PROJECTIVE DESCRIPTIONS OF THE (LF)-SPACES OF TYPE $LB(\lambda_p(A), F)$

ANGELA A. ALBANESE

(Received 25 October 2001; revised 15 May 2002)

Communicated by A. Pryde

Abstract

Let $1 \le p < +\infty$ or p = 0 and let $A = (a_n)_n$ be an increasing sequence of strictly positive weights on *I*. Let *F* be a Fréchet space. It is proved that if $\lambda_p(A)$ satisfies the density condition of Heinrich and a certain condition (C_i) holds, then the (LF)-space $LB_i(\lambda_p(A), F)$ is a topological subspace of $L_b(\lambda_p(A), F)$. It is also proved that these conditions are necessary provided $F = \lambda_q(A)$ or *F* contains a complemented copy of l_q with 1 .

2000 Mathematics subject classification: primary 46A13, 46A32, 46A45. Keywords and phrases: spaces of linear continuous maps, echelon and co-echelon spaces of order p, projective description.

The space LB(E, F) of all linear bounded maps between two locally convex spaces E and F has been considered and studied under different points of view by several authors (see [2, 4, 10, 11, 16], [17, 11.6], [22, 23] *et al.*). In particular, taking E and F Fréchet spaces and endowing the space $LB_i(E, F)$ with the canonical structure of countable inductive limit of Fréchet spaces, the problem of finding conditions on E and/or F such that the (LF)-space $LB_i(E, F)$ is a topological subspace of $L_b(E, F)$, or equivalently the canonical inclusion map $LB_i(E, F) \hookrightarrow L_b(E, F)$ is also open, has been investigated (see [11, 4, 10]). This question is said to be the problem of the projective description of the (LF)-space $LB_i(E, F)$. It is worth noting that, if F is a Banach space, the question is closely related to the Grothendieck's one if $L_b(E, F)$ is again a (DF)-space.

In connection with the study of this problem, in [1, Theorem 1] the following characterization was given: $LB_i(\lambda_1(A), F)$ is a topological subspace of $L_b(\lambda_1(A), F)$ if and only if $\lambda_1(A)$ satisfies the density condition of Heinrich and a so-called condition (C_t) holds (thus obtaining a complete solution of an open problem posed by Bierstedt

^{© 2003} Australian Mathematical Society 1446-7887/03 \$A2.00 + 0.00

and Bonet [4, Section 4]). The aim of this paper is to extend the criterion to the class of the (LF)-spaces of type $LB(\lambda_p(A), F)$ with 1 or <math>p = 0. Actually, we prove that ' $\lambda_p(A)$ satisfies the density condition' and 'condition (C_i) holds' always imply that $LB_i(\lambda_p(A), F)$ is a topological subspace of $L_b(\lambda_p(A), F)$ (Section 2). We also prove that these conditions become necessary provided $F = \lambda_q(A)$ or F contains a complemented copy of l_q with 1 (Section 3).

As immediate consequences, we derive the well-known results that $L_b(\lambda_p(A), F)$ and $C(S, k_q(\mathcal{V}))$ $(1/p + 1/q = 1 \text{ if } 1 \le p < +\infty \text{ or } q = 1 \text{ if } p = 0)$ are complete (LB)-spaces (hence bornological and barrelled (DF)-spaces) whenever $\lambda_p(A)$ satisfies the density condition of Heinrich and F is a Banach space and $\lambda_p(A)$ is a Fréchet Montel space and S is a compact Hausdorff space, respectively.

1. Notation

We begin with the necessary notation. For other notation and definitions we refer the reader to [15, 17].

Let E and F be Fréchet spaces. Let L(E, F) be the space of all linear and continuous maps from E into F and $L_b(E, F)$ the same space endowed with the topology of uniform convergence on bounded subsets of E.

Suppose that E is the reduced projective limit of the sequence $(E_n, || ||_n)_n$ of Banach spaces with linking maps $\rho_{nm}: E_m \to E_n$, n < m, and $\rho_n: E \to E_n$, $n \in \mathbb{N}$ (that is, $\rho_{nm} \circ \rho_m = \rho_n$ for n < m) such that the sets $U_n := \{x \in E; ||\rho_n x||_n \le 1\}$ form a basis of 0-neighbourhoods in E. The duals norms are defined by $||f||'_n := \sup\{|f(x)|; x \in U_n\}$, $f \in E'$; hence $|| ||'_n$ is the gauge of \mathring{U}_n in E' and $E'_n := (\operatorname{span} \mathring{U}_n, || ||'_n)$ is a Banach space. Then for each n < m the map $J_{nm}: L_b(E_n, F) \to L_b(E_m, F)$ defined by $J_{nm}T := T \circ \rho_{nm}$ is one-to-one, linear and continuous. Therefore, we can consider the inductive limit of Fréchet spaces $\operatorname{ind}_n(L_b(E_n, F), J_{nm})$, which continuously embeds in $L_b(E, F)$. Indeed, for each $n \in \mathbb{N}$ the map $J_n: L_b(E_n, F) \to L_b(E, F)$ defined by $J_nT := T \circ \rho_n$ is one-to-one, linear and continuous; thereby implying that there is a linear, one-to-one and continuous map $J: \operatorname{ind}_n L_b(E_n, F) \to L_b(E, F)$, whose image is the space LB(E, F) of linear bounded maps from E into F. We define $LB_i(E, F) := \operatorname{ind}_n L_b(E_n, F)$.

In the sequel, for $n, k \in \mathbb{N}$ let $B_{n,k} := \{T \in L(E_n, F); \sup_{\|x\|_n \le 1} |Tx|_k \le 1\}$, where $(|k_k|_k \text{ denotes a fundamental increasing sequence of seminorms defining the topology of <math>F$ such that the sets $V_k := \{x \in F; |x|_k \le 1\}$ form a basis of 0-neighbourhoods in F.

Recall that, if F is a Banach space, then LB(E, F) = L(E, F) algebraically and every bounded set of $L_b(E, F)$ is contained and bounded in $L_b(E_n, F)$ for some n; hence the (LB)-space $LB_i(E, F)$ is always regular. A Fréchet space E is called *distinguished* if its inductive dual $E'_i = \operatorname{ind}_n E'_n$ and its strong dual E'_b are topologically isomorphic. In general, $E'_i = E'$, the inclusion map $E'_i \hookrightarrow E'_b$ is continuous and E'_i is the bornological space associated with E'_b . A Fréchet space E is said to satisfy the *density condition* of Heinrich [14] (see [2, Proposition 2]) if for any sequence $(\lambda_n)_n$ of strictly positive numbers there exists a bounded subset B of E such that

$$\forall n \in \mathbb{N} \exists m > n \exists \lambda > 0 : \bigcap_{j=1}^{m} U_j \subset \lambda B + U_n.$$

This density condition was introduced by Heinrich [14] and thoroughly studied for Fréchet and Köthe spaces by Bierstedt and Bonet [2]. It was proved in [2, Theorem 1.4] that a Fréchet space E has the density condition if and only if the bounded subsets of its strong dual are metrizable; hence every Fréchet space with the density condition is distinguished (see, [15, Section 29, 3.12 and 4.3]). Moreover, every quasinormable and every Fréchet Montel space has the density condition.

For the notations for Köthe echelon and co-echelon spaces we refer the reader to [6]. Nevertheless, we recall the following.

