
Publications of the Astronomical Society of Australia (2024), 41, e037, 10 pages

doi:10.1017/pasa.2024.35

Research Article

Reduced-resolution beamforming: Lowering the computational cost
for pulsar and technosignature surveys
D.C. Price1,2
1International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia and 2SKA Observatory, Science Operations Centre, Kensington,
WA 6151, Australia

Abstract
In radio astronomy, the science output of a telescope is often limited by computational resources. This is especially true for transient and
technosignature surveys that need to search high-resolution data across a large parameter space. The tremendous data volumes produced by
modern radio array telescopes exacerbate these processing challenges. Here, we introduce a ‘reduced-resolution’ beamforming approach to
alleviate downstream processing requirements. Our approach, based on post-correlation beamforming, allows sensitivity to be traded against
the number of beams needed to cover a given survey area. Using the MeerKAT and Murchison Widefield Array telescopes as examples, we
show that survey speed can be vastly increased, and downstream signal processing requirements vastly decreased, if a moderate sacrifice to
sensitivity is allowed.We show the reduced-resolution beamforming technique is intimately related to standard techniques used in synthesis
imaging. We suggest that reduced-resolution beamforming should be considered to ease data processing challenges in current and planned
searches; further, reduced-resolution beamformingmay provide a path to computationally expensive search strategies previously considered
infeasible.
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1. Introduction

Extracting science results from astronomy datasets can often
be a computationally demanding process. Supercomputers have
become vital tools in modern astronomy – unfortunately to the
point that energy consumption of supercomputers and research
infrastructure dominate astronomy’s carbon footprint (Stevens
et al. 2020; Portegies Zwart 2020). As well as the ecological impact,
access to computing resources is limited by the technology and
funding available. Observational astronomers must work within
these boundaries to unravel the scientific mysteries and marvels
hiding in their data.

In radio astronomy, one of the most computationally expen-
sive exercises is searching for pulsars and other fast transients.
In order to detect a new pulsar with unknown characteristics,
one must search across a range of different periods, dedispersion
trials, and pulse widths (see Chapter 6, Lorimer & Kramer 2004).
Searches are particularly challenging when using radio array
telescopes, as a large number of beams must be formed to cover
a survey area, and the search process must be repeated on each
beam. Nevertheless, there are active pulsar searches on several
radio array telescopes (e.g. Sanidas et al. 2019; Chen et al. 2021;
Singh et al. 2023; Bhat et al. 2023a). fast radio burst (FRB) searches
(e.g. Law et al. 2015; Bailes et al. 2017; Bannister et al. 2017; Ng
et al. 2017) must also search through multiple dispersion and
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pulse width trials but are (somewhat) more manageable as they
do not apply a periodicity search.

Another computationally demanding avenue is the search for
extraterrestrial intelligence (SETI), which seeks to detect ‘tech-
nosignatures’ from extraterrestrial intelligence as a proxy for intel-
ligent life. Indeed, the SETI@Home project (Anderson et al. 2002)
was a pioneer in developing distributed computing in order to
attain sufficient compute resources for data analysis. At one stage,
the SETI@Home network – peaking at over 5.2 m volunteers –
constituted the largest supercomputer on the planet.

Decades later, thanks to exponential ‘Moore’s law’ scaling of
compute capacity, the Breakthrough Listen project (Worden et al.
2017; Isaacson et al. 2017) is able to search petabytes of data
for technosignatures with modest server clusters located at the
observatory (MacMahon et al. 2018; Price et al. 2018; Lebofsky
et al. 2019), making the distributed computing approach unnec-
essary. Even so, technosignature searches using radio arrays, such
as the Breakthrough Listen programme on the MeerKAT tele-
scope (Czech et al. 2021) and the recently announced COSMICa

instrument on the Karl G. Jansky Very Large Array, are orders of
magnitude more challenging than previous single-dish searches,
motivating new search techniques.

With a radio array, when a desired search strategy is limited by
the available compute resources, it is often advantageous to sacri-
fice sensitivity and imaging fidelity against instantaneous field of
view. As beam width scales with ∼ λ/D, where D is the longest

aCOSMIC: Commensal Open-Source Multimode Interferometer Cluster Search for
Extraterrestrial Intelligence. https://science.nrao.edu/facilities/vla/observing/cosmic-seti.
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baseline in the array and λ is wavelength, the number of beams
required to cover a given survey area scales with D2. As such, pul-
sar searches tend to only use the ‘core’ part of an antenna array,
and longer baselines are dropped. For example, in the MeerKAT
TRAPUMb survey, only the central 37–41 antennas from the 64-
antenna array are regularly used, corresponding to 57–64% of the
peak sensitivity (Chen et al. 2021). The LOTASSc survey used
the dense central ‘Superterp’ core of LOFAR to balance field of
view against sensitivity. Similarly, the Murchison Widefield Array
(MWA) SMARTd (Bhat et al. 2023a) uses the ‘compact’ MWA
configuration of 128 tiles within ∼800 m.

