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Abstract

It is shown that for the three dimensional Ising model with dipole-dipole
interactions, the thermodynamic limit of the free energy with simple boundary
conditions is not the same as the thermodynamic limit of the free energy with
periodic boundary conditions. A variational principle is developed to connect
the two free energies.

1. Introduction

In statistical mechanics, it is usual to represent the partition function of a
system of N particles at temperature T(with j3 = 1/fcT) in the form [5]

ZN(j3)~exp[-/3(/N + gN2/3 + ---)] (1.1)

where / is the thermodynamic limit of the free energy and gN213 represents a
surface correction to the "bulk" free energy of the system, fN. Of course
except for a very few special cases, it is not possible to evaluate / exactly and
so techniques have been developed to evaluate ZN(fi) numerically. Unfortu-
nately, the demands of these techniques on computer time are prodigious, and
any estimate of / from ZN((3) using (1.1) will contain errors due to the surface
terms. Since the number of particles which may be handled by a sensible
computer budget is usually less than 1000, this error can be large.

To minimize this error, computer calculations of thermodynamic proper-
ties use "periodic boundary conditions". That is, instead of one cubic box
containing N particles, an infinite cubic lattice of cubic boxes, each containing N
particles is considered. When a configuration of particles in one box is
considered, exactly the same configuration is considered in every cubic box in
the lattice. The interactions between particles in different boxes are added into
the Hamiltonian of the particles in any one box. This method appears to
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suppress the surface terms in the expansion (1.1), since it gives pressures and
free energies for simple liquids (such as liquid argon) which are in good
agreement with experiment [6].

A question which arises is whether the periodic thermodynamic limit of
the free energy / is the same as the simple boundary condition thermodynamic
limit of the free energy. Fisher and Lebowitz [1] proved that the two limits are
the same for systems in which the interaction between particles distant r from
one another decays faster than r~* for large r. Recently, workers have begun
carrying out computer calculations for systems with dipole-dipole interactions
[3] (which decay as r~3 at large r), for which the Fisher and Lebowitz proof
does not hold. Some of this work has shown that great care must be taken with
the long range part of the dipole-dipole potential, especially in calculating the
dielectric properties of the system [7].

In this paper we show that the two limiting free energies are not always
equal, and find a variational principle connecting the two. The result is proved
for a simple cubic Ising lattice with spins which interact only by the standard
dipole-dipole interaction. In section 2 we describe the system in more detail, in
sections 3 and 4 we develop bounds on the partition function and the long-range
part of the interaction energy. In section 5, we study the thermodynamic limit
for the system and in section 6 we discuss the result found in section 5 for the
periodic system thermodynamic limit.

2. Description of the system

We consider a simple cubic lattice of N = L3 vertices and spacing 1. On
each vertex we place a spin which may take the values ± 1, and behaves as a
magnetic dipole pointing up or down along one of the crystal axes (which we
call the z-axis hereafter). The energy of interaction between a dipole fii at r,
and a dipole /x, at r, may be written

where r,, = rt - rh k is the unit vector along the z-axis of the lattice, and
ft, = fj-ik. The factor 1/2 occurs because we shall count both V(r,, ;/x,,/i,) and
V(ri,;fihfii) in the Hamiltonian for the system.

For simple boundary conditions, we define the partition function at
constant magnetization

Z5U/3,NO= 2 ' • • 2 ' e x p f - 0 2 2 V(r,;fc,M/)]. (2-2)
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where the primes on the sums over /A,,--,JLIN indicate that we only consider
configurations with exactly N- down spins. For the rest of this paper, we
assume that the thermodynamic limit of the free energy at constant magnetiza-
tion m with simple boundary conditions

a°(m,fl) = limlim ( -^ logZR f/3,N(1 ~ "°)} (2.3)
N_oo I 11 \ L. I J

exists and is uniformly continuous in m on — 1 ^ m ^ 1. It is necessary to
assume this, for we know of no complete proof [2]. Our result is concerned
with showing the effect on this free energy of introducing periodic boundary
conditions.

For the system with periodic boundary conditions, we must use the
Hamiltonian [1]

H£ = S £ f 2 2 2 V(L(l,m,n) + r«;ft,,/*,)} (2.4a)
i = l J_| (.;--» m--=> n=-°° J

= 2 f Uir.MH,^). (2.4b)
i - l j = 1

This Hamiltonian includes not only the interaction of ft, with §ih but also the
interaction of /xf with all the periodic copies of /*,. The interaction of ft, with all
the periodic copies of itself is zero (see the appendix of this paper). The triple
sum in the definition of (7(ru;|ii,jUj) is a sum of two types of terms. Separately,
the sums of the two terms diverge, and so their cancellation must be handled
with care. In the appendix we show that the potential [/(r,,;/*i,j*,) may be
written

ih Mi) = j p Wi { T " ( k ' V ) {k 'V) ** ( L ; \) } ( 2 '5a )

