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Abstract. Let K be a function field and C' a non-isotrivia curve of genus g > 2 over K. In this
paper, we will show that if C' has a global stable model with only geometrically irreducible fibers,
then Bogomolov conjecture over function fields holds.
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1. Introduction

Let k beafield, X asmooth projective surface over k, Y asmooth projective curve
over k, and f: X — Y agenerically smooth semistable curve of genus g > 2
over Y. Let K be the function field of Y, K the algebraic closure of K, and C
the generic fiber of f. For D € Pict(C)(K), let jp : Cz — Pic®(C)% be an
embedding defined by jp(z) = = — D. Then, we have the following conjecture
due to Bogomolov.

CONJECTURE 1.1 (Bogomolov conjecture over function fields). If f is non-
isotrivial, then, for any embedding j, theimage jp (C(K)) isdiscrete in terms of
the semi-norm || || 5 given by the Neron-Tate height pairing on Pic’(C)(K), i.e.,
for any point P € Pic’(C)(K), there is a positive number ¢ such that the set

{z € C(K) | |jp(z) — Plnr < €}
isfinite.

In this paper, we will prove the above conjecture under the assumption that the
stable model of f: X — Y hasonly geometrically irreducible fibers.

THEOREM 1.2 If the stable model of f: X — Y has only geometrically irre-

duciblefibers, then Conjecture 1.1 holds. More strongly, thereis a positive number

A with the following properties.

(1) A> ’/1_29%5’ where § is the number of singularitiesin singular fibers of
fl_c: Xl_c — Y,;.
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(2) For any small positive number ¢, the set
{z € C®) | lin(@) = Plvr < (1-¢)A}
isfinite for any embedding jp and any point P € Pic®(C)(K).

Our proof of Theorem 1.2 is based on the admissible pairing on semistable
curvesdueto S. Zhang (cf. Section 2), Cornalba—Harris—Xiao's inequality over an
arbitrary field (cf. Theorem 4.1) and an exact calculation of a Green function on a
certain metrized graph (cf. Lemma 3.2). The estimation of a Green function aso
givesthe following result, which strengthen S. Zhang's theorem [9].

THEOREM 1.3 (cf. Corollary 6.3) Let K beanumber field, Ok thering of integers,
f: X — Spec(Ok) aregular semistable arithmetic surface of genus g > 2 over
Og. If f isnot smooth, then

A Ar log2

(w3 /Ok 'wX/OK) 2 m

2. Metrized graph, green function and admissible pairing

In this section, we recall several facts of metrized graphs, Green functions and the
admissible pairing on semistable curves. Details can befound in Zhang's paper [9].

Let G be a localy metrized and compact topological space. We say G is a
metrized graph if, for any = € G, there is a positive number ¢, a positive integer
d = v(x) (whichiscalled thevalenceat x), and an open neighborhood U of « such
that U isisometric to

(tePV-I/d cclog<t <ek e}

Let Div(G) be a free abelian group generated by points of G. An element of
Div(G) iscaled adivisor on G. Let F'(G) be the set of all piecewise smooth real
valued functionson G. For f € F(G), we can define the functional 6(f) on F(G)
associated with f asfollows. If x € G and v(x) = n, then §(f)(z) isgiven by

(06(f)(@),9) = g(@) >_ lim f'(zi),
=15
where g € F(G) and z; isthe arc-length parameter of one branch starting from z.

d(f) iscalled the Dirac function associated with f. Moreover, for f € F'(G), the
functional f” on F(G) is defined by

(f",9) Z/Gf"gdu,

where du isthe Lebesgue measure arising from an arc-length parameter of G. The
Laplacian A for f € F(G) isdefined by

A(f) ==f"=d(f)-
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Let Q(G) be a subset of F/(G) consisting of piecewise quadratic polynomial
functions. Let V' beaset of verticesof G suchthat G\ V isadigjoint union of open
segments. Let E be the collection of segmentsin G \ V. We denote by Q(G, V)
the subspace of Q(G) consisting of functions whose restriction to each edgein E
are quadratic polynomial functions, and by M (G, V') the vector space of measures
on G generated by Dirac functions 6, at v € V and by Lebesgue measures on
edges e € E arising from the arc-length parameter. The fundamental theorem is
the following existence of the admissible metric and the Green function.