In the sequel, *I* will always denote a non void index set. Let $A = (a_n)_n$ and $\mathscr{V} = (v_n)_n$ ('weights') be sequences on *I*, with $0 < a_n(i) \le a_{n+1}(i)$ and $v_n(i) = 1/a_n(i)$ for all $i \in I$ and $n \in \mathbb{N}$. The maximal Nachbin family associated with \mathscr{V} is given by

$$\bar{V} := \left\{ \bar{v} \colon I \mapsto [0, +\infty[; \forall n \in \mathbb{N} \sup_{i \in I} \frac{\bar{v}(i)}{v_n(i)} = \sup_{i \in I} \bar{v}(i)a_n(i) < +\infty \right\}.$$

Let $1 \le p < +\infty$ or p = 0. The Köthe echelon space of order p and the Köthe co-echelon space of order q, where 1/p + 1/q = 1 if $1 \le p < +\infty$ or q = 1 if p = 0, are defined by

$$\lambda_p(A) := \left\{ x = (x_i)_{i \in I}; \forall n \in \mathbb{N} \, \|x\|_{n,p} := \left(\sum_{i \in I} a_n^p(i) |x_i|^p \right)^{1/p} < +\infty \right\},\,$$

if $1 \le p < +\infty$, $(\lambda_0(A) := \{x = (x_i)_{i \in I}; \forall n \in \mathbb{N} \lim_i a_n(i) | x_i | = 0\}$ and $||x||_{n,0} := \sup_{i \in I} a_n(i) | x_i |$, if p = 0) and

$$k_q(\mathscr{V}) := \left\{ x = (x_i)_{i \in I}; \ \exists n \in \mathbb{N} \ \|x\|'_{n,q} := \left(\sum_{i \in I} v_n^q(i) |x_i|^q \right)^{1/q} < +\infty \right\},\$$

if $1 \le q < +\infty$, $(k_{\infty}(\mathscr{V}) := \{x = (x_i)_{i \in I}; \exists n \in \mathbb{N} ||x||'_{n,\infty} := \sup_{i \in I} v_n(i)|x_i| < +\infty\}$ if $q = +\infty$), respectively. Clearly, $k_q(\mathscr{V}) = \operatorname{ind}_n l_q(v_n)$. Also, for 1 or p = 0, $(\lambda_p(A))'_b = (\lambda_p(A))'_i = k_q(\mathscr{V})$ by [6, Corollary 2.8] and hence $\lambda_p(A)$ is distinguished. By [6, Theorem 2.7], $(\lambda_p(A))'_b$ coincides algebraically and topologically with $K_q(\bar{V}) := \operatorname{proj}_{\bar{v}\in\bar{V}} l_q(\bar{v})$. Finally, we recall that the sequence A is said to satisfy condition (D) if there exists an increasing sequence $J = (I_m)_m$ of subsets of I such that:

- (N, J) For each $m \in \mathbb{N}$, there is an $n(m) \in \mathbb{N}$, $n(m) \ge m$, with $\inf_{i \in I_m} a_{n(m)}(i)/a_k(i) > 0$, k = n(m) + 1, n(m) + 2, ...
- (M, J) For each $n \in \mathbb{N}$ and for each subset $I_0 \subseteq I$ such that $I_0 \cap (I \setminus I_m) \neq \emptyset$ for all $m \in \mathbb{N}$, there exists an $n' = n'(n, I_0) > n$ with $\inf_{i \in I_0} a_n(i)/a_{n'}(i) = 0$.

This condition was introduced in [5, Theorem 2.3]. Moreover, it was proved in [2, Theorem 2.10] that, for $1 \le p < +\infty$ or p = 0, $\lambda_p(A)$ has the density condition if and only if the sequence A satisfies condition (D). In particular, by [2, Theorem 2.4] $\lambda_1(A)$ has the density condition if and only if it is distinguished.

We will denote by $[l_p(I)]_1$ and by $[c_0(I)]_1$ the unit closed ball of $l_p(I)$ for $1 \le p < +\infty$ and of $c_0(I)$ for p = 0, respectively.

REMARK 1.1. All proofs will be carried out for $1 \le p < +\infty$, the case p = 0 being similar.

2. Sufficient conditions for projective descriptions of the (LF)-spaces $LB_i(\lambda_p(A), F)$

The aim of this section is to prove the following:

THEOREM 2.1. Let $1 \le p < +\infty$ or p = 0 and let $A = (a_n)_n$ be an increasing sequence of strictly positive weights on I. Let F be a Fréchet space with a fundamental increasing sequence $(| \ |_k)_k$ of continuous seminorms. If the following conditions hold

(i) the sequence A satisfies condition (D) and

(ii) for each $(\lambda_l)_l \subset \mathbb{R}_+$ and for each $(k(l))_l$ non-decreasing sequence of positive integers, there are $(\gamma_j)_j \subset \mathbb{R}_+$ and $k \in \mathbb{N}$ such that

(C_i)
$$\forall n \in \mathbb{N} \quad \sum_{j=1}^{n} \gamma_j B_{j,k} \subseteq \bigcup_{m \in \mathbb{N}} \sum_{l=1}^{m} \lambda_l B_{l,k(l)},$$

then $LB_i(\lambda_p(A), F)$ is a topological subspace of $L_b(\lambda_p(A), F)$.

To show the above theorem we need some preliminary results. The first one could be interesting in itself.

[4]

LEMMA 2.2. Let $1 \le p < +\infty$ or p = 0. Let $A = (a_n)_n$ be an increasing sequence of strictly positive weights on I satisfying condition (M, J). Then, for each $\bar{v} \in \bar{V}$ and $k \in \mathbb{N}$,

$$\lim_{m} \sup_{\mu \in [l_{p}(I)]_{1}} \left(\sum_{i \in I \setminus I_{m}} \bar{v}^{p}(i) a_{k}^{p}(i) |\mu_{i}|^{p} \right)^{1/p} = 0, \quad if \ 1 \le p < +\infty$$

or

$$\lim_{m} \sup_{\mu \in \{c_0(i)\}_1} \sup_{i \in I \setminus I_m} \bar{v}(i) a_k(i) |\mu_i| = 0, \quad \text{if } p = 0.$$

PROOF. Suppose that there exist $\bar{v} \in \bar{V}$ and $k_0 \in \mathbb{N}$ such that the sequence

$$\left\{\sup_{\mu\in\{l_p(I)\}_1}\left(\sum_{i\in I\setminus I_m}\bar{v}^p(i)a^p_{k_0}(i)|\mu_i|^p\right)^{1/p}\right\}_m$$

does not converge to 0. Thus, there are $\epsilon_0 > 0$ and an increasing sequence of positive integers $(k(m))_m$ so that, for each $m \in \mathbb{N}$,

$$\sup_{u\in[l_p(I)]_1}\left(\sum_{i\in I\setminus I_{k(m)}}\bar{v}^p(i)a_{k_0}^p(i)|\mu_i|^p\right)^{1/p}>\epsilon_0.$$