The computational challenges for pulsar surveys are exacer-
bated at low frequencies, as the number of dispersion measrure
(DM) trials required to correct for dispersive delays due to prop-
agation through the interstellar medium scales with λ2. The
LOTAAS survey searched across 10 120 DM trials, which required
30M CPU-core hours on the Cartesius supercomputer to process
data up to January 2019 (Sanidas et al. 2019). Based on first-pass
benchmarks, the SMART survey will require ∼60M CPU-core
hours to process∼93 hours of observational data using the OzStar
supercomputer (Bhat et al. 2023a). As the SMART team antici-
pate receiving ∼0.5–0.6M CPU-core hours per semester, they are
in the process of optimising and accelerating their search pipeline
to ensure processing is possible.

In this paper, we introduce a ‘reduced-resolution’ beamform-
ing technique that allows for sensitivity to be traded off against
sky coverage. Our reduced-resolution beamforming approach,
applied after inter-antenna correlation, down-weights baselines
longer than a specified distance. This per-baseline approach results
in appreciably larger sensitivity than simply discarding all anten-
nas outside of a core region. Reduced-resolution beamforming
effectively covers a desired survey area with a smaller number
of beams, for a moderate decrease in survey speed. By doing so,
the downstream compute requirements for a given survey can be
greatly reduced.

This paper is organised as follows. In Section 2, we give an
overview of post-correlation beamforming, introduce a compact
tensor notation, and highlight the relationship between a power
beam and a pixel within a synthesis image. Reduced-resolution
beamforming is introduced in Section 3, along with survey speed
and computational cost metrics. In Section 4, we consider the
application of reduced-resolution beamforming to the SMART
survey; in Section 5, we argue that the survey speed for MeerKAT
pulsar searches could be increased dramatically by reduced-
resolution beamforming, without increasing the number of beams
formed. We conclude with a short discussion in Section 6.

2. Post-correlation beamforming

Tied-array (coherent) beamforming is a common signal process-
ing operation used to combine the voltage-level outputs from an
array of N radio telescopes. A tied-array of N identical telescopes
increases sensitivity by a factor of N over a single telescope, but
this comes at the expense of a smaller field of view. Multiple tied-
array beams can be formed to improve the instantaneous field of
view of the array; however, storing and processing multiple beams
can be challenging.

bTRAPUM: Transients and Pulsars with MeerKAT.
cLOTASS: LOFAR Tied-Array All-sky Survey.
dSMART: Southern-sky Rapid Two-Metre pulsar survey survey.

An alternative approach, known as incoherent beamforming,
sums the output power from each telescope. An incoherent
beam retains the field of view, but the sensitivity only improves
as

√
N. For computationally expensive algorithms – such as those

required in pulsar, FRB, and technosignature searches – it is often
infeasible to form tied-array beams across the instrument’s entire
field of view. On the other hand, the incoherent beam may not
have enough sensitivity nor spatial resolution to be scientifically
interesting.

A beamformed voltage beam from P antennas is given by the
sum of weights w(t)=Aeiθ(t) with a voltage stream v(t):

b(t)=
P∑

p=1

wp(t)vp(t) (1)

The power beam, B, is the beam after squaring and averaging in
time. Denoting time average with angled brackets 〈〉, and treat-
ing the weights as static across the time average interval, that is,
wp(t)=wp, the power beam is given by:

B= 〈b(t)b∗(t)〉 (2)

=
〈⎛
⎝ P∑

p=1

wpvp(t)

⎞
⎠

⎛
⎝ P∑

q=1

wqvq(t)

⎞
⎠

∗〉
(3)

=
P∑

p=1

P∑
q=1

wp〈vp(t)v∗
q(t)〉w∗

q (4)

The quantity 〈vp(t)v∗
q(t)〉 can be treated as a (P × P) matrix V.

This is known as the visibility matrix and is the fundamental data
product produced by a radio interferometer. Equation (4) can
alternatively be written in terms of V and a weight vector w:

B=wVwH (5)

where wH is the weight vector’s Hermitian conjugate.
In the above, we treated weights as being static; in practice,

weights must be updated as a source moves across the sky. The
update cadence (i.e. maximum time average interval) required
to avoid decorrelation loss depends on the longest inter-antenna
baseline within the array; see Wijnholds et al. (2018) for further
discussion.

There are therefore two paths towards generating a power
beam, which we refer to as pre-correlation beamforming and post-
correlation beamforming. These paths are shown diagramatically
in Fig. 1. The figure also shows optional gridding steps, which
allows multiple regularly spaced beams to be formed using a two-
dimensional fast Fourier transform (2D FFT) if the input data
are regularly gridded. The dashed lines in Fig. 1 represent hybrid
archetictures, for example, arrays like the MWA and LOFAR
where beamforming is performed on a subset of antennas within
a ‘station’, and then the station tied-array beams are correlated.