THEOREM 2.1 ([9, Theorem 3.2]). Let D = )~ . d,x be adivisor on G such

that the support of D isin V. If G is connected and deg(D) # —2, then there

areaunique measure . € M (G, V') and a unique function g, on G' x G with the

following properties.

(1) fGM =1

(2) gu(z,y) issymmetric and continuouson G' x G.

(3) For afixed z € G, g,(z,y) € Q(G). Moreover, if z € V, then g, (z,y) €
Q(G, V).

(4) For afixedz € G, Ay(gu(z,y)) = 0p — p.

(5) For afixed z € G, f; gu(w, y)p(y) = 0.

(6) 9u(D,y) + guly,y) is a constant for all y € G, where g,(D,y) =
Y sec degu(,y).

Furthermore, if d,, > v(z) — 2for all z € G, then p is positive.

The measure 1 in Theorem 2.1 is called the admissible metric with respect to
D and g,, is called the Green function with respect to ;. The constant g, (D, y) +
9u(y,y) isdenoted by ¢(G, D).

Let k£ be an algebraically closed field, X a smooth projective surface over k, Y
asmooth projective curveover k, and f: X — Y agenerically smooth semistable
curve of genusg > 1 over Y. Let CV(f) (C Y) bethe set of al critical values
of f,i.e, y € CV(f) if and only if f~1(y) is singular. For y € CV(f), let G,
be the metrized graph of £ 1(y) defined as follows. The set of vertices V,, of
G, isindexed by irreducible components of the fiber f~1(y) and singularities of
f~(y) correspond to edges of length 1. We denote by C, the irreducible curve
corresponding to avertex v in V. Let K, bethe divisor on G, given by

Ky =Y (wx/y-Cy)v.

veVy

Let 1, be the admissible metric with respect to K, and g,,, the Green function of
piy- The admissible dualizing sheaf wf - is defined by

wg(/y = Wx/y — Z C(Gya Ky)f_l(y)-
yeCV(f)
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Here we define anew pairing (D - E), for D, E € Div(X) ® R by

(D-E)e=(D-E)+ Z { Z (D - Cv)guy(vavl)(E'Ov’)} .
yeCV(f) \vv'eVy

This pairing is caled the admissible pairing. It has lots of properties. For our

purpose, the following are important. (Details can be found in [9].)

(1) (Adjunction formula) If B isasection of f, then (wg(/y +B-B),=0.

(2) (Intersection with a fiber) If D is an R-divisor with degree 0 along general
fibers, then (D - Z), = Ofor al vertical curves Z. (cf. Proposition A.3)

(3) (Compatibility with base changes) The admissible pairing is compatible with
base changes. Namely, let 7 : Y’ — Y be a finite morphism of smooth
projective curves, and X'’ the minimal resolution of the fiber product of X xy
Y'. Thei nducecli morphisms are denoted as follows:

X2 X
f f!
Y y!
T

Then, for D, E € Div(X) ®R, (7'*(D)-7"*(E)), = (degn)(D - E),. More-

OVer, Weha\/e'frl* (u)‘)l(/y) = wg(//y,. ThUS, (wg‘(//yl'(Ug(//Y/)a = (d% 7r) (wg(/y

Wiy as
Using the above properties, we can expressthe Neron-Tate height pairing in terms
of theadmissible pairing. Let C' bethe genericfiber of f, K thefunctionfield of Y,
and L, M € Pic’(C)(K). Then, there exist a base change Y’ — Y, a semistable
mode! X' of C over Y’, and line bundles £ and M on X' such that £ = L and
M= = M. Moreover, we can find vertical Q-divisors V' and V' on X' such that
(L+V - -Z)=M+V"-Z)=0foral vertical curves Z on X'. Then, it is easy
to see that

