X ! Y has only geometrically irreducible fibers.

THEOREM 1.2 If the stable model of f : X ! Y has only geometrically irre-
ducible fibers, then Conjecture 1.1 holds. More strongly, there is a positive number
A with the following properties.

(1) A >
q

g�1
12g(2g+1)�, where � is the number of singularities in singular fibers of

f�k : X�k ! Y�k.
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(2) For any small positive number ", the setn
x 2 C(K) j kjD(x)� PkNT 6 (1 � ")A

o
is finite for any embedding jD and any point P 2 Pic0(C)(K).

Our proof of Theorem 1.2 is based on the admissible pairing on semistable
curves due to S. Zhang (cf. Section 2), Cornalba–Harris–Xiao’s inequality over an
arbitrary field (cf. Theorem 4.1) and an exact calculation of a Green function on a
certain metrized graph (cf. Lemma 3.2). The estimation of a Green function also
gives the following result, which strengthen S. Zhang’s theorem [9].

THEOREM 1.3 (cf. Corollary 6.3) LetK be a number field,OK the ring of integers,
f : X ! Spec(OK) a regular semistable arithmetic surface of genus g > 2 over
OK . If f is not smooth, then

(!ArX=OK
� !ArX=OK

) >
log 2

6(g � 1)
:

2. Metrized graph, green function and admissible pairing

In this section, we recall several facts of metrized graphs, Green functions and the
admissible pairing on semistable curves. Details can be found in Zhang’s paper [9].

Let G be a locally metrized and compact topological space. We say G is a
metrized graph if, for any x 2 G, there is a positive number ", a positive integer
d = v(x) (which is called the valence at x), and an open neighborhoodU of x such
that U is isometric to

ft e(2�
p
�1k)=d

2 C j 0 6 t < "; k 2 Zg:

Let Div(G) be a free abelian group generated by points of G. An element of
Div(G) is called a divisor on G. Let F (G) be the set of all piecewise smooth real
valued functions on G. For f 2 F (G), we can define the functional �(f) on F (G)
associated with f as follows. If x 2 G and v(x) = n, then �(f)(x) is given by

(�(f)(x); g) = g(x)
nX
i=1

lim
xi!0

f 0(xi);

where g 2 F (G) and xi is the arc-length parameter of one branch starting from x.
�(f) is called the Dirac function associated with f . Moreover, for f 2 F (G), the
functional f 00 on F (G) is defined by

(f 00; g) =
Z
G
f 00g d�;

where d� is the Lebesgue measure arising from an arc-length parameter of G. The
Laplacian � for f 2 F (G) is defined by

�(f) = �f 00 � �(f):
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Let Q(G) be a subset of F (G) consisting of piecewise quadratic polynomial
functions. Let V be a set of vertices ofG such thatGnV is a disjoint union of open
segments. Let E be the collection of segments in G n V . We denote by Q(G;V )
the subspace of Q(G) consisting of functions whose restriction to each edge in E
are quadratic polynomial functions, and byM(G;V ) the vector space of measures
on G generated by Dirac functions �v at v 2 V and by Lebesgue measures on
edges e 2 E arising from the arc-length parameter. The fundamental theorem is
the following existence of the admissible metric and the Green function.

THEOREM 2.1 ([9, Theorem 3.2]). Let D =
P

x2G dxx be a divisor on G such
that the support of D is in V . If G is connected and deg(D) 6= �2, then there
are a unique measure � 2M(G;V ) and a unique function g� on G�G with the
following properties.

(1)
R
G � = 1.

(2) g�(x; y) is symmetric and continuous on G�G.
(3) For a fixed x 2 G, g�(x; y) 2 Q(G). Moreover, if x 2 V , then g�(x; y) 2

Q(G;V ).
(4) For a fixed x 2 G, �y(g�(x; y)) = �x � �.
(5) For a fixed x 2 G,

R
G g�(x; y)�(y) = 0.

(6) g�(D; y) + g�(y; y) is a constant for all y 2 G, where g�(D; y) =P
x2G dxg�(x; y).

Furthermore, if dx > v(x)� 2 for all x 2 G, then � is positive.

