Some functors arising from the consideration of torsion theories over noncommutative rings

Jonathan S. Golan

To each associative (but not necessarily commutative) ring R we assign the complete distributive lattice R-tors of (hereditary) torsion theories over R-mod. We consider two ways of making this process functorial - once contravariantly and once covariantly - by selecting appropriate subcategories of the category of associative rings. Combined with a functor due to Rota, this gives us functors from these subcategories to the category of commutative rings.

Let R be an associative (but not necessarily commutative) ring with unit element 1. We denote by R-mod the category of all unitary left R-modules and by R-tors the complete distributive lattice of all (hereditary) torsion theories over R-mod. See [4] for details. If $\tau \in R$ -tors and if M is a left R-module, then $T_{\tau}(M)$ will denote the τ -torsion submodule of M and $Q_{\tau}(M)$ will denote the localization of Mat τ . The ring of quotients of R at τ will be denoted by R_{τ} . For each left R-module M, we have a homomorphism $\hat{\tau}_M : M \neq Q_{\tau}(M)$ of left R-modules. Also, we have a ring homomorphism $\hat{\tau} : R \neq R_{\tau}$. If this ring homomorphism is a left flat ring epimorphism (that is, if $\hat{\tau}$ is an epimorphism in the category of rings and if R_{τ} is flat as a *right* R-module) then the torsion theory τ is said to be *perfect*. Left flat

Received 3 August 1976.

455

ring epimorphisms are studied in some detail in [9]. It is well-known that every left flat ring epimorphism is in fact of the form $\hat{\tau}$ for some perfect torsion theory τ . Moreover, $\tau \in R$ -tors is perfect if and only if $Q_{\tau}(M) = R_{\tau} \otimes_{R} M$ for every left *R*-module *M*. If $\gamma : R \neq S$ is a ring homomorphism then γ defines a function $\gamma_{\#}$: R-tors \rightarrow S-tors which assigns to $\tau \in R$ -tors that torsion theory $\sigma \in S$ -tors characterized by the property that a left S-module N is σ -torsion if and only if it is τ -torsion as a left *R*-module. If *S* is flat as a right *R*-module, then γ also defines a function $\gamma^{\#}$: S-tors \rightarrow R-tors which assigns to $\sigma \in S$ -tors that torsion theory $\tau \in R$ -tors characterized by the property that a left R-module M is T-torsion if and only if $S \otimes_{R} M$ is σ -torsion. If $\gamma : R \rightarrow S$ is a left flat ring epimorphism, say $\gamma = \hat{\tau}$ for a perfect torsion theory $\tau \in \mathit{R}\text{-tors}$, then $\gamma_{\#}$ and $\gamma^{\#}$ induce a bijection between S-tors and $\{\tau' \in R$ -tors $| \tau' \ge \tau\}$. See Proposition 17.14 of [4]. Thus we have a contravariant functor F from the category of rings and left flat ring epimorphisms to the category of complete lattices given by F(R) = R-tors and $F(\gamma) = \gamma^{\#}$.

We now seek another subcategory of the category of rings from which we can construct a *covariant* functor to the category of complete lattices which behaves on objects in the same way as F, namely which assigns to each ring R the complete lattice R-tors. For this we need some more definitions and remarks.

If $\gamma : R \rightarrow S$ is a ring homomorphism and if $\tau \in R$ -tors, it is not necessarily true that a left *S*-module is $\gamma_{\#}(\tau)$ -torsionfree if and only if it is τ -torsionfree as a left *R*-module. When this condition does hold, we say that the torsion theory τ is *compatible* with γ . The notion of compatibility between a torsion theory and a ring homomorphism has recently been studied by Louden [5], who also provides several examples of this phenomenon. Proposition 9.8 of [4] asserts that every torsion theory is compatible with a ring surjection; Proposition 17.15 of [4] asserts that if $\tau \in R$ -tors is perfect and if $\tau' \geq \tau$ then τ' is compatible with $\hat{\tau}$. A torsion theory $\tau \in R$ -tors is *stable* if and only if the class of all τ -torsion left *R*-modules is closed under taking essential extensions. Stable torsion theories are very important in the theory of noncommutative localization; they were first introduced and characterized in [2]. The Goldie torsion theory is a common example of a stable torsion theory. A ring R is *left stable* if and only if every member of R-tors is stable. Such rings have been studied in [1, 6, 7]; commutative noetherian rings are left stable and left stability is a Morita invariant.