[E(Y") k(Y]

isindependent of the choiceof V and V. Itisdenoted by (L - M)y andis called

the Neron Tate height pairing. Itiseasy to seethat (L - L)y7 > 0. S0 /(L - L) nT
isdenoted by || || y7. Onthe other hand, by the definition of the admissible pairing,

we have
(L+V - M4+V)Y=(L+V -M+V'),.
Thus, using the property (2) above, we can see that
—[k(Y") i k(YL - M)ny = (L - M)q,

(L+V -M+V)
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which means that the admissible pairing does not depend on the choice of the
compactification of L and M, and that of course

_(L i M)a
[k(Y") 2 k(Y)]
Next, let us consider a height function in terms of the admissible pairing. Let
L be an R-divisor on X and z € C(K). Then, taking a suitable base change
w:Y' = Y, thereisasemistable model f': X’ — Y’ of C suchthat z isrealized
asasection B, of f'. We set

where 7' : X’ — X is the induced morphism. One can easily see that h%(z)
is well-defined by the third property of the above. The following generic lower
estimate of the height function isimportant for our purpose.

(L-M)nT =

7

THEOREM 2.2 ([9, Theorem 5.3)]). If deg(Lx) > 0 and L is f-nef, then, for any
e > 0, thereisa finite subset S of C'(K) such that
a (E ) E)a o
Pl 2 3 degLi) €

foralz € C(K)\ S.
As corollary, we have the following.

COROLLARY 2.3 ([9, Theorem 5.6]). Let D € Pict(C)(K). Then, for anye > 0,
thereis a finite subset S of C(K) such that

(w()L(/)’ : W()L(/Y)a lwe — (29 — 2)D||%p _

D — z|3 >
1D =l > g1 Al —1)

foral z € C(K)\ S.

Proof. Letw1:Y:; — Y beabasechangeof f: X — Y suchthat D is defined
over thefunction field k(Y1) of Y1. Let f1: X1 — Y3 bethe semistable model of C
over Y1 (i.e. X1 istheminimal resolution of singularitiesof X xy Y1), F' ageneral
fiber of f1, and D acompactification of D such that D isaQ-divisor on X; and D
is f1-nef. Using adjuction formula and applying Theorem 2.2 to

L=wg, /v, +2D = (D-D).F,

we have our corollary. O

3. Green function of a certain metrized graph

In this section, we will construct a Green function of acertain metrized graph. Let
us begin with the following lemma.
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LEMMA 3.1 Let C be a circle with arc-length [. Fixing a point O on C, let
t: C — [0,) be a coordinate of C' with ¢(O) = 0 coming from an arc-length
parameterization of C'. WWe set

1
Pu) = gluz —3lul(weR®) and f(z,y) = ¢(t(x) - t(y))-
Then, we have the following.

(1) f(z,y) issymmetric and continuouson C x C.
(2) f(z,y) issmooth outside the diagonal.
(3) For afixedz € C, Ay(f(z,y)) = 6, — L.

Proof. We can check these facts by a straightforward cal culation. O
Let C4,...,C, becirclesand G ametrized graph constructed by joining C;'s at a
point O. Let [; be the arc-length of C; and ¢;: C; — [0,1;) acoordinate of C; with
t;(0) =0.

%1

Ca Cs

From now on, we will identify apoint on C; with its coordinate. Asin Lemma3.1,
for each 7, we set

2l;
We fix a positive integer g. Here we consider a measure 4 and a divisor K on G
defined by
g—n " dt;
= do+Y = and K =(2g9-2)0.
g = gl

Moreover, let us consider the following functiong, on G x G.