It follows that, for each $m \in \mathbb{N}$, there is $\mu^m = (\mu_i^m)_i \in [l_p(1)]_1$ such that

$$\left(\sum_{i\in I\setminus I_{k(m)}}\bar{v}^p(i)a_{k_0}^p(i)|\mu_i^m|^p\right)^{1/p}>\epsilon_0$$

and hence

$$\epsilon_{0} < \left(\sum_{i \in I \setminus I_{k(m)}} \bar{v}^{p}(i) a_{k_{0}}^{p}(i) |\mu_{i}^{m}|^{p}\right)^{1/p} \le \sup_{i \in I \setminus I_{k(m)}} \bar{v}(i) a_{k_{0}}(i) \left(\sum_{i \in I \setminus I_{k(m)}} |\mu_{i}^{m}|^{p}\right)^{1/p} \le \sup_{i \in I \setminus I_{k(m)}} \bar{v}(i) a_{k_{0}}(i).$$

We can then find another increasing sequence $(m_r)_r$ of positive integers and a sequence $(i_r)_r \subset I$ such that, for each $r \in \mathbb{N}$, $i_r \in I_{k(m_r)} \setminus I_{k(m_{r-1})}$ $(m_0 := 1)$ and $\bar{v}(i_r)a_{k_0}(i_r) > \epsilon_0$. Let $Y := \{i_r; r \in \mathbb{N}\}$. Then $Y \cap (I \setminus I_m) \neq \emptyset$ for all $m \in \mathbb{N}$. By (M, J), for the given Y and k_0 , there is $k > k_0$ so that $\inf_{r \in \mathbb{N}} a_{k_0}(i_r)/a_k(i_r) = 0$. But, since $\bar{v} \leq \alpha_k v_k$ on I for some $\alpha_k > 0$, we obtain that

$$\epsilon_0 < a_{k_0}(i_r)\bar{v}(i_r) \le \alpha_k a_{k_0}(i_r)v_k(i_r) = \alpha_k a_{k_0}(i_r)/a_k(i_r)$$

for all $r \in \mathbb{N}$; thereby implying that $0 < \epsilon_0/\alpha_k \leq \inf_{r \in \mathbb{N}} a_{k_0}(i_r)/a_k(i_r)$ which is a contradiction.

Next, for a given increasing sequence $J = (I_m)_m$ of subsets of I such that $I = \bigcup_{m \in \mathbb{N}} I_m$, we introduce the following space

$$L(\lambda_p(A), F; J) := \left\{ T \in L(\lambda_p(A), F); \exists m \in \mathbb{N} \ \forall \lambda \in \lambda_p(A) \ T\left(\sum_{i \in I} \lambda_i e_i\right) = T\left(\sum_{i \in I_m} \lambda_i e_i\right) \right\},$$

where $(e_i)_{i \in I}$ denotes the usual vector basis of $\lambda_p(A)$, that is, $e_i = (\delta_{ij})_{j \in I}$. We observe that if $T \in L(\lambda_p(A), F; J)$, then there is $m \in \mathbb{N}$ such that for each $k \in \mathbb{N}$ there are $c_k > 0$ and $n_k \in \mathbb{N}$ for which

(1)
$$|T(\lambda)|_{k} \leq c_{k} \left\| \sum_{i \in I_{m}} \lambda_{i} e_{i} \right\|_{n_{k}, p}$$

for all $\lambda \in \lambda_p(A)$ (this follows from the fact that $T \in L(\lambda_p(A), F)$ and that, for each $m \in \mathbb{N}, \lambda_p(A; I_m) := \{\lambda \in \lambda_p(A); \lambda_i = 0 \text{ for all } i \notin I_m\}$ is a sectional subspace of $\lambda_p(A)$). Moreover, we have:

LEMMA 2.3. Let $1 \le p < +\infty$ or p = 0. Let $A = (a_n)_n$ be an increasing sequence of strictly positive weights on I satisfying condition (M, J). Let F be a Fréchet space with a fundamental increasing sequence $(| |_k)_k$ of continuous seminorms. Then $L(\lambda_p(A), F; J)$ is a dense subspace of $L_b(\lambda_p(A), F)$.

PROOF. Let $T \in L(\lambda_p(A), F)$. Let B be an absolutely convex bounded subset of $\lambda_p(A), \epsilon > 0$ and $k \in \mathbb{N}$. By [6, Proposition 2.5] we can suppose that $B = \overline{v}[l_p(I)]_1 = \{\overline{v}\mu = (\overline{v}(i)\mu_i)_i; \ \mu \in [l_p(I)]_1\}$ for some $\overline{v} \in \overline{V}$.

Consider the absolutely convex 0-neighbourhood of $L_b(\lambda_p(A), F)$ given by

$$W := \left\{ R \in L(\lambda_p(A), F); \ R(\tilde{v}[l_p(I)]_1) \subseteq V_k \right\}.$$

We claim that there is $S \in L(\lambda_p(A), F; J)$ such that $T - S \in \epsilon W$, or equivalently $\sup_{\lambda \in \tilde{v}[l_p(I)]_1} |T(\lambda) - S(\lambda)|_k < \epsilon$. Since T is linear and continuous, for the given k, there are $c_k > 0$ and $n_k \in \mathbb{N}$ such that, for each $\lambda \in \lambda_p(A)$, $|T(\lambda)|_k \leq c_k ||\lambda||_{n_k,p}$; thereby implying that, for each $\lambda = \tilde{v}\mu \in \tilde{v}[l_p(I)]_1$,

(2)
$$|T(\lambda)|_{k} \leq c_{k} \left(\sum_{i \in I} \overline{v}^{p}(i) a_{n_{k}}^{p}(i) |\mu_{i}|^{p} \right)^{1/p},$$

where by Lemma 2.2 there is $m_0 \in \mathbb{N}$ such that, for each $m \ge m_0$,

(3)
$$\sup_{\mu\in[l_p(I)]_1}\left(\sum_{i\in I\setminus I_m}\tilde{v}^p(i)a_{n_k}^p(i)|\mu_i|^p\right)^{1/p}<\epsilon/2c_k.$$

Now, we define a map $S : \lambda_p(A) \to F$ by $S(\lambda) := T(\sum_{i \in I_{m_0}} \lambda_i e_i) = \sum_{i \in I_{m_0}} \lambda_i T(e_i),$ $\lambda \in \lambda_p(A)$; clearly $S \in L(\lambda_p(A), F; J)$. Moreover, by (2) and (3), for each $\lambda = \bar{\nu}\mu \in \tilde{\nu}[l_p(I)]_1$,

$$|T(\lambda) - S(\lambda)|_{k} = \left| T\left(\sum_{i \in I \setminus I_{m_{0}}} \lambda_{i} e_{i}\right) \right|_{k} \leq c_{k} \left(\sum_{i \in I \setminus I_{m_{0}}} \bar{v}^{p}(i) a_{n_{k}}^{p}(i) |\mu_{i}|^{p}\right)^{1/p} < \epsilon/2$$

It follows that $\sup_{\lambda \in \bar{v}[l_p(I)]_1} |T(\lambda) - S(\lambda)|_k \le \epsilon/2 < \epsilon$ and the proof is then complete.

REMARK 2.4. From the proof of Lemma 2.3, it is clear that given $T \in L(\lambda_p(A), F)$ and, for each $m \in \mathbb{N}$, $T_m : \lambda_p(A) \to F$ defined by $T_m(\lambda) := T(\sum_{i \in I_m} \lambda_i e_i)$ for $\lambda \in \lambda_p(A)$, it holds that $(T_m)_m \subset L(\lambda_p(A), F; J)$ and $T_m \stackrel{m}{\mapsto} T$ in $L_b(\lambda_p(A), F)$.