2.1 Direct imaging approaches

With the advent of large-N telescopes, there is increased interest
in ‘direct imaging’ instruments which follow the pre-correlation
gridded path of Fig. 1. In one approach, antennas are physi-
cally arranged on a grid, and then a spatial 2D FFT is applied
to form images (Tegmark & Zaldarriaga 2009). This approach
is extended by the Modular Optimal Frequency Fourier (MOFF)
imaging technique. In the MOFF approach, antennas do not need
to be physically placed on a grid; rather, voltages are gridded elec-
tronically based on the aperture illumation of consituent antennas
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Figure 1. Block diagram showing (simplified) pathways to generate power beams – or equally, images – from antenna voltages (noting Nbeam ≡ Npix × Npix). Equivalent tasks are
colour-coded and italic text corresponds to data output dimensions; dashed lines represent hybrid architectures. Standard imaging follows the top path (i.e. correlating antenna
pairs first): correlations are time-averaged, gridded, weighted, and then a 2D FFT is applied to form the image. Post-correlation beamforming also follows this top path but sums
visibilities without a gridding step to form a power beam (or multiple beams). Standard tied-array beamforming follows the bottom path (i.e. applying weights first): weights are
applied to antenna voltages, which are summed to form a voltage beam (ormultiple beams). This voltage beam can be squared and time-averaged to create a power beam. Direct
imaging correlators follow the bottom path too but apply gridding at the start, so a 2D FFT can be used to form a grid of power beams.

(Morales 2011; Thyagarajan et al. 2017; Kent et al. 2019). Note that
a visibility matrix can be retrieved from a grid of beams via an
inverse 2D FFT (Tegmark & Zaldarriaga 2009; Foster et al. 2014),
which is shown in Fig. 1 as a dashed line between pathways.

Here, we focus on non-gridded methods, but note that equiv-
alent trade-offs between resolution and sensitivity could be lever-
aged with these alternative architectures.

2.2 Tensor formalism

Equation (5) can be written in an equivalent compact form using
summation notation:

B=wVwH ≡ wp Vpq (w∗)q =WpqVpq (6)
In this notation, summation is implied over all indices that appear
in an upper and lower index (∗ represents complex conjugation).
So, we sum across indexes p and q (summation indices repre-
senting antennas) which returns a single value B. The quantity
Wpq =wpw∗

q is equivalent to the (P × P) matrix formed from the
outer product wwH .

The visibility matrix can itself be written in summation nota-
tion, instead of using 〈〉 brackets, as:

Vpq = vtp(v∗)qt (7)
where t represents time.

These bold-face quantities are often referred to as data tensors.
Tensors can simply be considered as multi-dimensional arrays, or
generalisations of a matrix into higher dimensions. Here, we will
follow the nomenclature used in the TensorFlow software pack-
age.e As we are using data tensors as a computational tool, we do
not need to worry about other uses of tensors found in physics and
mathematics, such as their interpretation as mappings between
vector spaces, so we do not define a tensor metric here. We note
that tensors have indeed been used previously in calibration and
imaging (e.g. Smirnov 2011; Price & Smirnov 2015; Thekkeppattu
et al. 2024).

ehttps://www.tensorflow.org/guide/tensor.

Whenever a pair of tensors have matching upper and lower
indices, entries are summed across all matching indices; this is
known as a pairwise contraction. The order of pairwise contrac-
tions for a chain of tensors is known as the contraction path. The
computational cost to evaluate a tensor chain depends on the con-
traction path; finding the optimal path is an NP-hard problem that
can quickly become intractable as the number of tensors increases.

2.3 Computing tensor contractions

Numerous software packages for performing tensor contractions
are available. We highlight that the Python Numpy package
(Harris et al. 2020) includes a flexible ‘one-liner’ einsum method
for computing contractions on Numpy arrays. An equivalent
einsum method exists in the Cupy software package (Okuta et al.
2017), which offloads computations to a graphics processor unit
(GPU). If compiled against the NVIDIA cuTENSOR library,f
highly optimised tensor cores on the GPU may be targeted; these
offer orders-of-magnitude greater energy efficiency than regular
GPU cores.

A highly optimised correlation code that uses tensor cores
is detailed in Romein (2021), and a complex general matrix
multiply (cGEMM) code has been developed for use for beam-
forming with a phased array feed.g Together, these two codes
could be used to compute Equation (6), and the einsum method
provides a straightforward path for prototyping and developing
post-correlation beamforming techniques.

2.4 Multiple beams and frequency channels

We can extend Equation (6) with extra indices (subscripts l and
m) to represent a grid of (L×M) beams on the sky and across F
frequency channels (subscript ν):

Blmν = (
wlmpνvptν

) (
w∗
lmqν(v∗)qνt

)
(8)

fhttps://docs.nvidia.com/cuda/cutensor/index.html,
ghttps://gitlab.mpcdf.mpg.de/nesser/tc_cgemm/-/tree/master/.
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That is, we sum across indexes p and q (summation indices) and
output an N-dimensional array with indices (l,m, ν). We can also
write Equation (6) as:

Blmν =Wpq
lmν

Vpqν . (9)

If power beams are evaluated at a series of timesteps, we may write
Blmν = B(t)lmν as a function of time:

B(t)lmν =Wpq
lmν

V(t)pqν . (10)

There are two key differences between Equations (8) and (11).
The first is that the tensor Wpqlmν has (P2 × L×M × F) entries,
but wplmν has only (P × L×M × F) entries. The second is that
Equation (8) requires three pairwise contractions to compute,
while Equation (11) is only one pairwise contraction – two con-
tractions have already been performed to produce Wlmpqν and
Vpqν .

To extend to a polarisation-aware version, we may simply add
a subscript x:

B(t)lmνx =Wpq
lmνx V(t)pqνx. (11)

where x represents a set of four polarisation coherency mea-
surements (e.g. XX∗, XY∗, YX∗, and YY∗ for a linearly polarised
dual-polarisation antenna).