-1 _
bile =) = T2 (i) + i) + s Ty €
g g
gu(w,y) = 1 L ;
5(¢i(x)+¢j(y))+fgz ifz € Ci,yeCjandi # j

where L = I3 + - - - + [,,. Then, we can see the following.
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LEMMA32 (1) [op=1
(2) gu(x,y) issymmetric and continuouson G x G.
(3) For afixedz € G, Ay(gu(z,y)) = 0p — .
(4) For afixedz € G, [, gu(,y)p(y) = O.
(5)

5) gu(K.y) + gu(y,y) = “E72 forall y € G.

Proof. (1), (2) These are obvious.
(3) Weassume z € C;. By [9, Lemmaad4, (a)],

n

Ay(gu(z,)) = Y Ay(gulz,y)lc,)-
j=1

Therefore, using Lemma 3.1, we get

Ay(gu(z,)) = By(gul@,9)le,) + D Ay(gulz,y)le,)
i

. dti g—l dti nl dtj
_<5x_li_ g <6O_li>>+29(60_lj>

= 0y — -
(4) We assume z € C;. Then, by adirect calculation, we can see

l;

g—1 L .
dt. Tz ) -t s =i
/cgu(x,tj)gTﬂ_: Y | 1% _
J J . B A T ifi<£iq
Therefore,
" di;, n—g /1 L
T, t —Z = (— ; >
;/]m Dot =" (90 + o
Hence,
_ n dt;
[ @ nw) = 2 @0+ Y [ gulot) T2
G =17C; 9tj
ELY N
g <g¢1($)+1292
n-g (1, L)
A <g¢l($)+1292
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(5) Since
1 L
—2(g-1 L
oula) = =D o) 4
(5) follows. O

This lemma says us that . is the admissible metric with respect to K, g, is the

Green function of i1, and ¢(G, K) = L(fggzl)

4. Cornalba—Harris—Xiao'sinequality over an arbitrary field

In this section, we would like to generalize Cornalba—Harris—Xiao's inequality to
fibered algebraic surfaces over an arbitrary field, namely,

THEOREM 4.1 Let k beafield, X asmooth projective surfaceover k, Y a smooth
projective curve over k, and f: X — Y a generically smooth morphism with
f+Ox = O¢. If the genus ¢ of the generic fiber of f is greater than or equal to 2
andwxy is f-nef, then

49 - 1)

(wx/y -wxyy) > deg(fx(wx/v))-

The above was proved in [3] and [8] under the assumption char(k) = 0. Here
we proveit using the following result of Bost.

THEOREM 4.2 ([2, Theorem I11]). Let k£ be a field, Y a smooth projective curve
over k, and E avector bundleonY'. Let

. P = Proj (é Sym”(E)> —Y
n=0

be the projective bundle of £ and Op(1) the tautological line bundle on P. If an
effective cycle Z of dimension d > 1 on P is Chow semistable on the generic fiber
of 7, then

(0r@*2)  degm
4 (Op()TT-Z F)” KB’

where F' isa general fiber of .

First of al, let us begin with the following lemmas.
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LEMMA 4.3 Let K beafield, C a smooth projective curveover K of genusg > 2,
and ¢: C — P9~1 the morphism given by the complete linear system |wc|. Then
¢+(C) isa Chow semistable cycleon P91,

Proof. Let R betheimage of C' by ¢ and n aninteger given by

1, if C isnon-hyperelliptic,
n= { 2, if C ishyperelliptic.
Then, ¢.(C) = nR. Thusa Chow form of ¢, (C) isthe nth power of a Chow form
of R. Therefore, ¢, (C) is Chow semistable if and only if R is Chow semistable.
Moreover, Theorem 4.12 in [7] saysthat Chow semistability of R is derived from
linear semistability of R .