On the other hand, we have:

LEMMA 2.5. Let $1 \le p < +\infty$ or p = 0. Let $A = (a_n)_n$ be an increasing sequence of strictly positive weights on I satisfying (N, J). Let F be a Fréchet space with a fundamental increasing sequence $(| |_k)_k$ of continuous seminorms. Then $L(\lambda_p(A), F; J)$ is a subspace of $LB(\lambda_p(A), F)$.

PROOF. Let $T \in L(\lambda_p(A), F; J)$. Then, by (1) there is $m \in \mathbb{N}$ such that for each $k \in \mathbb{N}$ there exist $c_k > 0$ and $n_k \in \mathbb{N}$, $n_k \ge k$, for which

$$|T(\lambda)|_{k} \leq c_{k} \left\| \sum_{i \in I_{m}} \lambda_{i} e_{i} \right\|_{n_{k}, p} = c_{k} \left(\sum_{i \in I_{m}} |\lambda_{i}|^{p} a_{n_{k}}^{p}(i) \right)^{1/p}$$

for all $\lambda \in \lambda_p(A)$.

Since A satisfies condition (N, J), there exists $n(m) \ge m$ such that, for each h > n(m), $\inf_{i \in I_m} a_{n(m)}(i)/a_h(i) = \alpha_h > 0$, or equivalently $a_{n(m)} \ge \alpha_h a_h$ on I_m . Thus, for each k > n(m) (and hence $n_k \ge k > n(m)$) and $\lambda \in \lambda_p(A)$,

$$|T(\lambda)|_{k} \leq c_{k} \left(\sum_{i \in I_{m}} |\lambda_{i}|^{p} a_{n_{k}}^{p}(i) \right)^{1/p}$$

$$\leq c_{k} \alpha_{n_{k}}^{-1} \left(\sum_{i \in I_{m}} |\lambda_{i}|^{p} a_{n(m)}^{p}(i) \right)^{1/p} = c_{k} \alpha_{n_{k}}^{-1} \left\| \sum_{i \in I_{m}} \lambda_{i} e_{i} \right\|_{n(m), p}$$

This means that $T \in L(l_p(a_{n(m)}), F)$ and hence $T \in LB(\lambda_p(A), F)$.

At this point we are able to state and prove the following basic result towards Theorem 2.1.

LEMMA 2.6. Let $1 \le p < +\infty$ or p = 0 and let $A = (a_n)_n$ be an increasing sequence of strictly positive weights on I. Let F be a Fréchet space with a fundamental increasing sequence $(| \ |_k)_k$ of continuous seminorms. If the sequence A satisfies condition (N, J) and condition (C_i) holds, then $LB_i(\lambda_p(A), F)$ and $L_b(\lambda_p(A), F)$ induce the same topology on $L(\lambda_p(A), F; J)$.

PROOF. By Lemma 2.5, $L(\lambda_p(A), F; J) \subset LB(\lambda_p(A), F)$. We now remark that replacing the increasing sequence $(a_n)_n$ by $(a_{n(m)})_m$ if necessary, we can assume that n(m) = m in condition (N, J) so that, for each $m \in \mathbb{N}$ and each k > m, $\inf_{i \in I_m} a_m(i)/a_k(i) > 0$. For each $m \in \mathbb{N}$, let $\delta_m := \inf_{i \in I_m} a_m(i)/a_{m+1}(i) > 0$.

For a fixed absolutely convex 0-neighbourhood U of $LB_i(\lambda_p(A), F)$, for each $l \in \mathbb{N}$, there is k(l) > k(l-1) (k(0) := 0) so that $B_{l,k(l)} \subseteq U$. Since U is an absolutely convex set, we have

$$\bigcup_{m\in\mathbb{N}}\sum_{l=1}^m 2^{-l}B_{l,k(l)}\subseteq U.$$

By (C_t) , for the given sequences $(2^{-l})_l$ and $(k(l))_l$, there are $(\gamma_j)_j \subset \mathbb{R}_+$ and $k \in \mathbb{N}$ such that, for each $n \in \mathbb{N}$,

(4)
$$\sum_{j=1}^{n} \gamma_j B_{j,k} \subseteq \bigcup_{m \in \mathbb{N}} \sum_{l=1}^{m} 2^{-l} B_{l,k(l)}.$$

Inductively, we may now choose an increasing sequence $(\alpha_j)_j$ of positive numbers with, for each $j \in \mathbb{N}$, $\alpha_j \ge \gamma_j^{-1}$ and $\alpha_{j+1} \ge \alpha_j/\delta_j$ so that, defining $\bar{v} := \inf_{j \in \mathbb{N}} \alpha_j v_j \in \bar{V}$, we conclude (as in [5, Proof of Lemma 3.12]) that, for each $m \in \mathbb{N}$, $\bar{v}_{|I_m} = \min_{j \le m} \alpha_j v_j$. Let $B := \bar{v}[l_p(I)]_1$. By [6, Proposition 2.5], B is an absolutely convex bounded subset of $\lambda_p(A)$ and hence the set $V := \{T \in L(\lambda_p(A), F); T(B) \subseteq V_k\}$ is an absolutely convex 0-neighbourhood of $L_b(\lambda_p(A), F)$. We claim that $V \cap L(\lambda_p(A), F; J) \subseteq U$. Indeed, if $T \in V \cap L(\lambda_p(A), F; J)$, then

$$\sup_{\lambda\in B}|T(\lambda)|_k\leq 1$$

and there is $K \in \mathbb{N}$ such that $T(\lambda) = T\left(\sum_{i \in I_K} \lambda_i e_i\right)$ for all $\lambda \in \lambda_p(A)$. For each $i \in I_K$ let $h(i) := \min\{j \in \{1, 2, ..., K\}; \alpha_j v_j(i) = \overline{v}(i)\}$ and for each n = 1, ..., K, let $J_n := \{i \in I_K; h(i) = n\}$. Obviously, $I_K = \bigcup_{n=1}^K J_n$ and $J_n \cap J_m = \emptyset$ if $n \neq m$. Next, for each n = 1, ..., K we define a linear and continuous map $T^n : \lambda_p(A) \to F$ by

$$T^{n}(\lambda) := T\left(\sum_{i \in J_{n}} \lambda_{i} e_{i}\right) = \sum_{i \in J_{n}} \lambda_{i} T(e_{i}), \quad \lambda \in \lambda_{p}(A).$$

Clearly, $T = \sum_{n=1}^{K} T^n$. We show that $T^n \in \gamma_n B_{n,k}$ for all n = 1, ..., K. Since $T \in L(\lambda_p(A), F; J) \subset LB(\lambda_p(A), F), T \in L(l_p(a_l), F)$ for some $l \in \mathbb{N}$

and hence, for each $h \in \mathbb{N}$ there is $c_h > 0$ such that

(5)
$$|T(\lambda)|_{h} \leq c_{h} \left(\sum_{i \in I_{K}} |\lambda_{i}|^{p} a_{l}^{p}(i) \right)^{l/p}$$

for all $\lambda \in l_p(a_l)$. On the other hand, by definition of \bar{v} , we have that, for each $i \in J_n$,

$$\frac{1}{a_n(i)} = v_n(i) = \alpha_n^{-1} \alpha_n v_n(i) = \alpha_n^{-1} \bar{v}(i) \le \alpha_n^{-1} \alpha_l v_l(i) = \alpha_n^{-1} \alpha_l \frac{1}{a_l(i)}.$$