(2.5b)

where

r(s) j i

x 6j(ipzTru I iu) (2.6)

+ H*~* [ Bi (pxTT I IM ) 03 (pyTT | IM) 03 (Pz'TT \ ill) ~ 1]}

and the gradients in (2.5a) are taken with respect to the vector ra/L. We
evaluate the thermodynamic limit of the free energy with periodic boundary
conditions,

a 'O)=lim f-^jlogZ&GB)], (2.7)
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in terms of the function a°(m,/3). The function Z£ (/3) is the partition function
for the periodic system,

fc(/8) = 2 ••• 2 exp(-/3H&). (2.8)

Two results about U(r,j;/AI, fij) will be needed, and we take them from the
appendix. The results are

(1) lim[/(r,,;/*.,M,) = V(rM ;*».,/*/) (2-9)

and (2) for \rn\IL <\,

\ii\
2V). (2.10)

3. Bounds on the partition function

To proceed further, we divide the cubic lattice of N = L 3 spins (called FL)
into M congruent subcubes WI,--,CDM, each containing Jf spins, so that
N = MJf. There is a map <f> which maps FL on to the unit cube (called F)
defined by <£(*) = x/L. The images of the subcubes <ou•••,<oM are called
wT, •• - ,0^ . We write

Zft(/8)= 2 ••• 2 Z&(/8,{iVT}) (3.1)
Af,-0 NM-0

where ZR(/3,{iVT}) is the partition sum over configurations with exactly N,
downspins in <ou N2 down spins in <o\, • • • and NM down spins in <oM. The terms
in the sum (3.1) are all positive and there are (JV + 1)M terms in the sum. Thus
we may write the inequality

(Jf + l)M{max[ZK,(/8,{AU)]} ^ ZR(/8) S max [Z5,O,{NT})]. (3.2)

Since we want to find limN_» l/NlogZ&(/3), we find, using N = MJf,

/3{N}) ^max Jr

^ / 3 , { N Y } ) . (3.3)

In this work, we take the thermodynamic limit in two stages. First we let
N—>°°, keeping Jf fixed, so that M—»». Note that, as we let N—*°°, the
subdivision of the unit cube F into subcubes oJ7, • • -,w^becomes infinitesimally
fine. Secondly we let JV-*°O. When we take this limit we use the result
linu— l/jVlog(^V+l) = 0. Since limN-» l/NlogZR(j3) is independent of Jf,
we find that
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lim •^•logZE,(/3) = Hm lim max^jlog Zp
N(p,{Ny}). (3.4)

Thus we study Z N ( / 3 , { N 7 } ) . We can write this quantity in the form

Z£(/3,{N,}) = X ••• 2 exp[- /BH' ( /» , , • • - , /* , ) ]

2 (3.5)

2 •••• 2 expI-pH'Oin-x-n,-•-,/*„)]

[ MM -j

- ^ 2 2 w>«
7 = 1 8 = 1 J

where Hp (nkM-+i,---,(iik+ivr) is the Hamiltonian of the N spins in o)t+, with
interaction U (r-,, ;#ti>M/) a s given in equation (2.5) and WY8 is the net energy of
interaction of the spins in <ay with the spins in w«, again using the interaction
L/Ci,;fii,Hi). By suitable choice of bounds on Wy&, we can find accurate
bounds on Z£ (/3,{N7}). We discuss the choice of bounds in the next section.

4. Bounds on the "long range" interaction energy

We write

= 2 2 573 WH " ((»•• - n )/L) (4.1

and define

v+{y,S)= max u((r , -

and

v-(y,S)= min u((r, — r,)/L). (4.2)

Since there are Ny down spins and Jf — Ny up spins in «T we can write the
inequalities

WyS t^^-}{M ~ Hy)(Jf -N,) + NyNs]v+(y,8)
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and

WyS g 2Z?{[(^" - Ny)(Jf - Ns) + NyNs]v-(y,8)

We define my by Nmy = Jf — 2Ny and then find, from equations (4.3)

and

WyS s — r mYmjt)-(y,5)-r[i)+(7,5)- v-(y,8)][l - myms] \. (4.5)

We note that the two bounds (4.4) and (4.5) on WyS are independent of the
particular configurations of the spins in the cubes wy and we.