Let V beasubspaceof HO(C, we), p: P9~1 - - — P4™V ~1 the projection defined
by theinclusion V — H%(C,w¢), and ¢' : C — P9™V =1 a morphism given by
V. Then, p - ¢ = ¢'. We need to show that

2 _ deg(R) _ deg(p«(R))

n g—1 Sdmv—_1 (4:3.1)

to see linear semistability of R. Since deg(¢'*(O(1))) = ndeg(p«(R)), (4.3.1) is

equivalent to say
1%
,  degld" (0(1))
dmV -1

On the other hand, if we denote by w};, the image of V ® O¢ — wc, then, by
Clifford’s lemma, we have

v
dimV — 1< dim|w¥| < deg(z“’c).
Thus, we get (4.3.1) because deg(¢'* (0(1))) = deg(w.). O

Remark 4.4 By [2, Proposition 4.2], ¢.(C) is actualy Chow stable when
char(K) = 0 or when C is not hyperelliptic. We don’'t know whether ¢, (C) is
Chow stableif char(K) > 0. Anyway, semistability is enough for our purpose.

Let us start the proof of Theorem 4.1. Let

¢: X --— P = Proj (@ SE’m”(ﬁs(w)qy))>

n=0

betherational map over Y inducedby f* f«(wx/y) — wx/y . Consider abirational
morphismy: X’ — X of smooth projectivevarietiessuchthat ¢' = ¢-p: X' — P
isamorphism:
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Then, there is an effective vertical divisor D on X' such that p*(wx,y) =
¢ (Op(1))+D.Let Z = ¢/ . (X'). Then, by Lemma4.3, Z giveaChow semistable
cycle on the generic fiber. Thus, by Theorem 4.2, we have

(¢ (Or(1)) - " (Op(V)) _ deglf:(wxyy)
Ag-1) T

On the other hand, sincewy- is f-nef and (D - D) < 0,
(" (0p(1) - ¢ (Op(1)))
= (M*(WX/Y) -D- M*(WX/Y) - D)

= (wx/y "wxyy) — 2 (M*(WX/Y) : D) + (D - D)

< (wxyy “wxyy)-

Therefore, we have our desired inequality. O

Remark 4.5 If char(k) = 0, wecan giveanother proof of Theorem4.1 according
to[5]. A roughideaisthe following. Sincethe kernel K of f* f.(wx/yv) = wx/y
is semistable on the generic fiber of f by virtue of [4], we can apply Bogomolov—
Gieseker's inequality to K, which implies Cornalba—Harris—Xiao's inequality by
easy calculations.

5. Proof of Theorem 1.2

In this section, we would like to give the proof of Theorem 1.2. First of al, let us
fix notations. Let k& be afield, X a smooth projective surface over k, Y a smooth
projective curve over k, and f: X — Y agenerically smooth semistable curve of
genusg > 2 over Y. Let K bethe function field of Y, K the algebraic closure of
K, and C the generic fiber of f. We assumethat f is non-isotrivial and the stable
model of f: X — Y has only geometrically irreducible fibers. Clearly, for the
proof of Theorem 1.2, we may assumethat k isalgebraically closed. Then, we have
thefollowing lower estimate of (wf y- - w/y-)a-
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THEOREM 5.1 Under the above assumptions, (w%/y - wf/y-)a IS positive. More-
over,

(@8l ) (g —1)?
X7y X/Y“/3g(29+1)

where ¢ isthe number of singularitiesin singular fibersof f.

Proof. Let CV(f) be the set of al critical values of f. For y € CV(f), the
number of singularities of £ ~1(y) is denoted by 4,. Let G, be the metrized graph
of f~!(y) asin Section 2. Then, the total arc-length of G, is §,. Let K, be the
divisor on G, coming fromw/y asin Section 2, 11, the admissible metric of K,
and g,,, the Green function of 1,,. By the definition of w¢, Y (see Sect. 2), we have

(w()l(/y : w‘)l(/y)a = (wx/y "wx/y)

+ Z {guy ) —2(29 - Z)C(Gya Ky)}
yeCV(f)
On the other hand, G, is isometric to the graph treated in Section 3. Thus, by
Lemma3.2,
Iy (Kya Ky) —2(29 - Z)C(Gya Ky)
dy (29 — 1)dy
=(29-27° 7 -2
g—1
= —=—9,.
3 Y

Thus

-1
(wX/Y "‘)X/Y)a = (wx)y " wx/y) — 3—95-

By virtue of Theorem 4.1 and Noether formula

(wx/y -wx/y) +6

eg(f(wx/v)) = o :
we have
g—1
(wxyy ~wxyy) > 29 + 15-
Therefore, we get
(g —1)?