By (5) it follows that, for each $h \in \mathbb{N}$ and $\lambda \in l_p(a_n)$,

$$|T^{n}(\lambda)|_{h} = \left| T\left(\sum_{i \in J_{n}} \lambda_{i} e_{i}\right) \right|_{h} \leq c_{h} \left(\sum_{i \in J_{n}} |\lambda_{i}|^{p} a_{l}^{p}(i)\right)^{1/p}$$
$$\leq c_{h} \alpha_{n}^{-1} \alpha_{l} \left(\sum_{i \in J_{n}} |\lambda_{i}|^{p} a_{n}^{p}(i)\right)^{1/p},$$

which yields $T \in L(l_p(a_n), F)$. Moreover, if $\lambda \in l_p(a_n)$ with $\|\lambda\|_{n,p} \leq 1$, then $\lambda_{|J_n} = \bar{v}(\lambda_{|J_n})/\bar{v} \in 1/\alpha_n \bar{v}[l_p(I)]_1 = 1/\alpha_n B$ because

$$\left\|\frac{\lambda_{|J_n|}}{\bar{v}}\right\|_{n,p} = \frac{1}{\alpha_n} \left(\sum_{i \in J_n} |\lambda_i|^p a_n^p(i)\right)^{1/p} \leq \frac{1}{\alpha_n} \|\lambda\|_{n,p} \leq \frac{1}{\alpha_n};$$

therefore $|T^n(\lambda)|_k = |T(\lambda_{|J_n})|_k \le 1/\alpha_n$ and hence $|T^n(\lambda)|_k \le \gamma_n$ because $1/\alpha_n \le \gamma_n$. We have thus shown that $T = \sum_{n=1}^{K} T^n \in \sum_{n=1}^{K} \gamma_n B_{n,k}$. By (4) it follows that

 $T \in \sum_{l=1}^{m} 2^{-l} B_{l,k(l)}$ for some $m \in \mathbb{N}$ and then $T \in U$.

Finally, we can give

PROOF OF THEOREM 2.1. Since the sequence A satisfies condition (D) and (C_t) holds, by Lemma 2.6, $LB_i(\lambda_p(A), F)$ and $L_b(\lambda_p(A), F)$ induce the same topology on $L(\lambda_p(A), F; J)$ (where $L(\lambda_p(A), F; J) \subset LB(\lambda_p(A), F)$ by Lemma 2.5) and by Lemma 2.3 $L(\lambda_p(A), F; J)$ is a dense subspace of $L_b(\lambda_p(A), F)$. Consequently, $L(\lambda_p(A), F; J)$ is also a dense subspace of $LB_i(\lambda_p(A), F)$. Thus Lemma 1.2 of [7] implies that $LB_i(\lambda_p(A), F)$ is a topological subspace of $L_b(\lambda_p(A), F)$.

REMARK 2.7. If F is a Banach space, condition (C_t) clearly holds because, denoting the norm of F by $||, ||_k = ||$ for all $k \in \mathbb{N}$. Therefore, for $1 \le p < +\infty$ or $p = 0, LB_i(\lambda_p(A), F) = L_b(\lambda_p(A), F)$ holds topologically whenever the sequence A

satisfies condition (D), that is, if $\lambda_p(A)$ has the density condition of Heinrich; in this case, it follows that $LB_i(\lambda_p(A), F) \simeq L_b(\lambda_p(A), F)$ is a complete (LB)-space. Unfortunately, this result remains true only in the setting of echelon spaces satisfying the density condition. Indeed, there are examples of Fréchet-Montel spaces E (hence with the density condition) such that $L_b(E, l_2)$ is not even a (DF)-space (see [21]) and of Fréchet-Schwartz spaces E and Banach spaces X such that $L_b(E, X)$ is not a (DF)-space (see [18]).

Then, by Remark 2.7 we immediately obtain well-known results of Bonet and Diaz ([8, Theorem 13] for 1) and of Bierstedt and Bonet ([2, Proposition 2.3], [3, Proposition 2.3] for <math>p = 1), that is,

COROLLARY 2.8. Let $1 \le p < +\infty$ or p = 0. Let $A = (a_n)_n$ be an increasing sequence of strictly positive weights on I and let F be a Banach space. If the sequence A satisfies condition (D), then $L_b(\lambda_p(A), F)$ is a bornological (DF)-space.

Moreover, by Remark 2.7 and by the fact that $L_b(C(S), E)$ is topologically isomorphic to $C(S, E'_b)$ for every Fréchet-Montel space E and compact Hausdorff space S, we also obtain the following result of Domański [13, Theorem 3.1]

COROLLARY 2.9. Let S be a compact Hausdorff space and let $1 \le p < +\infty$ or p = 0. Let $A = (a_n)_n$ be an increasing sequence of strictly positive weights on I and $\mathscr{V} = (1/a_n)_n$. If $\lambda_p(A)$ is a Fréchet-Montel space, then $C(S, k_q(\mathscr{V}))$, with 1/q + 1/p = 1 if $1 \le p < +\infty$ or q = 1 if p = 0, is a complete (LB)-space and hence bornological.

Recall that the problem if $C(S, E'_b)$ is an (LB)-space for every Fréchet-Montel space E and every compact Hausdorff space S was posed by Bierstedt and Schmets [19, page 103]. Only other some partial solutions are known: $C(\beta N, E'_b)$ and $c_0(E'_b)$ are (LB)-spaces for every Fréchet-Montel space E [12, Corollary 6.3] (the case $c_0(E'_b)$ has been solved by Dierolf); if E is a Fréchet-Schwartz space, $C(S, E'_b)$ is an (LB)space for every compact Hausdorff space S.

3. Sufficient and necessary conditions for projective descriptions of the (LF)-spaces $LB_i(\lambda_p(A), F)$

It was proved in [1, Theorem 1] that conditions (i) and (ii) of Theorem 2.1 are also necessary for $LB_i(\lambda_1(A), F)$ to be a topological subspace of $L_b(\lambda_1(A), F)$. But this is no longer true for 1 or <math>p = 0 as the following result shows.

THEOREM 3.1. Let E be a Fréchet space with a fundamental increasing sequence $(|| ||_n)_n$ of continuous seminorms. Then the following conditions are equivalent:

- (i) $LB_i(E, \omega)$ is a topological subspace of $L_b(E, \omega)$.
- (ii) E is distinguished and condition (C_t) holds.

The above theorem should be compared with [4, Proposition 3.12]. Also, we point out that $\lambda_1(A)$ is distinguished if and only if it has the density condition, that is, the sequence A satisfies condition (D); while for 1 or <math>p = 0, $\lambda_p(A)$ is always distinguished and has the density condition if and only if the sequence A satisfies (D). Thus, for $E = \lambda_1(A)$, Theorem 3.1 is a direct consequence of [1, Theorem 1] and for $E = \lambda_p(A)$, 1 or <math>p = 0, gives a complete characterization.