If we insert (4.4) (or (4.5)) in equation (3.6) then we get a lower (or upper)
bound on Zft (/3,{N7}). Further, the sums over the spins in different cubes ws

can be separated out from one another. If we replace WyS in (3.5) by the upper
bound (4.4) we find the lower bound

Z&(/3,{AU)i= 2 "• 2

x 2 ••• 2 exp[-/8Hp0*y+,,"-,/ti2*)]
1 *

x 2 • • • 2 exp[-j3HP0i,N-.y+i,-",/x1v)]

r V̂"2 « " r i
xexp< - &rrs y. 2, mymsv+(y,8) + -[v+(y,8)

(. IL T _ ,« . , L i

which we may write

M

•y-i

f
w-2 M M r

~^TT^2 2 »vn«i>+(-y,S)

(4.6)
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where

Z£(/3,N7) = X ••• 2 exp[-/3H£(/A,,---,/^)]

J w . N (4.7)

is defined as the periodic analogue of the constant magnetization partition
function for simple boundary conditions defined in equation (2.2). Similarly, by
using the lower bound (4.5) on WyS in equation (3.6) we find

&G8,{Ny})^ ft
I jf2 M M r

xexp -j8x7^2 E\mymsv-(y,8)

(4.8)

We now study log Z£ (fi, {Ny}). We note that \(»y\, the volume of the cube
coy is given by | o*y | = L 3/M = N/M = JV and that | wy | the volume of the image
of o>y under the map <f> is given by | coy | = JV/L \ The inequality (4.6) may now
be written in the form

•£> 1 N , _ ,
2J -T^ logZ>( /3 ,^ - ( l - ms(xy)))- \coy I

j« M_ ( (4.9)
ts(xT)wJ(jcs)ti+(y,8)

where ms(x) is a step function defined on the unit cube F by

ms(x)=my if xewy (4.10)

and xT is the centre of the cube wy. The other inequality (4.8) may be written

(4.11)

/ 2 2
•y = l 8 = 1

^ C 5 s(xs)] x |
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In the next section we study the inequalities (4.9) and (4.11) in the double limit
N—>oo with Jf fixed and then N—»°°.

5. The thermodynamic limit

The inequalities (4.9) and (4.11) both contain the term

2 ^ ( y ) (5.1)

As we take the limit L—»°°, the potential {/(r,, ;/*,,/*,) becomes the ordinary
dipole-dipole potential V(r,, ;/*,,/*,) as noted in equation (2.9). Also, as L —>°°,
|<u7 |—»0 and the step function ms(x) (see (4.10)) becomes defined on a finer and
finer mesh of subcubes of F. We consider sets of numbers Ny =
Jf/2(l — ms(xy)) which define limiting magnetization functions m(x) as the
mesh of subcubes gets infinitesimally fine. For such sets of numbers we have
the result

Hm/, = | r d3x-^logZ£(/3,y( l -m(x))) (5.2)

where Zx((i, N-) is defined in equation (2.2). We may now take the limit Jf—»°°
and find

limlim/,= f d3xlim\^:\ogZ%(p,^(l-in(x)))\, (5.3)

and, using equation (2.3),

lim lim / , = - /3 f d3Jca°(m(x),/3). (5.4)

The other terms in the inequalities (4.9) and (4.11) are

M M

ZJ ZJ ms(Xy)ms(xs)v=(y,S)\cjy\ \~cos\ (5.5)
T - l 8 = 1

and

From the definitions (equations (2.5), (4.1)and (4.2)) of v+(y,8) and v~(y,8) we
see that /+ and /_ are two approximations to the improper Riemann integral

d'ym(x)m(y)v(x-y). (5.7)

This improper integral converges in spite of the | x |~3 behaviour of v(x) at small
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|x | because the integral is a sixfold one. As we let N—*oo, we find | / ± - /o|-*0
and we have the result

lim/* = /„. (5.8)

similarly, as we let N—*<*>, we find

lim/A=f d'x\ d3y[\-m(x)m(y)][v(x-y)-v(x-y)]
N—=° Jr Jr

= 0. (5.9)

We have shown that for sequences of sets of numbers which can give a
limiting magnetization function m(x), the lower and upper bounds on
l/WlogZ£(/3,{-A72(l -ms(x))}) in equations (4.9) and (4.11) .coincide in the
limit N—>°° and then Jf—»°°. Thus we have

lim lim —rrl

(5.10)

- d3x \ ' d3ym(x)m(y)v(x-y).
2Jr Jr

Since, for a sequence of sets of numbers {Ji/2(l - m,(xT))} which does not
yield a magnetization function as we take N—*°°, we can approximate any
member of the sequence by a member of a sequence which does yield a limit
function m(x), and since we require a minimum over magnetization functions
we have

(5.11)

= min(f d'xa°(m(*),/3) + ! f. d3*f <<>U)m (j)» (x -y)}

where P is the class of all real functions m(x) defined on the unit cube F and
subject to the constraint - l g m ( x ) g l . I n fact, we have proved (5.11) with a
minimization over the class of functions P' defined on T which are limits of
step functions (cf. equation (4.10)) on F. However, by the assumed uniform
continuity of a°(m,/3) in m for - l ^ m g l and the continuity of the double
integral in (5.11) in the magnetization m(x), we may extend the class of
functions P' to the class P, since if m(x)eP, we may approximate it arbitrarily
closely by a function in P'. Equation (5.11) is the variational principle required
connecting the periodic system free energy with the simple system free energy.
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6. Discussion