(wX/Y wx/y)a z m
In particular, (w y - W,y )a > Oif f isnot smooth. Further, if f is smooth, then

(WX/y - w/v)e = (wWx/y - wx/y) >0
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because f isnon-isotrivial. O

Let us start the proof of Theorem 1.2. We set
A (“’()L(/Y : wg{/y)a
49-1)
Then, by Theorem 5.1, A is positive and
g;l(s
12g(2g + 1)

By virtue of Corollary 2.3, for any D € Pic'(C)(K) and any P € Pic°(C)(K),
thereis afinite subset S of C(K) such that

lt =D — P|ln7 > (1—¢)A
forall z € C(K)\ S. Therefore, we have
{z € C(K) | |ljn(a) - Plvr < (1—e)A} C .
Thus, we get the second property of A. O

6. Effectivelower bound of (w - w) for arithmetic surfaces

Let K be a number field, Ok thering of integers, f: X — Spec(Og) aregular
semistable arithmetic surface of genus g > 2 over Ok. In [6], we proved the
following.

THEOREM 6.1 If geometricfibers X ,..., X5 of XatPy,..., P, € Spec(Ok)
arereducible, then
" log#(Ok | P;)
Ar Ar
(WXjox *wxjox) 2 ; 6(g—1)

Using Lemma 3.2, we have the following exact lower estimate for stable curves
with only irreducible fibers.

THEOREM 6.2 Assume that the stable model of f: X — Spec(Og) has only
geometricirreduciblefibers. If {Pl, ..., Py} isthe set of critical valuesof f, then

g—
(wX/OK wX/OK Z 5 log#(Ok / P;),

where §; is the number of smgularltles of the geometric fiber at P;. Moreover,
equality holds if and only if there is a sequence of distinct points x1, z2, ... of
X (Q) such that

lim ||(2g — 2)z; — w||ny7 = 0.
1— 00
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Proof. Inthe same way asin the proof of Theorem 5.1, we have

a a r r g — 1
(LUX/OK . u)X/OK)a = (w;}/oK . WQ/OK) - 3—962 Iog#(OK/.PZ)
i=1

Therefore, our theorem follows from [9, Corollary 5.7]. O

Combining the above two theorems, we have the following corollary, which is a
stronger version of S. Zhang's result [9].

COROLLARY 6.3 If f: X — Spec(Og) isnot smooth, then

log2
Ar L LAT

Appendix A. A matrix representation of Laplacian

In this appendix, we will consider a matrix representation of the Laplacian and its

easy application.
Let G be a metrized graph and V' a set of verticesof G suchthat G\ V isa

digoint union of open segments. Let £ be a set of edgesof G by V. The length of
e in E is denoted by I(e). Recall that Q(G, V) is the set of continuous functions
on G whose restriction to each edge in E are quadratic polynomial functions, and
M(G,V) is the vector space of measures on G generated by Dirac functions 9,
at v € V and by Lebesgue measures on edges e € F arising from the arc-length
parameter. First, wedefinelinear mapsp: Q(G,V) — RV andq: M(G,V) — RV
inthefollowing ways. If f € Q(G, V), then p(f) istherestrictionto V. If §, isa
Dirac functionat v € V, then

, lifo =w
0 ={ g

If dt isalLebesgue measureon aedgee in E, then

l(e)/2 ifvisavertexof e
0 otherwise.

q(dt)(v) = {

Next let us define alinear map L: RV — RY. For distinct vertices v, v’ in V/, let
E(v,v") bethe set of edgesin E whose verticesare v and v'. Here we set
0 if E(v,0') =10

n __
a(v,v) = Z 1 otherwise
ecE(v,v') (6)
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for v # v'. Moreover, we set

a(v,v) = — Z a(v,v).

v'ev
vl #v

Let L: RV — RV bethe linear map defined by the matrix (—a(v,v')),wev, i.€,
if we denote ¢(d,) by e,, then L(e,) = — >,y a(v,v")e,. Thus, we have the
following diagram:

Q(G,V) 2+ M(G,V)

Then, we can see the following proposition as remarked in [1, (5.3)].