PROOF. We start by observing that $LB_i(E, \omega) = \operatorname{ind}_n(E'_n)^{\mathbb{N}}$ and $L_b(E, \omega) = (E'_b)^{\mathbb{N}}$ hold topologically; hence condition (C_l) turns out as: for each $(\lambda_l)_l \subset \mathbb{R}_+$ and for each $(k(l))_l$ non-decreasing sequence of positive integers, there are $(\gamma_j)_j \subset \mathbb{R}_+$ and $k \in \mathbb{N}$ such that

$$(C_{l})' \qquad \forall n \in \mathbb{N} \quad \sum_{j=1}^{n} \gamma_{j} (\mathring{U}_{j})^{k} \times (E_{j}')^{\mathbb{N}} \subseteq \bigcup_{m \in \mathbb{N}} \sum_{l=1}^{m} \lambda_{l} (\mathring{U}_{l})^{k(l)} \times (E_{l}')^{\mathbb{N}}.$$

(i) implies (ii): Let define a map $J : E'_i \to \operatorname{ind}_n(E'_n)^N$ by J(u) := (u, 0, 0, ...) for $u \in E'$ and a map $P : (E'_b)^N \to E'_b$ by $P(u_n)_n := u_1$ for $(u_n)_n \in (E'_b)^N$. Clearly, J is a topological isomorphism into and P is a topological surjection. Denoting by I the canonical inclusion of $\operatorname{ind}_n(E'_n)^N$ into $(E'_b)^N$, we have that $P \circ I \circ J = \operatorname{Id}_{E'}$. Since I is a topological isomorphism into, it follows that the map $E'_i \hookrightarrow E'_b$ is also open and hence E is distinguished.

Next, for fixed $(\lambda_l)_l \subset \mathbb{R}_+$ and $(k(l))_l \subset \mathbb{N}$, consider the set

(6)
$$U := \bigcup_{m \in \mathbb{N}} \sum_{l=1}^{m} 2^{-l} \lambda_l (\mathring{U}_l)^{k(l)} \times (E'_l)^{\mathbb{N}},$$

which is an absolutely convex 0-neighbourhood of $\operatorname{ind}_n(E'_n)^{\mathbb{N}}$. Then, by assumption there are $k \in \mathbb{N}$ and a closed absolutely convex bounded subset B of E such that $V := (\mathring{B})^k \times (E')^{\mathbb{N}}$ is a closed absolutely convex 0-neighbourhood of $(E'_b)^{\mathbb{N}}$ and $V \cap \operatorname{ind}_n(E'_n)^{\mathbb{N}} \subset U$. Since B is a bounded set of E, there is $(\alpha_j)_j \subset \mathbb{R}_+$ so that, for each $j \in \mathbb{N}$, $\sup_{x \in B} ||x||_j \leq \alpha_j$. Put $\gamma_j := 2^{-j-1}\alpha_j^{-1} > 0$, we claim that, for each $n \in \mathbb{N}$, $\sum_{j=1}^n \gamma_j(\mathring{U}_j)^k \times (E'_j)^{\mathbb{N}} \subset U$. Fix $n \in \mathbb{N}$ and $u \in \sum_{j=1}^n \gamma_j(\mathring{U}_j)^k \times (E'_j)^{\mathbb{N}}$. Then $u = \sum_{j=1}^n u_j$, with $u_j = (u_{ij})_i \in \gamma_j(\mathring{U}_j)^k \times (E'_j)^{\mathbb{N}}$ for all $j = 1, \ldots, n$. Now, $u_j \in (E'_j)^{\mathbb{N}}$ and $u_{ij} \in \gamma_j \mathring{U}_j$ for all $j = 1, \ldots, n$ and $i = 1, \ldots, k$; hence for $j = 1, \ldots, n$ and $i = 1, \ldots, k$,

$$\sup_{x \in B} |u_{ij}(x)| \le \sup_{x \in B} ||u_{ij}||'_j ||x||_j \le \gamma_j \sup_{x \in B} ||x||_j \le \gamma_j \alpha_j = 2^{-j-1}.$$

It follows that, for each $j = 1, ..., n, u_j \in 2^{-j-1} V$; therefore

$$u = \sum_{j=1}^{n} u_j \in \sum_{j=1}^{n} 2^{-j-1} V \subset (1/2) V$$

and so $u \in U$. By $(C_t)'$ and by (6) the proof is then complete.

(ii) implies (i): Let W be an absolutely convex 0-neighbourhood of $\operatorname{ind}_n(E'_n)^N$. Then, there are $(\lambda_l)_l \subset \mathbb{R}_+$ and a non-decreasing sequence $(k(l))_l$ of positive integers such that, for each $l \in \mathbb{N}$, $\lambda_l(\mathring{U}_l)^{k(l)} \times (E'_l)^N \subset W$ and hence

$$\bigcup_{m\in\mathbb{N}}\sum_{l=1}^m 2^{-l}\lambda_l(\mathring{U}_l)^{k(l)}\times (E'_l)^{\mathbb{N}}\subseteq W.$$

By (C_l) , taking $(\lambda'_l)_l = (2^{-l}\lambda_l)_l$, there exist $(\gamma_j)_j \subset \mathbb{R}_+$ and $k \in \mathbb{N}$ for which

$$\sum_{j=1}^{n} \gamma_j (\mathring{U}_j)^k \times (E'_j)^{\mathbb{N}} \subseteq \bigcup_{m \in \mathbb{N}} \sum_{l=1}^{m} 2^{-l} \lambda_l (\mathring{U}_l)^{k(l)} \times (E'_l)^{\mathbb{N}}$$

Put $V := \bigcup_{n \in \mathbb{N}} \sum_{j=1}^{n} 2^{-j} \gamma_j \hat{U}_j$. Then V is an absolutely convex 0-neighbourhood of E'_i . Since E is distinguished, there is a closed absolutely convex bounded set B of E such that $\mathring{B} \subset V$.

Consider the set $U := (\mathring{B})^k \times (E')^N$. This is a 0-neighbourhood in $(E'_b)^N$. We claim that $U \cap \operatorname{ind}_n(E'_n)^N \subset W$. Let $u \in U \cap \operatorname{ind}_n(E'_n)^N$. Then $u = (u_i)_i$ with $u_i \in \mathring{B}$ for all $i = 1, \ldots, k$ and $u_i \in E'_{n_0}$ for all $i \in \mathbb{N}$ and some $n_0 \in \mathbb{N}$. Since $\mathring{B} \subset V$, there is $n'_o \in \mathbb{N}$ such that, for each $i = 1, \ldots, k$,

(7)
$$u_i = \sum_{j=1}^{n'_0} 2^{-j} \gamma_j u_{ij},$$

with $u_{ij} \in \mathring{U}_j$ for all $j = 1, \ldots, n'_0$.

To conclude the proof we have to consider the following two cases. $(n'_0 < n_0)$: Then, by (7),

$$u = ((u_i)_{i \le k}, (0)_{i > k}) + ((0)_{i \le k}, (u_i)_{i > k})$$

= $\sum_{j=1}^{n'_0} 2^{-j} \gamma_j ((u_{ij})_{i \le k}, (0)_{i > k}) + 2^{-n_0} \gamma_{n_0} ((0)_{i \le k}, (2^{n_0} \gamma_{n_0}^{-1} u_i)_{i > k})$
 $\in \sum_{j=1}^{n'_0} 2^{-j} \gamma_j (\mathring{U}_j)^k \times (E'_j)^{\mathbb{N}} + 2^{-n_0} \gamma_{n_0} (\mathring{U}_{n_0})^k \times (E'_{n_0})^{\mathbb{N}}$
 $\subseteq \sum_{j=1}^{n_0} 2^{-j} \gamma_j (\mathring{U}_j)^k \times (E'_j)^{\mathbb{N}} \subseteq W.$

 $(n_0 \leq n'_0)$: Put $w_j := ((u_{ij})_{i \leq k}, (0)_{i > k})$ for $j \in \{1, \ldots, n'_0\} \setminus \{n_0\}$ and $w_{n_0} := ((u_{in_0})_{i \leq k}, (2^{n_0} \gamma_{n_0}^{-1} u_i)_{i > k})$. Then, $w_j \in (\mathring{U}_j)^k \times (E'_j)^N$ for $j \in \{1, \ldots, n'_0\} \setminus \{n_0\}$ and $w_{n_0} \in (\mathring{U}_{n_0})^k \times (E'_{n_0})^N$ and hence

$$u = \sum_{j=1}^{n'_0} 2^{-j} \gamma_j w_j \in \sum_{j=1}^{n'_0} 2^{-j} \gamma_j (\mathring{U}_j)^k \times (E'_j)^{\mathsf{N}} \subseteq W.$$

The proof is now complete.