In [4] we showed that the lattice *R*-tors is always distributive. Raynaud has extended this result to show that *R*-tors in fact always satisfies the join-infinite distributive identity, namely that for every $\tau \in R$ -tors and every $U \subseteq R$ -tors, we have

$$\tau \wedge (\nabla U) = \nabla \{\tau \wedge \tau' \mid \tau' \in U\}$$

Thus the lattice *R*-tors is brouwerian [δ]. In a private conversation, D. Strauss has pointed out that if *R* is left stable then the dual of this, namely the meet-infinite distributive identity also holds. Thus we have:

PROPOSITION 1. If R is a left stable ring then for every $\tau \in R$ -tors and every $U \subseteq R$ -tors we have $\tau \vee (\Lambda U) = \Lambda \{\tau \vee \tau' \mid \tau' \in U\}$.

Proof. For each $\tau' \in U$ we have $\tau' \ge \wedge U$ and so $\tau \vee \tau' \ge \tau \vee (\wedge U)$. If $\tau'' = \wedge \{\tau \vee \tau' \mid \tau' \in U\}$ we then have that $\tau'' \ge \tau \vee (\wedge U)$. Now assume that this inequality is strict. Then there exists a nonzero left *R*-module *M* which is τ'' -torsion but not $[\tau \vee (\wedge U)]$ -torsion. Indeed, replacing *M* by $M/T_{\tau \vee (\wedge U)}(M)$, we can assume that *M* is $[\tau \vee (\wedge U)]$ -torsionfree and hence that it is both τ -torsionfree and $(\wedge U)$ -torsionfree, as well as being τ'' -torsion. Since τ'' is stable, the injective hull E(M) of *M* also has these properties. In particular, if $\tau' \in U$ then E(M) cannot be τ' -torsionfree. By [4, Proposition 11.2], there then exists a submodule *N* of E(M) such that $E(M) = N \oplus T_{\tau'}(E(M))$. This implies that *N* is both τ -torsionfree and τ' -torsionfree and so is $(\tau \vee \tau')$ torsionfree, a contradiction unless N = 0. Thus E(M) must be τ' torsion for every $\tau' \in U$. This implies that E(M) is $(\wedge U)$ -torsion, which is also a contradiction. \Box

Another interesting aspect of stability is the following.

PROPOSITION 2. Let $\tau \in R$ -tors be perfect and let $\tau' \in R$ -tors be stable. Then $\hat{\tau}_{\#}(\tau \vee \tau') = \hat{\tau}_{\#}(\tau')$.

457

Proof. By [4, Proposition 17.14] there exists a torsion theory $\tau'' \geq \tau$ satisfying the condition that $\hat{\tau}_{\#}(\tau'')$ = $\hat{\tau}_{\#}(\tau')$. Indeed, τ'' is characterized by the property that a left R-module M is τ'' -torsion if and only if $Q_{\tau}(M)$ is $\hat{\tau}_{\#}(\tau')$ -torsion as a left R_{τ} -module. We therefore want to show that $\tau'' = \tau \vee \tau'$. Let *M* be a $(\tau \vee \tau')$ -torsionfree left R-module. Then M is τ -torsionfree and so the homomorphism $\hat{\tau}_{_{\mathcal{M}}}$: $M \neq Q_{_{\mathcal{T}}}(M)$ is an essential extension, implying that $Q_{_{\mathcal{T}}}(M)$ is τ' torsionfree as a left *R*-module. Therefore $Q_{\tau}(M)$ is $\hat{\tau}_{\mu}(\tau')$ -torsionfree as a left R_{τ} -module and so M is τ'' -torsionfree since τ'' is compatible with $\hat{\tau}$. This proves that $\tau \lor \tau' \ge \tau''$. Assume that this inequality is strict. Then by [4, Proposition 17.14] we have that $\hat{\tau}_{\#}(\tau \vee \tau') > \hat{\tau}_{\#}(\tau'') = \hat{\tau}_{\#}(\tau')$ and so there exists a left R_{τ} -module N which is $\hat{\tau}_{\#}(\tau \vee \tau')$ -torsion but not $\hat{\tau}_{\#}(\tau')$ -torsion. Indeed, by factoring out the $\hat{\tau}_{\#}(\tau')$ -torsion submodule of N we can assume that N is $\hat{\tau}_{\#}(\tau')$ torsionfree. Since N is a left R_{τ} -module and since τ is perfect, we know that N is τ -torsionfree as a left R-module. Since N is $\hat{\tau}_{\mu}(\tau \vee \tau')$ -torsion, it is $(\tau \vee \tau')$ -torsion as a left R-module and so cannot be τ' -torsionfree as a left *R*-module. Let *M* be the τ' -torsion submodule of N . Since M is also τ -torsionfree, the homomorphism $\hat{\tau}_{\scriptscriptstyle M}$ is an essential extension and so $Q_{\tau}(M)$ is also τ' -torsion by the stability of τ' . Therefore $\mathcal{Q}_{\tau}(M)$ is $\hat{\tau}_{\#}(\tau')$ -torsion as a left R_{τ} -module. But $Q_{\tau}(M)$ is an R_{τ} -submodule of the $\hat{\tau}_{\#}(\tau')$ -torsionfree left *R*-module N, which implies that we must have M = 0, a contradiction. This proves that $\tau \vee \tau' = \tau''$.