PROPOSITION A.1 The above diagramis commutative, i.e., Lop = go A.
Proof. Let f € Q(G, V). First, let us consider two special casesof f.

Casel. A casewhere f isalinear function on each edgein E. By the definition
of A, we can see that

An=-S| © (Z W) 5.,
veV 2’5‘9){;3 ecE(v')

On the other hand, by the definition of a(v,v'),

Z ( Z fe )l(;)f(v)> = Z a(v,v') f(v").
2’52};{;% ecE(v,') v'eVv

Therefore, we have

A(f) = Z (Z _a(vvv,)f(vl)) Oy,

veV \v'eV

which showsus g(L(f)) = L(p(f)).

Case 2. A case wherethereise € E suchthat f = 0on G \ e. Let v,v’ be
vertices of e and ¢ : [0,l(e)] — e be the arc-length parameterization of e with
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#(0) =vand ¢(l(e)) = v'. Since f(v) = f(v') = 0O, f can bewritten in the form
f(t) = at(t —I(e)), where ¢ isthe arc-length parameter and « is a constant. Thus,

)
A(f) = al(e)dy + al(e)dy — 2a dt.
Therefore, g(A(f)) = 0, which meansthat ¢(A(f)) = L(p(f))-

Let us consider ageneral case. Let fo be a continuous function on G such that
foisalinear functiononeache € E and fo(v) = f(v) foralv € V. Then, f — fo
can be written by asum of functions f1, ..., fy asinthecase?2, i.e.,

f=Jo+ it + [k

and f; (1 < 7 < k) iszeroontheoutside of some edge. By the previous observation,
weknow ¢(A(f;)) = L(p(f;)) foral i =0,1,...,k. Thus, using linearity of each
map, we get our lemma. O
Asacorollary, we have the following.

COROLLARY A2 LetD =3, .y dyv beadivisoronG, p € M(G,V), and
g € Q(G,V) such that

[ =1 and A(g) = op— (deg D)

Then, we have

dy + Y af = (deg D)q(p)(v)
v'ev
forallveV.
Proof. Applying ¢ for A(g) = dp — (deg D)u and using PropositionA.1, we
have
a(0p) — L(p(g)) = (deg D)q().
Thus, by the definition of L, we get our corollary. O

Let k& be an algebraically closed field, X a smooth projective surface over k, Y a
smooth projective curve over k, and f: X — Y agenerically smooth semi-stable
curve of genusg > 1 over Y. Let CV(f) be the set of al critical values of f
andy € CV(f). Let G, be the metrized graph of f~(y) asin Section 2. Let Vy
be the set of vertices coming from irreducible curvesin f~(y). For v € Vy, the
corresponding irreducible curve is denoted by C,. Let K, be the divisor on G,
definedby Ky = 3¢y, (wx)y - Cv)v, piy the admissible metric of K, and g, the
Green function of s, In this case, themap L, : R'» — R" defined in the above
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is given by the matrix (—(C, - Cy))
following proposition.

o eV, Thus, the above corollary implies the

PROPOSITION A.3 Let E bean R-divisor on X and C,, theirreducible curvein
f~(y) correspondingto v € V. Then,

(E : Ov)a = (E ' F)Q(My)(v)a

where F' is a general fiber of f. In particular, (£ - C,), does not depend on the
choice of compactification of E.
Proof. Apply Corollary A.2 to adivisor D = > vev, (E-Cy)vonG,y. i
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