2.5 Comparison to interferometric imaging

In synthesis imaging, an image I(l,m) is created by evaluating

I(l,m)= 1
M

M∑
m=1

V(uk, vk)e2π(ukl+vkm), (12)

where M is the number of baselines and (uk, vk) are coordinates
relating to the baseline k between a (p, q) antenna pair (Equations
7–3, Briggs et al. 1999). This equation can written as a tensor
contraction:

Ilm =Wk
lmVk (13)

Wklm = 1
M

exp
(−i2π(ukl+ vkm)

)
, (14)

which by splitting k= pq can be rewritten as:

Ilm =Wpq
lm Vpq, (15)

Wpqlm = 1
M

exp
(
2π i(upql+ vpqm)

)
. (16)

Comparison of Equations (5) and (16) reveals that Ipq ≡ Bpq. That
is, each pixel in an image is equivalent to a power beam, or alter-
natively, an image can be created out of a grid of power beams.
Note that in synthesis imaging, autocorrelations are generally not
included; that is, the weights tensor Wpq = 0 if p= q. From a
power beam interpretation, this is equivalent to subtracting the
incoherently summed beam from the tied-array power beam (Roy
et al. 2018).

2.6 Historical perspective

While the interpretation of image pixels as power beams is not
commonly discussed, the link between imaging and beamform-
ing is fundamental to radio astronomy and was leveraged by
early interferometers, including the Mills Cross (Mills et al. 1958).
However, for the most part, the historical development of pulsar
search pipelines has run parallel to high-fidelity synthesis imaging
systems, leading to disparate science communities and techniques.

Since their discovery in 1967 by Jocelyn Bell Burnell, a major-
ity of pulsars have been discovered using single-dish instruments,
such as the Parkes Murriyang, Arecibo, Lovell, and Green Bank
telescopes (Manchester et al. 2005). As such, most observing tech-
niques and knowledge within the pulsar community is derived
from single-dish approaches. Pulsar search codes such as PRESTOh

(Ransom 2011) were also designed for single-dish telescopes and
are, in general, incompatible with interferometric data products.

In contrast, radio interferometers have predominantly been
used for long-exposure synthesis imaging. Earth rotation syn-
thesis, popularised by the Cambridge One-Mile Radio Telescope
(Ryle 1962), combines data across many hours of observation to
improve imaging fidelity. Instruments were not designed to output
high time resolution data products; rather, they were designed to
integrate data for as long as possible to minimise output data rates.
Despite their lack of time resolution, pulsars have been detected in
synthesis images via other characteristics; exceptionally, the first
millisecond pulsar was detected in synthesis images as a source
with an anomalous spectrum (Backer et al. 1982).

The quest to discover new pulsars has nonetheless led pulsar
astronomers towards radio arrays. Modern interferometers have
good sensitivity, a large field of view, and better localisation capa-
bility; on a technical level, tied-array beamforming is increasingly
feasible. Fast imaging techniques – where each pixel is treated as a
power beam – have been used for searches of millisecond transient
pulses (Law et al. 2015, 2018), as have FFT-based beamforming
approaches (Ng et al. 2017), but are yet to be eagerly adopted in
pulsar periodicity searches.

Techosignature searches have followed a similar trajectory.
Frank Drake performed the first SETI search using the Tatel
single-dish telescope in 1961 (Drake 1961); single-dish telescopes
remained the primary technology used until the construction of
the Allen Telescope Array (Welch et al. 2009). Many technosig-
nature experiments have targeted nearby stars and have sought
to maximise frequency coverage (e.g. Isaacson et al. 2017); hence,
field of view has not historically been a science driver. But more
ambitious surveys of nearby star targets (Czech et al. 2021) moti-
vate faster survey speed, and there is a growingmovement towards
non-targeted widefield technosignature searches (Houston et al.
2021).

3. Reduced-resolution beamforming

One tactic used to improve sky coverage of a tied-array beam-
former is to only use antennas within a ‘core’ region. Via Equation
(8), selecting a core region is equivalent to setting weights wlmpν
to zero for any antenna p that is above a cut-off distance from a
reference antenna (i.e. per-antenna filtering). To first order, the
full-width at half-maximum (FWHM) of the resultant tied-array
beam will scale with λ/dmax.

Post-correlation beamforming allows the user to set weights
between any antenna pair (Wpq), allowing per-baseline filtering
(i.e. in fact, the standard approach in synthesis imaging). The per-
baseline approach means that all baselines below a given threshold
distance can be included in the power beam – including short
baselines outside the core. It follows that a per-baseline filter-
ing approach (only possible with post-correlation beamforming)
will always yield a more sensitive power beam than a per-antenna
approach.

hhttps://github.com/scottransom/presto.
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Figure 2. Reduced-resolution beam formed from the MWA compact configuration.
The full-resolution beam is shown in grey; a reduced-resolution beam for a 100-m
maximum baseline is shown in red.