The measure � in Theorem 2.1 is called the admissible metric with respect to
D and g� is called the Green function with respect to �. The constant g�(D; y) +
g�(y; y) is denoted by c(G;D).

Let k be an algebraically closed field, X a smooth projective surface over k, Y
a smooth projective curve over k, and f : X ! Y a generically smooth semistable
curve of genus g > 1 over Y . Let CV(f) (� Y ) be the set of all critical values
of f , i.e., y 2 CV(f) if and only if f�1(y) is singular. For y 2 CV(f), let Gy

be the metrized graph of f�1(y) defined as follows. The set of vertices Vy of
Gy is indexed by irreducible components of the fiber f�1(y) and singularities of
f�1(y) correspond to edges of length 1. We denote by Cv the irreducible curve
corresponding to a vertex v in Vy. Let Ky be the divisor on Gy given by

Ky =
X
v2Vy

(!X=Y � Cv)v:

Let �y be the admissible metric with respect to Ky and g�y the Green function of
�y. The admissible dualizing sheaf !aX=Y is defined by

!aX=Y = !X=Y �
X

y2CV(f)

c(Gy;Ky)f
�1(y):
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Here we define a new pairing (D � E)a for D;E 2 Div(X)
 R by

(D � E)a = (D �E) +
X

y2CV(f)

8<
:

X
v;v02Vy

(D � Cv)g�y (v; v
0)(E � Cv0)

9=
; :

This pairing is called the admissible pairing. It has lots of properties. For our
purpose, the following are important. (Details can be found in [9].)

(1) (Adjunction formula) If B is a section of f , then (!aX=Y +B �B)a = 0.
(2) (Intersection with a fiber) If D is an R-divisor with degree 0 along general

fibers, then (D � Z)a = 0 for all vertical curves Z . (cf. Proposition A.3)
(3) (Compatibility with base changes) The admissible pairing is compatible with

base changes. Namely, let � : Y 0 ! Y be a finite morphism of smooth
projective curves, andX 0 the minimal resolution of the fiber product of X �Y

Y 0. The induced morphisms are denoted as follows:

X �
�0

X 0

Y

f

?

�

�
Y 0
?

f 0

Then, for D;E 2 Div(X)
R, (�0�(D) ��0�(E))a = (deg�)(D �E)a. More-
over, we have�0�(!aX=Y ) = !aX0=Y 0 . Thus, (!aX0=Y 0 �!

a
X0=Y 0)a = (deg�)(!aX=Y �

!aX=Y )a.

Using the above properties, we can express the Neron–Tate height pairing in terms
of the admissible pairing. LetC be the generic fiber of f ,K the function field of Y ,
and L;M 2 Pic0(C)(K). Then, there exist a base change Y 0 ! Y , a semistable
model X 0 of C over Y 0, and line bundles L and M on X 0 such that LK = L and
MK = M . Moreover, we can find vertical Q-divisors V and V 0 on X 0 such that
(L+ V � Z) = (M+ V 0 � Z) = 0 for all vertical curves Z on X 0. Then, it is easy
to see that

�1
[k(Y 0) : k(Y )]

(L+ V �M+ V 0)

is independent of the choice of V and V 0. It is denoted by (L �M)NT and is called
the Neron Tate height pairing. It is easy to see that (L �L)NT > 0. So

p
(L � L)NT

is denoted by kLkNT . On the other hand, by the definition of the admissible pairing,
we have

(L+ V �M+ V 0) = (L+ V �M+ V 0)a:

Thus, using the property (2) above, we can see that

�[k(Y 0) : k(Y )](L �M)NT = (L �M)a;
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which means that the admissible pairing does not depend on the choice of the
compactification of L and M , and that of course

(L �M)NT =
�(L �M)a

[k(Y 0) : k(Y )]
:

Next, let us consider a height function in terms of the admissible pairing. Let
L be an R-divisor on X and x 2 C(K). Then, taking a suitable base change
� : Y 0 ! Y , there is a semistable model f 0 : X 0

! Y 0 of C such that x is realized
as a section Bx of f 0. We set

haL(x) =
(�0�(L) �Bx)a

deg�
;

where �0 : X 0
! X is the induced morphism. One can easily see that haL(x)

is well-defined by the third property of the above. The following generic lower
estimate of the height function is important for our purpose.