Under additional assumptions on F we are able to prove that conditions (i) and (ii) of Theorem 2.1 turn out to be also necessary for $LB_i(\lambda_p(A), F)$ to be a topological subspace of $L_b(\lambda_p(A), F)$ also for 1 . Indeed, we have

THEOREM 3.2. Let $1 < p, q < +\infty$ and let $A = (a_n)_n$ be an increasing sequence of strictly positive weights on I. Let $F = \lambda_q(A)$ or F be a Fréchet space which contains a complemented copy of l_q . If $p \leq q$, then the following conditions are equivalent:

- (i) $LB_i(\lambda_p(A), F)$ is a topological subspace of $L_b(\lambda_p(A), F)$.
- (ii) The sequence A satisfies condition (D) and (C_t) holds.

PROOF. (ii) implies (i): This follows from Theorem 2.1.

(i) implies (ii): First we show that (C_t) holds. Its proof is very similar to the one of Theorem 3.1 showing that (i) implies (ii).

Fix $(\lambda_l)_l \subset \mathbb{R}_+$ and a non-decreasing sequence $(k(l))_l$ of positive integers and consider the set $U := \bigcup_{m \in \mathbb{N}} \sum_{l=1}^m 2^{-l} \lambda_l B_{l,k(l)}$, which is an absolutely convex 0-neighbourhood in $LB_i(\lambda_p(A), F)$. By assumption, there are $k \in \mathbb{N}$ and an absolutely convex bounded subset B of E such that $V := \{T \in L(\lambda_p(A), F) : T(B) \subseteq V_k\}$ is a 0-neighbourhood of $L_b(\lambda_p(A), F)$ and $V \cap LB(\lambda_p(A), F) \subset U$.

Since B is a bounded set of $\lambda_p(A)$, for each $j \in \mathbb{N}$, $\alpha_j := \sup_{\lambda \in B} \|\lambda\|_{j,p} < +\infty$. Put $\gamma_j := 2^{-j-1}\alpha_j^{-1} > 0$ for all $j \in \mathbb{N}$. We prove that $\sum_{j=1}^n \gamma_j B_{j,k} \subset U$ holds for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ and $T \in \sum_{j=1}^{n} \gamma_j B_{j,k}$. Then $T = \sum_{j=1}^{n} T_j$, with $T_j \in \gamma_j B_{j,k}$ for all j = 1, ..., n. Consequently, for j = 1, ..., n, $T_j \in L(l_p(a_j), F)$ and

$$\sup_{\lambda \in B} |T_j(\lambda)|_k \leq \sup_{\lambda \in B} \gamma_j \|\lambda\|_{j,p} \leq \gamma_j \alpha_j = 2^{-j-1}.$$

This means that, for each j = 1, ..., n, $T_j \in 2^{-j-1}V$ and hence $T = \sum_{j=1}^{n} T_j \in \sum_{j=1}^{n} 2^{-j-1}V \subset V$. On the other hand, it is clear that $T \in LB(\lambda_p(A), F)$. Thus $T \in V \cap LB(\lambda_p(A), F) \subset U$.

Angela A. Albanese

It remains to show that the sequence A satisfies condition (D). Proof of this is inspired by the one of [11, 4.8]. For this we have to consider two cases: (a) $F = \lambda_q(A)$, $p \leq q$; (b) F contains a complemented copy of l_q , $p \leq q$.

(a) Suppose that the sequence A does not satisfy condition (D). Then, by [3], $\lambda_p(A)$ has a sectional subspace isomorphic to $\lambda_p(B)$, where $B = (b_n)_n$ is a sequence on $\mathbb{N} \times \mathbb{N}$ given by

(8)
$$\begin{cases} b_n(k,j) = b_1(k,j) = 1 & \text{for all } k \ge n; \\ b_{n+1}(n,j) \stackrel{j}{\mapsto} +\infty & \text{for all } n \in \mathbb{N}. \end{cases}$$

Since $\lambda_p(B)$ is a sectional subspace of $\lambda_p(A)$ and hence $\lambda_q(B)$ is also a sectional subspace of $\lambda_q(A)$, by assumption it clearly follows that $LB_i(\lambda_p(B), \lambda_q(B))$ is a topological subspace of $L_b(\lambda_p(B), \lambda_q(B))$.

For each $n \in \mathbb{N}$, put

$$U_n := \left\{ \lambda = (\lambda_{kj})_{kj} \in \lambda_p(B); \|\lambda\|_n := \left(\sum_{j,k=1}^{\infty} |\lambda_{kj}|^p b_n^p(k,j) \right)^{1/p} \le 1 \right\}$$

and

$$V_n := \left\{ \mu = (\mu_{kj})_{kj} \in \lambda_q(B); |\mu|_n := \left(\sum_{j,k=1}^{\infty} |\mu_{kj}|^q b_n^q(k,j) \right)^{1/q} \le 1 \right\}.$$

Then $(U_n)_n$ and $(V_n)_n$ form a basis of closed absolutely convex 0-neighbourhoods of $\lambda_p(B)$ and of $\lambda_q(B)$, respectively. Also, put

$$B_n := \{T \in L(l_p(b_n), \lambda_q(B)); \ T(U_n) \subseteq V_1\} \text{ for all } n \in \mathbb{N},\$$

we have that $B_n \subseteq B_{n+1}$ for every $n \in \mathbb{N}$ and hence $W := \overline{\bigcup_{n \in \mathbb{N}} B_n}$ (the closure is taken in $LB_i(\lambda_p(B), \lambda_q(B))$) is a closed absolutely convex 0-neighbourhood in $LB_i(\lambda_p(B), \lambda_q(B))$. Since $LB_i(\lambda_p(B), \lambda_q(B))$ is a topological subspace of $L_b(\lambda_p(B), \lambda_q(B))$, there is a closed absolutely convex bounded subset C of $\lambda_p(B)$ and $k_0 \in \mathbb{N}$ such that

$$U := \{T \in LB(\lambda_p(B), \lambda_q(B)) : T(C) \subseteq V_{k_0}\} \subseteq (1/2)W.$$

Clearly, $C \subseteq \bigcap_{n=1}^{\infty} \sigma_n U_n$, with $(\sigma_n)_n \subset \mathbb{R}_+$ an increasing sequence such that $\sigma_n \ge 1$ for every $n \in \mathbb{N}$.