We refer to post-correlation beamforming schemes that set
weights to zero for any baseline above a cut-off distance as
reduced-resolution beamforming. Controlling the cut-off distance
essentially allows for sensitivity to be traded off against beam
width. For simplicity, we will only consider weights with magni-
tude 0 (discard baseline) or 1 (keep baseline), but note there are
myriad weighting schemes used in synthesis imaging that could
be considered (see Chapter 10, Thompson et al. 2017).

Fig. 2 shows an example of reduced-resolution beamforming,
as applied to MWA 128-tile Compact configuration (Wayth et al.
2018). The grey line shows the beam pattern (known as point
spread function, or dirty beam, in synthesis imaging) for a zenith-
pointed tied-array beam. The red line shows the resulting beam
pattern using reduced-resolution beamforming, with a dmax = 100
m cutoff. The reduced-resolution beam is wider and smoother but
has a lower power gain, which corresponds to lower sensitivity.
Note Fig. 2 does not account for the tile beam pattern.

3.1 Sensitivity

From the radiometer equation, the expected thermal noise (in Jy
units) of a beam formed via post-correlation beamforming can be
written as:

�Spost−x = kBTsys

Ae
√

�ντNpol(2Nbaselines +Nant)
(17)

where we introduce the following quantities:

Tsys System temperature
kB Boltzmann’s constant
�ν Bandwidth
Aant Effective area of an antenna element
τ Integration time

Nant Number of antennas
Npol Number of polarisations

Nbaselines Number of baselines in array

Equation (17) differs slightly from the standard interferome-
ter radiometer equation (Equation 9.26, Wilson et al. 2013) as it
includes a Nant term to account for autocorrelations. Noting that

Nbaselines =Nant(Nant − 1)/2 (18)

N2
ant = 2Nbaselines +Nant (19)

one finds that Equation (17) reduces to the tied-array radiometer
equation if all baselines are included:

�Stied = 2kBTsys

AantNant
√

�ντNpol
. (20)

Additionally, if cross-correlation terms are not included (i.e.
Nbaselines = 0), then we retrieve the radiometer equation for an
incoherent beam:

�Sincoherent = 2kBTsys

Aant
√

�ντNantNpol
. (21)

If we choose a subset of baselines, based on maximum length,
the resulting noise will lie between the ideal �Stied thermal noise
(all baselines included) and the incoherent �Sincoherent noise (only
autocorrelations included). Put another way, reduced-resolution
beamforming provides access to resolution and sensitivity regimes
that lie between that of incoherent and coherent beamforming
techniques.

3.2 Fractional sensitivity

Consider the case where a maximum baseline length d is imposed
on an array with longest baseline D. For a tied array beamformer,
the sensitivity can be treated as a function of baseline length,
�Scoherent(d) (Equation (20)), with the number of antennas in the
sub-array isN ′

ant(d). For a post-correlation beamformer (Equation
(17)), the thermal noise level reached �Spost−x(d) depends on
N ′

baselines(d).
It is useful to define a fractional sensitivity factor, fS, that relates

the sensitivity of the selected subarray to the full array:

�S(d)= �S(D)
/
fS. (22)

For a reduced-resolution beam with all autocorrelations, N ′
ant =

Nant, and

fS = �Spost−x(D)
�Spost−x(d)

=
√
2N ′

baselines(d)+Nant

Nant
(23)

whereas for a tied-array beam

fS = �Stied(D)
�Stied(d)

= N ′
ant(d)
Nant

(24)

and N ′
ant ≤Nant.

Fig. 3 shows the fractional sensitivity for a reduced-resolution
beam and tied-array beam as a function of maximum baseline
length, using the EDA2i array as an example (Wayth et al. 2021).
The reduced-resolution beam always has a larger fractional sen-
sitivity than a tied-array beam from a sub-selection of antennas.
This fact is a key motivation for reduced-resolution beamforming.

The slope of�Spost−x(d) depends on the antenna configuration.
Fig. 4 considers the application of reduced-resolution beamform-
ing to three radio arrays: the 64-antenna MeerKAT telescope

iEDA2: Engineering Development Array 2.
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Figure 3. Comparison of EDA2 fractional sensitivity for a tied-array beam (red) and a
post-x beamformed beam (black), as a function of maximum baseline length dmax. The
post-x approach allows short baselines to be included, boosting sensitivity.

(Camilo 2018), the 128-tile MWA (in compact configuration,
Wayth et al. 2018), and the EDA2 (Wayth et al. 2021). The top
panels show the antenna layout for each array, and themiddle pan-
els show baseline distribution histograms as a function of baseline
length. The lower panel shows the fractional sensitivity for each
array as a function of maximum baseline length (solid black line),
and the number of beams required to fill the primary field of view,
assuming the beam width scales as λ/d (dashed red line).

A key takeaway from Fig. 4 is that all telescopes reach a reason-
able fractional sensitivity (∼0.5) with an order of magnitude fewer
beams to fill their field of view than the full array. In the coming
sections, we will explore how this finding could be applied on these
telescopes.

3.3 Survey speed

Survey speed is a useful metric for optimising the performance of
an array. The point-source survey speed figure of merit (PFoM)
relates to the time taken to survey a field with solid angle�survey to
a required thermal noise level in Jy, �Ssurvey. Following Equation
3 of Cordes (2009),j we may define a PFoM modified in a similar
fashion to Chen et al. (2021) to account for number of beams and
maximum baseline length.