THEOREM 2.2 ([9, Theorem 5.3]). If deg(LK) > 0 and L is f -nef, then, for any
" > 0, there is a finite subset S of C(K) such that

haL(x) >
(L � L)a

2 deg(LK)
� "

for all x 2 C(K) n S.

As corollary, we have the following.

COROLLARY 2.3 ([9, Theorem 5.6]). Let D 2 Pic1(C)(K). Then, for any " > 0,
there is a finite subset S of C(K) such that

kD � xk2
NT >

(!aX=Y � !
a
X=Y )a

4(g � 1)
+
k!C � (2g � 2)Dk2

NT

4g(g � 1)
� "

for all x 2 C(K) n S.
Proof. Let �1 : Y1 ! Y be a base change of f : X ! Y such that D is defined

over the function field k(Y1) of Y1. Let f1 : X1 ! Y1 be the semistable model ofC
over Y1 (i.e. X1 is the minimal resolution of singularities of X�Y Y1), F a general
fiber of f1, and D a compactification of D such that D is a Q-divisor on X1 and D
is f1-nef. Using adjuction formula and applying Theorem 2.2 to

L = !aX1=Y1
+ 2D � (D � D)aF;

we have our corollary. 2

3. Green function of a certain metrized graph

In this section, we will construct a Green function of a certain metrized graph. Let
us begin with the following lemma.
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LEMMA 3.1 Let C be a circle with arc-length l. Fixing a point O on C , let
t : C ! [0; l) be a coordinate of C with t(O) = 0 coming from an arc-length
parameterization of C . We set

�(u) =
1
2l
u2
�

1
2 juj(u 2 R) and f(x; y) = �(t(x)� t(y)):

Then, we have the following.

(1) f(x; y) is symmetric and continuous on C � C .
(2) f(x; y) is smooth outside the diagonal.
(3) For a fixed x 2 C , �y(f(x; y)) = �x �

dt
l .

Proof. We can check these facts by a straightforward calculation. 2

Let C1; : : : ; Cn be circles and G a metrized graph constructed by joining Ci’s at a
point O. Let li be the arc-length of Ci and ti : Ci ! [0; li) a coordinate of Ci with
ti(O) = 0.

From now on, we will identify a point on Ci with its coordinate. As in Lemma 3.1,
for each i, we set

�i(u) =
1

2li
u2
�

1
2 juj:

We fix a positive integer g. Here we consider a measure � and a divisor K on G

defined by

� =
g � n

g
�O +

nX
i=1

dti
gli

and K = (2g � 2)O:

Moreover, let us consider the following function g� on G�G.

g�(x; y) =

8>>><
>>>:
�i(x� y)�

g � 1
g

�
�i(x) + �i(y)

�
+

L

12g2 if x; y 2 Ci

1
g

�
�i(x) + �j(y)

�
+

L

12g2 if x 2 Ci, y 2 Cj and i 6= j

;

where L = l1 + � � � + ln. Then, we can see the following.
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LEMMA 3.2 (1)
R
G � = 1.

(2) g�(x; y) is symmetric and continuous on G�G.
(3) For a fixed x 2 G, �y(g�(x; y)) = �x � �.
(4) For a fixed x 2 G,

R
G g�(x; y)�(y) = 0.

(5) g�(K; y) + g�(y; y) =
L(2g�1)

12g2 for all y 2 G.

Proof. (1), (2) These are obvious.
(3) We assume x 2 Ci. By [9, Lemma a.4, (a)],

�y(g�(x; y)) =
nX
j=1

�y(g�(x; y)jCj ):

Therefore, using Lemma 3.1, we get

�y(g�(x; y)) = �y(g�(x; y)jCi) +
nX
j 6=i

�y(g�(x; y)jCj )

=

�
�x �

dti
li
�
g � 1
g

�
�O �

dti
li

��
+

nX
j 6=i

1
g

 
�O �

dtj
lj

!