As a consequence of this result we obtain the following proposition.

PROPOSITION 3. If R is a left stable ring and if $\tau \in R$ -tors is perfect then $\hat{\tau}_{\#} : R$ -tors $\rightarrow R_{\tau}$ -tors is a morphism of complete lattices.

Proof. It is an immediate consequence of the definitions that $\hat{\tau}_{\#}$ is a morphism of complete meet semilattices. If U is a subset of R-tors and if N is a left R_{τ} -module, then, by Proposition 2, we know that N is $\hat{\tau}_{\#}(\vee U)$ -torsionfree if and only if N is $\hat{\tau}_{\#}[(\vee U) \vee \tau]$ -torsionfree. Since $(\vee U) \vee \tau$ is compatible with $\hat{\tau}$, this holds if and only if N is $[(\vee U) \vee \tau]$ -torsionfree when considered as a left R-module; that is, it holds if and only if N is $(\tau' \vee \tau)$ -torsionfree for every $\tau' \in U$. Since $\tau' \vee \tau$ is compatible with $\hat{\tau}$, this holds if and only if N is $\hat{\tau}_{\#}(\tau' \vee \tau)$ -torsionfree as a left R_{τ} -module for every $\tau' \in U$ and again by Proposition 2 this holds if and only if N is $\hat{\tau}_{\#}(\tau')$ -torsionfree for every $\tau' \in U$ or, in other words, if and only if N is torsionfree with respect to $\vee\{\hat{\tau}_{\#}(\tau') \mid \tau' \in U\}$.

Thus we now have a covariant functor G from the category of left stable rings and left flat ring epimorphisms to the category of complete lattices and morphisms of complete lattices given by G(R) = R-tors and $G(\gamma) = \gamma_{\#}$.

In conclusion, let us note one possible use of the functors F and G. Rota has defined a "valuation" functor V(-) from the category of distributive lattices and lattice homomorphisms to the category of commutative rings and ring homomorphisms. See [3] for details. If we combine this functor with the functor F [respectively the functor G] defined above we obtain a contravariant [respectively covariant] functor from the category of [left stable] rings and left flat ring epimorphisms to the category of commutative rings and ring homomorphisms.

References

- [1] Ladislav Bican and Tomáš Kepka, "On stable rings", Publ. Math. Debrecen 22 (1975), 235-244.
- [2] Pierre Gabriel, "Des catégories abéliennes", Bull. Soc. Math. France 90 (1962), 323-448.
- [3] Ladnor Geissinger, "Valuations on distributive lattices I", Arch. Math. (Basel) 24 (1973), 230-239.
- [4] Jonathan S. Golan, Localization of noncommutative rings (Marcel Dekker, New York, 1975).

- [5] Kenneth Louden, "Torsion theories and ring extensions", Comm. Algebra 4 (1976), 503-532.
- [6] Zoltan Papp, "On stable noetherian rings", Trans. Amer. Math. Soc. 213 (1975), 107-114.
- [7] Zoltan Papp, "Semi-stability and topologies on R-sp ", preprint 1975.
- [8] Jacques Raynaud, "Localisations et topologie de Stone", preprint 1975.
- [9] L. Silver, "Noncommutative localizations and applications", J. Algebra 7 (1967), 44-76.

Department of Mathematics, University of Haifa, Mount Carmel, Haifa, Israel.