The fraction of the maximum PFoM (all antennas, beams
covering instrumental FoV) reached with a reduced-resolution
beamforming system is

fPFoM = PFoM(d)
PFoMfull

= f 2S × fFoV (25)

where the fractional coverage of the instrument’s field of view
(�full), depends on the number of beams formed:

fFoV = �FoV(d)
�full

≈ Nbeam

�full

(
λ

d

)2

, (26)

assuming resolution follows the λ/d rule of thumb. However, the
actual beam width depends on both the array configuration and
the beam’s declination in a complex fashion. Many radio arrays

jhttps://www.skatelescope.org/uploaded/26865_109_Memo_Cordes.pdf.

have decreasing antenna density for longer baselines, for which
λ/d underestimates the beam width. Nevertheless, if the number
of beams is fixed, we expect the fractional field of view to decrease
rapidly as d increases.

3.4 Computational cost

The approximate computational cost of a correlator and multi-
pixel beamformer can be written in terms of complex-multiply
accumulate operations per second (CMACs/s) as:

CX = (
NantNpol(NantNpol + 1)

) × �ν (27)

CB = (
Nbeam Nant Npol

) × �ν (28)

where �ν is the bandwidth of data processed. To form post-
correlation beams from the correlator output requires an addi-
tional step, with computational cost

Cpxb = fbaselines ×
(
NpxbN2

antN
2
pol

)
× �ν

Nint
(29)

where Nint is the number of time samples summed during inte-
gration, fbaselines is the fraction of baselines included, and Npxb is
the number of post-correlation beams. Note that the cost of FFT-
based imaging scales proportionally to Npxblog2Npxb, and for most
arraysk

log2Npxb �N2
ant, (30)

so we stress that the PXB approach is generally far more com-
putationally expensive than the 2D FFT approach employed in
imaging pipelines. That said, for fair comparison with compu-
tationally expensive searches – where only a few beams can be
processed on any one compute server – we do not compare against
FFT-based imaging any further in this article.

Based on Equations (28)–(29), tied-array beamforming is more
computationally expensive ifNbeams �Npxb and/or if the correlator
does not integrate many time samples, that is, Nint is large.

This conclusion is consistent with Roy et al. (2018), which con-
siders post-correlation beamforming techniques for pulsar studies
with the Giant Metrewave Radio Telescope. Roy et al. (2018)
also concludes that post-correlation beamforming is computation-
ally cheaper for a large number of beams at low time resolution,
and regular beamforming is cheaper for a small number of high
time-resolution beams.

As with imaging, the cost of post-correlation beamforming
(Equation (29)) can be reduced significantly if visibilities are grid-
ded and a 2D FFT is used (Briggs et al. 1999). However, the
FFT approach is not be suitable for a small number of beams
and/or widefield imaging; further, when distributing processing
tasks across a supercomputer, it may be advantageous to have only
a small number of beams per node. As such, we present values for
the non-gridded approach.

4. Application to MWA SMART

SMART (Bhat et al. 2023a) is a pulsar and fast transient search
project on the MWA, using the 128-tile compact configuration
(Wayth et al. 2018). SMART aims to conduct a pulsar search across
the full sky below 30◦ declination, to a limiting sensitivity (10σ ) of
2–3 mJy. Observations began in 2018 and are approximate 75%

kNoting Npxb ≡Npix ×Npix, where Npix is image width in pixels.
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(a)

MeerKAT

(b)

MWA (compact configuration)

(c)

EDA2 (SKA-low pathfinder)

Figure 4. Sensitivity analysis for reduced resolution beamforming applied to MeerKAT, the MWA (compact configuration), and the EDA2. The top panels show antenna location,
and themiddle panels showhistogramsof baseline lengths for each telescope. Thebottompanel shows the fractional sensitivity for reduced resolutionbeamforming, as a function
of maximum baseline length (black lines). The minimum sensitivity is equivalent to incoherent beamforming, and maximum sensitivity is equivalent to standard beamforming.
The number of beams required to cover each telescope’s field of view scales with d2max (dashed red lines).

complete (Bhat et al. 2023b). The SMART project stores voltage-
level data products for each of 128 tiles within the MWA compact
configuration, which allows beamforming and/or correlation to be
performed offline. SMART consists of 70 pointings of 80-minute
duration (93 hr total), which corresponds to ∼3 PB of data. These
data are stored on the Pawsey Banksia object store.l

SMART uses a multi-pixel tied-array beamformer (Swainston
et al. 2022), which is used to form up to 20 beams at once (per
compute node). Each pointing requires∼6 000 beams to cover the
full field of view. The pulsar search is performed on power beam
data (Stokes-I). On the OzSTAR supercomputer,m beamforming
10 minutes of data takes 2 kSU (service units), and postpro-
cessing search tasks take 25 kSU (1 kSU is equivalent to 1 000
CPU-core hours, or 125 GPU-core hours). Extrapolating from
these numbers, assuming processing scales linearly with obser-
vation time, processing all 70 pointings for the full 80 minutes

lhttps://pawsey.org.au/systems/banksia/.
mhttps://supercomputing.swin.edu.au/.

would require∼1 120 kSU for beamforming, and∼14 000 kSU for
post-processing.