= �x � �:

(4) We assume x 2 Ci. Then, by a direct calculation, we can see

Z
Cj

g�(x; tj)
dtj
glj

=

8>>><
>>>:
�
g � 1
g2 �i(x)�

li

12g2 +
L

12g3 if j = i

1
g2�i(x)�

lj

12g2 +
L

12g3 if j 6= i

:

Therefore,

nX
j=1

Z
Cj

g�(x; tj)
dtj
glj

=
n� g

g

�
1
g
�i(x) +

L

12g2

�
:

Hence,
Z
G
g�(x; y)�(y) =

g � n

g
g�(x; 0) +

nX
j=1

Z
Cj

g�(x; tj)
dtj
glj

=
g � n

g

�
1
g
�i(x) +

L

12g2

�

+
n� g

g

�
1
g
�i(x) +

L

12g2

�

= 0:
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(5) Since

g�(O; x) =
1
g
�i(x) +

L

12g2 and

g�(x; x) =
�2(g � 1)

g
�i(x) +

L

12g2 ;

(5) follows. 2

This lemma says us that � is the admissible metric with respect to K , g� is the

Green function of �, and c(G;K) =
L(2g�1)

12g2 .

4. Cornalba–Harris–Xiao’s inequality over an arbitrary field

In this section, we would like to generalize Cornalba–Harris–Xiao’s inequality to
fibered algebraic surfaces over an arbitrary field, namely,

THEOREM 4.1 Let k be a field,X a smooth projective surface over k, Y a smooth
projective curve over k, and f : X ! Y a generically smooth morphism with
f�OX = OC . If the genus g of the generic fiber of f is greater than or equal to 2
and !X=Y is f -nef, then

(!X=Y � !X=Y ) >
4(g � 1)

g
deg(f�(!X=Y )):

The above was proved in [3] and [8] under the assumption char(k) = 0. Here
we prove it using the following result of Bost.

THEOREM 4.2 ([2, Theorem III]). Let k be a field, Y a smooth projective curve
over k, and E a vector bundle on Y . Let

� : P = Proj

 1M
n=0

Symn(E)

!
�! Y

be the projective bundle of E and OP (1) the tautological line bundle on P . If an
effective cycle Z of dimension d > 1 on P is Chow semistable on the generic fiber
of �, then�

OP (1)d � Z
�

d �
�
OP (1)d�1 � Z � F

� > degE
rkE

;

where F is a general fiber of �.

First of all, let us begin with the following lemmas.
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LEMMA 4.3 LetK be a field,C a smooth projective curve overK of genus g > 2,
and � : C ! Pg�1 the morphism given by the complete linear system j!C j. Then
��(C) is a Chow semistable cycle on Pg�1.

Proof. Let R be the image of C by � and n an integer given by

n =

(
1; if C is non-hyperelliptic;
2; if C is hyperelliptic:

Then, ��(C) = nR. Thus a Chow form of ��(C) is the nth power of a Chow form
of R. Therefore, ��(C) is Chow semistable if and only if R is Chow semistable.
Moreover, Theorem 4.12 in [7] says that Chow semistability of R is derived from
linear semistability of R .

LetV be a subspace ofH0(C;!C), p:Pg�1 - -! PdimV�1 the projection defined
by the inclusion V ,! H0(C;!C), and �0 : C ! PdimV�1 a morphism given by
V . Then, p � � = �0. We need to show that

2
n
=

deg(R)
g � 1

6
deg(p�(R))
dimV � 1

(4:3:1)

to see linear semistability of R. Since deg(�0�(O(1))) = n deg(p�(R)), (4.3.1) is
equivalent to say

2 6
deg(�0�(O(1)))

dimV � 1
:

On the other hand, if we denote by !VC the image of V 
 OC ! !C , then, by
Clifford’s lemma, we have

dimV � 1 6 dim j!VC j 6
deg(!VC )

2
:

Thus, we get (4.3.1) because deg(�0�(O(1))) = deg(!VC ). 2

Remark 4.4 By [2, Proposition 4.2], ��(C) is actually Chow stable when
char(K) = 0 or when C is not hyperelliptic. We don’t know whether ��(C) is
Chow stable if char(K) > 0. Anyway, semistability is enough for our purpose.