The complexity of the function

() (*

makes it rather difficult to evaluate the double integral term on the right hand
side of (5.11) for general m(x). However, since ^*(x; 1/2) is periodic with
period equal to the unit cube, we can calculate it for the case m(x) = m, a
constant. In this case the functional of m(x) in (5.11) may be written

aD(m,|3) + j m 2 . (6.2)

Thus, if the function which minimizes the functional is a constant,

ap(/3) = a°(m,/3) + ̂ y ^ . (6.3)

The extra term in the periodic free energy may modify critical behaviour. We
would expect tne initial temperature to be lowered and the critical behaviour
might even become classical. Such classical critical behaviour might be
expected if we interpret the 2irm2/3 term as the contribution to the free energy
of the Lorentz reaction field due to the periodic cells about the cell we focus
our attention on. In this interpretation, the spin-spin interaction in the periodic
system has a molecular field component.

On the other hand, of course, the minimizing function m(x) may not be
constant. The magnetization may vary smoothly over the cube F or the cube F
may be divided up into domains. We should expect modification of critical
behaviour in this case too.

In the thermodynamic limit, in the absence of an external field, we expect
the system to show no preference for up or down spin states. In a numerical
calculation on a finite system however, the effects of the boundaries and the
initial configuration will break the symmetry, and a free energy with a finite
magnetization may result.

Appendix

We want to study the sum [4]

— V Y V f / t | ' **'
2L3 ,£.m4L.K4u 1|(/,m,n) + rJL |3

(Al)
((/,m,n) + ril\L)] [M, • ((/, m,n) + r,,\L)]]

|(/,m,n) + rl7/L|5 J '
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First we study the function

[11]

(A2)

where p = (x,y,z). The sum in (A2) is an analytic function of s for all
re ( s )> 3/2. We use the identity a~' = fodtts~'e~atIT(s) for the terms in the
sum and commute the triple sum with the integral. The triple sum then factors
into a product of three single sums which may be written in terms of Jacobi
theta functions. We find

Since we wish to carry out Monte Carlo calculations using the potential
function given in (Al), we split the range of integration in (A3) into two parts to
aid the rapid evaluation of the integrand. The first part is (TT,°°) and on this
range we leave the integrand unchanged, since the Fourier series representa-
tions of the appropiate theta functions converge remarkably rapidly on this
range. The other part of the range is (0, TT-). On this second part of the range we
transform the integrand using the Jacobi transformation for theta functions [4].
The divergence of the integral as s —»3/2 may then be seen fairly simply, and
may be subtracted out of the integral on (0, TT) and added separately. We find

(A4a)

(A4b)

This form of ^*(p ; s) can be changed to the form in equation (2.6) by a simple
change of variable in each integral.

To evaluate the sum (Al), we also need other sums. Writing U,,m,n,(p) =
(/ + x,m + y,n + z), we can show
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and

27 ( y ^ + xJj) **(p ; s) + xynp's

We have now evaluated all the sums which we require in (Al).
We evaluate

(A5)

JJ = l i m _ L y f (1,(1, 3(11. • R,,n,.n (P) ) (M/ • -R-.m.n ( p ) ) )
" ŝ 3/2 2L3,^nl|l?,,m,n(p)|21 |U,.m,n(p)|2s+1> J-

(A6)

The divergences arising from the two parts of (A6) cancel, but not to zero.
Using (A4), (A5) and some lengthy manipulation, we find

U" = ̂ h f T 1 (M« • Mi) - (M« • v> (MJ • ^ ) ^ * ( P ; k) 1. (A7)
ZL ( 3 \ LI)

the result used in the paper.
To evaluate the energy of interaction of a dipole with its own images we

study

r = l i m _ L V [ el SUM+tfm+tfnn
,i™ 2L3

(,M..UWW) Ul2 + m2+n2y (l2 + m2 + n2y+> J '

y
Sums such as </.m,n')P(o,o,<» Im(l2 + m2 + n2) ' are zero since the summand is odd.
Further, we may write

/2(/2 + m2 + n2r(I+1)= 2 (/2 + m2 + n 2 r (A9)
(/.m,n )/(0.0,0)

and thus we can rearrange the sum in (A8) to have zero summand.
For small | p | , we may expand fin as given by (A7) by expanding

^*(p; 1/2). The largest term comes from the integral on (TT,°°) in (A4a) and is
O(\p |"3). This term is found by turning the integral into one on (0,°o) which can
be easily evaluated to leading order) and then estimating the error. All the other
terms are at most O(|p|~2 and so

( A 1 0 )

The results given in equations (2.9) and (2.10) then follow immediately.
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