4.1 Trading sensitivity against compute requirements

The post-processing requirements for SMART scale proportion-
ally with the number of beams searched. By applying reduced-
resolution beamforming, the SMART survey volume can be
searched with fewer beams, potentially improving computational
requirements by an order of magnitude for a moderate drop in
sensitivity. However, any improvement in downstream processing
costs must be offset against any increases in beamforming costs.
Using Equations (28)–(29) and the SMART survey parameters
(Table 1), the computational costs are as follows:

CX = 16.2 TCMAC/s (31)

CB = 767.6 TCMAC/s. (32)
The comparable computational cost for reduced-resolution beam-
forming (CPXB) as a function of fractional sensitivity fs is shown in
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Table 1. MWA SMART survey parameters for a single zenith
pointing.

Nant 128 Number of antennas

Npol 2 Number of polarisations

Nchan 3 072 Number of channels

�FoV 610 Field of view

Nbeam 6 100 Number of beams to tile FoV

�ν 30.72 Bandwidth (MHz)

τ 100 Integration time (μs)

tobs 80 Observation time (min)

Table 2. Computational requirements and corresponding sensitivity limits for
MWA reduced-resolution beamforming, for increasing fractional sensitivity.

fs dmax Nbeam Nbaseline CPXB �S (10σ )

(m) (TCMAC/s) (mJy)

0.2 17.4 16 389 12 10.0–15.0

0.3 30.8 53 810 84 6.7–10.0

0.4 48.3 130 1 353 343 5.0–7.5

0.5 70.4 277 2 121 1 146 4.0–6.0

0.6 123.2 851 2 970 4 931 3.3–5.0

0.7 154.0 1 330 4 084 10 596 2.9–4.3

0.8 180.3 1 825 5 368 19 112 2.5–3.8

0.9 211.1 2 501 6 643 32 412 2.2–3.3

Table 2. The computational cost is considerable, as the integration
time τ = 100μs only allows Nint = 2. For such a large number of
beams, computational cost could be reduced significantly by using
a 2D FFT imaging approach. Regardless, Selecting fs = 0.5 yields
CPXB = 1 146 TMAC/s, that is, roughly 1.5× the cost of tied-array
beamforming, and the current SMART tiling approach could be
maintained.

While the beamforming cost is higher, the number of beams
to search drops from 6 100 to 277. It follows that post-processing
requirements will drop by a factor of 22×, while sensitivity drops
only by a factor of 2×. We extrapolate that the post-processing
requirements on OzSTAR would drop from ∼14 000 to ∼636
kSU. The SMART team anticipates securing 500–600 kSU per
annum (Bhat et al. 2023a), meaning it is plausible that the entire
survey could be processed within a year if reduced-resolution
beamforming is adopted (instead of an implausible 22 years).

The processing requirements for SMART may also be allevi-
ated by planned improvements to the performance of their pulsar
search pipeline. The SMART pipeline currently uses PRESTO,
a CPU-only code written primarily in ANSIC (Ransom 2011).
GPU search codes, such as astroacclerate (Armour et al.
2020) and peasoup (Barr 2020), are hoped to offer an order-
of-magnitude improvement. For example, the astroacclerate
Fourier domain acceleration search is up to 8× faster than its
PRESTO equivalent (Adámek et al. 2020); recent work to exploit
half-precision data types may offer an additional 1.6× speedup
(White et al. 2023). Alleviating I/O bottlenecks, such as disc read
speed, may also improve efficiency. Regardless, any speedup from
pipeline optimisation is complementary to the reduced-resolution
beamforming approach.

4.2 Application to technosignature searches

A narrowband technosignature search of SMART data has been
proposed, which would be the first all-sky technosignature search
in the Southern Hemisphere. As such, a SMART technosigna-
ture search would place some of the most stringent constraints on
the prevalence of putative engineered transmitters in the Galaxy.
It is argued that all-sky SETI searches at low frequency are one
of the most compelling methods to detect evidence of techno-
logically capable life beyond Earth (Garrett et al. 2017; Houston
et al. 2021). Narrowband technosignature searches do not require
high time resolution, which decreases the computational cost of
post-correlation beamforming. For example, decreasing the time
resolution from 100μs to 1 s decreases CPXB (Equation (29)) by a
factor of 10 000.

However, narrowband technosignature searches require high-
frequency resolution, meaning that large data volumes must be
stored in memory on which a large FFT can be performed. This
will limit the number of beams that can be processed at any
time. As with the pulsar search, the post-processing requirements
for narrowband technosignatures scale linearly with the number
of beams. Similar trade-offs between sensitivity and number of
beams are thus well motivated for technosignature surveys.

5. Application to MeerKAT: Optimising survey speed

The TRAPUM programme (Chen et al. 2021) is a tied-array pul-
sar search programme on theMeerKAT 64-antenna array (Camilo
2018). Pulsar searches are conducted using up to ∼1 000 power
beams, formed from a tied-array beamforming approach (Barr
2018). An incoherent beam may also be formed, and the maxi-
mum number of beams can increase to 4096 if a smaller subset of
antennas is beamformed.