Let us start the proof of Theorem 4.1. Let

�:X - -! P = Proj

 1M
n=0

Symn(f�(!X=Y ))

!

be the rational map overY induced by f�f�(!X=Y )! !X=Y . Consider a birational
morphism� : X 0 ! X of smooth projective varieties such that �0 = ��� : X 0 ! P

is a morphism:
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X 0 �
- X

P

�0

?

========= P
?

�

Then, there is an effective vertical divisor D on X 0 such that ��(!X=Y ) =

�0�(OP (1))+D. LetZ = �0�(X
0). Then, by Lemma 4.3,Z give a Chow semistable

cycle on the generic fiber. Thus, by Theorem 4.2, we have�
�0�(OP (1)) � �0

�(OP (1))
�

4(g � 1)
>

deg(f�(!X=Y ))

g
:

On the other hand, since !X=Y is f -nef and (D �D) 6 0,

(�0
�
(OP (1)) � �

0�(OP (1)))

= (��(!X=Y )�D � ��(!X=Y )�D)

= (!X=Y � !X=Y )� 2
�
��(!X=Y ) �D

�
+ (D �D)

6 (!X=Y � !X=Y ):

Therefore, we have our desired inequality. 2

Remark 4.5 If char(k) = 0, we can give another proof of Theorem 4.1 according
to [5]. A rough idea is the following. Since the kernel K of f�f�(!X=Y )! !X=Y
is semistable on the generic fiber of f by virtue of [4], we can apply Bogomolov–
Gieseker’s inequality to K , which implies Cornalba–Harris–Xiao’s inequality by
easy calculations.

5. Proof of Theorem 1.2

In this section, we would like to give the proof of Theorem 1.2. First of all, let us
fix notations. Let k be a field, X a smooth projective surface over k, Y a smooth
projective curve over k, and f : X ! Y a generically smooth semistable curve of
genus g > 2 over Y . Let K be the function field of Y , K the algebraic closure of
K , and C the generic fiber of f . We assume that f is non-isotrivial and the stable
model of f : X ! Y has only geometrically irreducible fibers. Clearly, for the
proof of Theorem 1.2, we may assume that k is algebraically closed. Then, we have
the following lower estimate of (!aX=Y � !

a
X=Y )a.
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THEOREM 5.1 Under the above assumptions, (!aX=Y �!
a
X=Y )a is positive. More-

over,

(!aX=Y � !
a
X=Y )a >

(g � 1)2

3g(2g + 1)
�;

where � is the number of singularities in singular fibers of f .
Proof. Let CV(f) be the set of all critical values of f . For y 2 CV(f), the

number of singularities of f�1(y) is denoted by �y . Let Gy be the metrized graph
of f�1(y) as in Section 2. Then, the total arc-length of Gy is �y . Let Ky be the
divisor on Gy coming from !X=Y as in Section 2, �y the admissible metric of Ky ,
and g�y the Green function of �y. By the definition of !aX=Y (see Sect. 2), we have

(!aX=Y � !
a
X=Y )a = (!X=Y � !X=Y )

+
X

y2CV(f)

fg�y (Ky;Ky)� 2(2g � 2)c(Gy;Ky)g:

On the other hand, Gy is isometric to the graph treated in Section 3. Thus, by
Lemma 3.2,

g�y (Ky;Ky)� 2(2g � 2)c(Gy;Ky)

= (2g � 2)2 �y

12g2 � 2(2g � 2)
(2g � 1)�y

12g2

= �
g � 1

3g
�y:

Thus

(!aX=Y � !
a
X=Y )a = (!X=Y � !X=Y )�

g � 1
3g

�:

By virtue of Theorem 4.1 and Noether formula

deg(f�(!X=Y )) =
(!X=Y � !X=Y ) + �

12
;

we have

(!X=Y � !X=Y ) >
g � 1

2g + 1
�:

Therefore, we get

(!aX=Y � !
a
X=Y )a >

(g � 1)2

3g(2g + 1)
�:

In particular, (!aX=Y � !
a
X=Y )a > 0 if f is not smooth. Further, if f is smooth, then

(!aX=Y � !
a
X=Y )a = (!X=Y � !X=Y ) > 0
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because f is non-isotrivial. 2