TRAPUMuses a PFoMmodified forMeerKAT to optimise sur-
vey speed (Equation 4 Chen et al. 2021), from which the optimal
number of antennas is found to be between 37 and 41, depending
on the altitude observed; this corresponds to a ∼1 km maximum
baseline and 58–64% fractional sensitivity. If reduced-resolution
beamforming was applied, the corresponding fractional sensitivity
would be 71–75% for the same baseline cut-off. The extra baselines
would also slightly improve the beam sidelobe response by filling
in the uv-plane.

Based onNant = 64, and time integration used in the TRAPUM
search mode (τ = 76μs, Nint = 32), the computational cost of
reduced-resolution beamforming yields CPXB = 4CB. Memory
requirements may also be higher, which could limit the number
of reduced-resolution beams that could be formed.

Fig. 5 shows a comparison of survey speed against maximum
baseline length for the MeerKAT array. If tied-array beamforming
is used, the maximum baseline length corresponds to the size of
the ‘core’ region of antennas used. For reduced-resolution beam-
forming, the maximum baseline length corresponds to the subset
of baselines from the entire array. Note the PFoM for the tied-
array beam is comparable to Figure 6 Chen et al. (2021). The
PFoM is consistently higher for reduced-resolution beamforming.
For Nbeam = 1 024, the maximum PFoM peaks 3.9× higher for the
reduced-resolution approach.

However, taking into account the instrument’s capabilities,
we conclude that post-correlation beamforming is unlikely to
yield a higher PFoM. TRAPUM processes data streams in real
time, and the beamformer is computationally-bound. So, the
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Figure 5. Comparison of MeerKAT survey speedwith reduced resolution beamforming
and tied-array beamforming approaches.

increase in computational cost (CPXB = 4CB) outweighs the ben-
efit of the 3.9× PFoM increase: 4× fewer beams could be formed.
Nevertheless, the approach may be useful for other projects on
MeerKAT where the downstream search algorithms are compu-
tationally expensive.

6. Conclusions

This article has introduced reduced-resolution beamforming: a
post-correlation beamforming approach that allows sensitivity to
be traded against the number of beams needed to cover a sur-
vey area. Reduced-resolution beamforming offers an alternative to
tied-array beamforming of a core region of antennas. The sensitiv-
ity of a reduced-resolution beam is always higher than tied-array
beamforming of a core antenna region.

There are two pathways towards forming power beams: pre-
correlation beamforming, in which voltages are summed, squared
then averaged, and post-correlation beamforming, in which
antenna pairs are cross-correlated before summation and averag-
ing (Fig. 1). Our approach relies on the latter, in which per-baseline
weights can be applied in lieu of per-antenna weights.

In Section 2, we introduced a tensor formalism to highlight
the difference between pathways of Fig. 1 and showed that a
pixel within an interferometric image is equivalent to a power
beam. Tensors have become standard data structures within com-
monly used software packages such as Numpy and offer compact
notation; given these advantages, we encourage the use of tensor
formalisms for further research on beamforming approaches.

There are two main advantages of reduced-resolution beam-
forming. First, by decreasing the number of beams needed to cover
a survey area, the downstream processing requirements to search
the beams is lower: in Section 4, we show by applying reduced-
resolution beamforming to the SMART survey, the same sky
volume could be covered with 22× fewer beams, while retaining
50% fractional sensitivity. Second, for a fixed number of beams,
the survey speed of the telescope may be increased: in Section 5,
we argue that the PFoM for the TRAPUM search mode on the
MeerKAT telescope could be increased by 3.9× by if reduced-
resolution beamforming was adopted, albeit at the expense of
increased computational requirements for beamforming.

While reduced-resolution beamforming demands a sensitivity
trade-off, it could be offset by improved downstream processing.

For example, in a pulsar search, more DM or acceleration trials
may become feasible if fewer beams need to be searched, improv-
ing the final signal-to-noise of candidates. One could also consider
using reduced-resolution beamforming as a first-pass approach to
find candidates above a less stringent threshold (e.g. 5σ ), then
form tied-array beams to follow-up candidates, setting a more
stringent threshold (e.g. 10σ ) for validation or rejection.

Nevertheless, there are limitations of the approach. Reduced-
resolution beamforming produces power beams, so it cannot be
applied in cases where voltage beams are needed (e.g. coherent
dedispersion). For science cases where confusion noise is a rel-
evant concern, such as continuum imaging, reduced-resolution
beamforming is not appropriate. Another disadvantage is that the
decrease in angular resolution means that any transient object
found will have a comparatively poor localisation, although this
could be improved using intra-beam methods (Obrocka et al.
2015). Finer localisation of candidate objects could also be done
by reprocessing/reobserving at full resolution and then using
known parameters (e.g. DM, period, pulse width) to narrow the
search space. Finally, the computational requirements for post-
correlation beamforming may become unfeasibly large for arrays
with a large number of antennas (Equation (29)).Memory require-
ments for storing the correlationmatrix and beamforming weights
may also limit the number of beams that a single compute node
could process.

All things considered, we conclude that reduced-resolution
beamforming is best suited to science cases where downstream
processing requirements dominate the processing budget, such
as searches for pulsar, technosignatures, and fast transients.
We encourage experimental application and verification of the
approach to ease the data processing challenges faced by current
and planned searches.
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