Let us start the proof of Theorem 1.2. We set

A =

vuut(!a
X=Y

� !a
X=Y

)a

4(g � 1)
:

Then, by Theorem 5.1, A is positive and

A >

s
g � 1

12g(2g + 1)
�:

By virtue of Corollary 2.3, for any D 2 Pic1(C)(K) and any P 2 Pic0(C)(K),
there is a finite subset S of C(K) such that

kx�D � PkNT > (1� ")A

for all x 2 C(K) n S. Therefore, we have

fx 2 C(K) j kjD(x)� PkNT 6 (1 � ")Ag � S:

Thus, we get the second property of A. 2

6. Effective lower bound of (! � !) for arithmetic surfaces

Let K be a number field, OK the ring of integers, f : X ! Spec(OK) a regular
semistable arithmetic surface of genus g > 2 over OK . In [6], we proved the
following.

THEOREM 6.1 If geometric fibersXP1
; : : : ;XPn

ofX atP1; : : : ; Pn 2 Spec(OK)
are reducible, then

(!ArX=OK
� !ArX=OK

) >
nX
i=1

log #(OK=Pi)

6(g � 1)
:

Using Lemma 3.2, we have the following exact lower estimate for stable curves
with only irreducible fibers.

THEOREM 6.2 Assume that the stable model of f : X ! Spec(OK) has only
geometric irreducible fibers. If fP1; : : : ; Png is the set of critical values of f , then

(!ArX=OK
� !ArX=OK

) >
nX
i=1

g � 1
3g

�i log #(OK=Pi);

where �i is the number of singularities of the geometric fiber at Pi. Moreover,
equality holds if and only if there is a sequence of distinct points x1; x2; : : : of
X(Q ) such that

lim
i!1

k(2g � 2)xi � !kNT = 0:

comp3922.tex; 7/05/1997; 15:38; v.5; p.12

https://doi.org/10.1023/A:1000139117766 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000139117766


BOGOMOLOV CONJECTURE OVER FUNCTION FIELDS FOR STABLE CURVES 137

Proof. In the same way as in the proof of Theorem 5.1, we have

(!aX=OK
� !aX=OK

)a = (!ArX=OK
� !ArX=OK

)�
nX
i=1

g � 1
3g

�i log #(OK=Pi):

Therefore, our theorem follows from [9, Corollary 5.7]. 2

Combining the above two theorems, we have the following corollary, which is a
stronger version of S. Zhang’s result [9].

COROLLARY 6.3 If f : X ! Spec(OK) is not smooth, then

(!ArX=OK
� !ArX=OK

) >
log 2

6(g � 1)
:

Appendix A. A matrix representation of Laplacian

In this appendix, we will consider a matrix representation of the Laplacian and its
easy application.

Let G be a metrized graph and V a set of vertices of G such that G n V is a
disjoint union of open segments. Let E be a set of edges of G by V . The length of
e in E is denoted by l(e). Recall that Q(G;V ) is the set of continuous functions
on G whose restriction to each edge in E are quadratic polynomial functions, and
M(G;V ) is the vector space of measures on G generated by Dirac functions �v
at v 2 V and by Lebesgue measures on edges e 2 E arising from the arc-length
parameter. First, we define linear maps p : Q(G;V )! RV and q : M(G;V )! RV

in the following ways. If f 2 Q(G;V ), then p(f) is the restriction to V . If �v is a
Dirac function at v 2 V , then

q(�v)(v
0) =

(
1 if v0 = v

0 if v0 6= v

If dt is a Lebesgue measure on a edge e in E, then

q(dt)(v) =

(
l(e)=2 if v is a vertex of e

0 otherwise.

Next let us define a linear map L : RV ! RV . For distinct vertices v; v0 in V , let
E(v; v0) be the set of edges in E whose vertices are v and v0. Here we set

a(v; v0) =

8>><
>>:

0 if E(v; v0) = ;

X
e2E(v;v0)

1
l(e)

otherwise
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for v 6= v0. Moreover, we set

a(v; v) = �
X
v02V
v0 6=v

a(v; v0):

Let L : RV ! RV be the linear map defined by the matrix (�a(v; v0))v;v02V , i.e.,
if we denote q(�v) by ev , then L(ev) = �

P
v02V a(v; v

0)ev0 . Thus, we have the
following diagram:

Q(G;V )
�
- M(G;V )

RV

p

?

L
- RV

?

q

Then, we can see the following proposition as remarked in [1, (5.3)].

PROPOSITION A.1 The above diagram is commutative, i.e., L � p = q ��.
Proof. Let f 2 Q(G;V ). First, let us consider two special cases of f .

Case 1. A case where f is a linear function on each edge inE. By the definition
of �, we can see that

�(f) = �
X
v2V

0
BB@ X

v02V nfvg

E(v;v0)6=;

0
@ X
e2E(v;v0)

f(v0)� f(v)

l(e)

1
A
1
CCA �v:

On the other hand, by the definition of a(v; v0),

X
v02V nfvg

E(v;v0)6=;

0
@ X
e2E(v;v0)

f(v0)� f(v)

l(e)

1
A =

X
v02V

a(v; v0)f(v0):

Therefore, we have

�(f) =
X
v2V

0
@X
v02V

�a(v; v0)f(v0)

1
A �v;

which shows us q(L(f)) = L(p(f)).

Case 2. A case where there is e 2 E such that f � 0 on G n e. Let v; v0 be
vertices of e and � : [0; l(e)] ! e be the arc-length parameterization of e with
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�(0) = v and �(l(e)) = v0. Since f(v) = f(v0) = 0, f can be written in the form
f(t) = at(t� l(e)), where t is the arc-length parameter and a is a constant. Thus,

�(f) = al(e)�v + al(e)�v0 � 2a dt:

Therefore, q(�(f)) = 0, which means that q(�(f)) = L(p(f)).

Let us consider a general case. Let f0 be a continuous function on G such that
f0 is a linear function on each e 2 E and f0(v) = f(v) for all v 2 V . Then, f � f0

can be written by a sum of functions f1; : : : ; fk as in the case 2, i.e.,

f = f0 + f1 + � � � + fk

and fi (1 6 i 6 k) is zero on the outside of some edge. By the previous observation,
we know q(�(fi)) = L(p(fi)) for all i = 0; 1; : : : ; k. Thus, using linearity of each
map, we get our lemma. 2

As a corollary, we have the following.

COROLLARY A.2 Let D =
P

v2V dvv be a divisor on G, � 2 M(G;V ), and
g 2 Q(G;V ) such thatZ

G
� = 1 and �(g) = �D � (degD)�:

Then, we have

dv +
X
v02V

a(v; v0)g(v0) = (degD)q(�)(v)

for all v 2 V .
Proof. Applying q for �(g) = �D � (degD)� and using Proposition A.1, we

have

q(�D)� L(p(g)) = (degD)q(�):

Thus, by the definition of L, we get our corollary. 2

Let k be an algebraically closed field, X a smooth projective surface over k, Y a
smooth projective curve over k, and f : X ! Y a generically smooth semi-stable
curve of genus g > 1 over Y . Let CV(f) be the set of all critical values of f
and y 2 CV(f). Let Gy be the metrized graph of f�1(y) as in Section 2. Let Vy
be the set of vertices coming from irreducible curves in f�1(y). For v 2 Vy, the
corresponding irreducible curve is denoted by Cv . Let Ky be the divisor on Gy

defined byKy =
P

v2Vy(!X=Y �Cv)v, �y the admissible metric ofKy, and g�y the
Green function of �y. In this case, the map Ly : RVy ! RVy defined in the above
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is given by the matrix
�
�(Cv � Cv0)

�
v;v02Vy . Thus, the above corollary implies the

following proposition.

PROPOSITION A.3 Let E be an R-divisor on X and Cv the irreducible curve in
f�1(y) corresponding to v 2 Vy. Then,

(E � Cv)a = (E � F )q(�y)(v);

where F is a general fiber of f . In particular, (E � Cv)a does not depend on the
choice of compactification of E.

Proof. Apply Corollary A.2 to a divisor D =
P

v2Vy (E � Cv)v on Gy. 2
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