Now, we can find inductively an increasing sequence $(m(n))_n$ of positive integers such that, for each $n \in \mathbb{N}$,

(9)
$$m(n) > \max\{m(n-1), 2^{n+1}\sigma_{n+1}\}$$
 and $b_n(n-1, m(n)+1) \ge m(n-1)+1$,

with $m(0) := 2\sigma_1$ and $m(1) := 2^2\sigma_2$. Indeed, suppose that we have determined $(m(n))_{n=1}^k$ such that (9) holds for n = 1, ..., k. Since $b_{k+1}(k, j) \stackrel{j}{\mapsto} +\infty$ by (8), there is $m(k+1) > \max\{m(k), 2^{k+2}\sigma_{k+2}\}$ such that $b_{k+1}(k, m(k+1)+1) \ge m(k) + 1$.

For each $n \in \mathbb{N}$, let

$$u_n := \left(\delta_{kn}\delta_{j\ m(n+1)+1}\frac{m(n)+1}{m(n)}\right)_{kj}$$

Then, for each $n \in \mathbb{N}$, $u_n \in 2\mathring{U}_1 \cap 1/m(n)\mathring{U}_{n+1} \setminus \mathring{U}_n$ because of (8) and (9); indeed, for each $n \in \mathbb{N}$, we have

$$\begin{aligned} \|u_n\|'_n &= \frac{1}{b_1(n,m(n+1)+1)} \frac{m(n)+1}{m(n)} = \frac{m(n)+1}{m(n)} \le 2, \\ \|u_n\|'_{n+1} &= \frac{1}{b_{n+1}(n,m(n+1)+1)} \frac{m(n)+1}{m(n)} \le \frac{1}{m(n)+1} \frac{m(n)+1}{m(n)} = \frac{1}{m(n)}, \\ \|u_n\|'_n &= \frac{1}{b_n(n,m(n+1)+1)} \frac{m(n)+1}{m(n)} = \frac{m(n)+1}{m(n)} > 1. \end{aligned}$$

Let $T: \lambda_p(B) \to \lambda_q(B)$ be a map defined by

$$T(\lambda) := \sum_{n=k_0}^{\infty} u_n(\lambda) e_{n,m(n+1)+1} = \sum_{n=k_0}^{\infty} \lambda_{n,m(n+1)+1} \frac{m(n)+1}{m(n)} e_{n,m(n+1)+1}$$

for $\lambda = (\lambda_{kj})_{kj} \in \lambda_p(B)$ ($(e_{kj})_{kj}$ denotes here the usual vector basis of $\lambda_p(B)$). Since $q \ge p$, it follows from (8) that, for each $h \in \mathbb{N}$ and $\lambda \in \lambda_p(B)$,

$$\begin{split} |T(\lambda)|_{h} &= \left(\sum_{n=k_{0}}^{\infty} |\lambda_{n,m(n+1)+1}|^{q} \left(\frac{m(n)+1}{m(n)}\right)^{q} b_{h}^{q}(n,m(n+1)+1)\right)^{1/q} \\ &\leq 2 \left(\sum_{n=k_{0}}^{h-1} |\lambda_{n,m(n+1)+1}|^{q} b_{h}^{q}(n,m(n+1)+1) + \sum_{n\geq h} |\lambda_{n,m(n+1)+1}|^{q}\right)^{1/q} \\ &\leq 2 c_{h} \left(\sum_{n=k_{0}}^{\infty} |\lambda_{n,m(n+1)+1}|^{q}\right)^{1/q} \leq 2 c_{h} \|\lambda\|_{1}, \end{split}$$

where $c_h := \max_{k_0 \le n < h-1} b_h(n, m(n+1) + 1)$; thereby implying that

 $|T(\lambda)|_1 \leq 2\|\lambda\|_1$

holds for all $\lambda \in \lambda_p(B)$. Therefore, $T \in LB(\lambda_p(B), \lambda_q(B))$ and $T \in 2B_1$. Moreover, for each $\lambda \in C \subseteq \bigcap_{n=1}^{\infty} \sigma_n U_n$,

$$|T(\lambda)|_{k_0} = \left(\sum_{n=k_0}^{\infty} |u_n(\lambda)|^q\right)^{1/q} \le \left(\sum_{n=k_0}^{\infty} \frac{1}{2^{q(n+1)}}\right)^{1/q} < 1$$

because $\lambda \in \sigma_{n+1} U_{n+1}$, $u_n \in 1/m(n) \mathring{U}_{n+1}$ and by (9) $m(n) > 2^{n+1} \sigma_{n+1}$ for every $n \in \mathbb{N}$. Thus $T \in U \subseteq 1/2W$.

Now, $u_n \notin \mathring{U}_n$ for each $n \ge k_0$ and hence there is a closed absolutely convex 0-neighbourhood V'_n in $k_{p'}(\mathscr{V}')$ $(1/p'+1/p=1, \mathscr{V}'=(1/b_n)_n)$ so that $u_n \notin \mathring{U}_n + V'_n$. Put $V := \bigcap_{n\ge k_0} (1/2\mathring{U}_n + V'_n)$. Since it is bornivorous in $k_{p'}(\mathscr{V}')$, it is also a 0neighbourhood in $k_{p'}(\mathscr{V}')$ and hence \mathring{V} is a closed absolutely convex bounded subset of $\lambda_p(B)$ and

$$W_1 := \{ S \in LB(\lambda_p(B), \lambda_q(B)); S(\check{V}) \subseteq V_1 \}$$

is an absolutely convex 0-neighbourhood in $LB_i(\lambda_p(B), \lambda_q(B))$.

Then $T \in 1/2W \subseteq 1/2 \bigcup_{n \ge k_0} B_n + W_1$. Consequently, there are $n_0 \ge k_0$ and $T_1 \in 1/2B_{n_0}$, $T_2 \in W_1$ such that $T = T_1 + T_2$; we observe that $T_1(U_{n_0}) \subseteq 1/2V_1$ and $T_2(\mathring{V}) \subseteq V_1$, or equivalently $T'_1(\mathring{V}_1) \subseteq 1/2\mathring{U}_{n_0}$ and $T'_2(\mathring{V}_1) \subseteq V$. It follows that $T' = T'_1 + T'_2$ and $(T' - T'_1)(\mathring{V}_1) \subseteq V \subseteq 1/2\mathring{U}_{n_0} + V'_{n_0}$ so that $T'(\mathring{V}_1) \subseteq \mathring{U}_{n_0} + V'_{n_0}$. Since $e'_{n_0,m(n_0+1)+1} \in \mathring{V}_1$, by (8) $((e'_{k_j})_{k_j}$ denotes the dual basis of $k_{p'}(\mathscr{V}')$), we obtain that $u_{n_0} = T'(e'_{n_0,m(n_0+1)+1}) \in \mathring{U}_{n_0} + V_{n_0}$, which is a contradiction.

(b) Arguing by contradiction as in the case (a), we find a sectional subspace of $\lambda_p(A)$ isomorphic to $\lambda_p(B)$, with B a sequence of weights on $\mathbb{N} \times \mathbb{N}$ satisfying conditions (8).

Since $\lambda_p(B)$ is a sectional subspace of $\lambda_p(A)$ and F contains a complemented copy of l_q , by assumption it clearly follows that $LB_i(\lambda_p(B), l_q)$ is a topological subspace of $L_b(\lambda_p(B), l_q)$. At this point to complete the proof it suffices to proceed in the same way as in the case (a) with the only change to consider a map $T: \lambda_p(B) \to l_q$ defined by

$$T(\lambda) := \sum_{n=k_0}^{\infty} u_n(\lambda) e_n$$

for $\lambda_p(B)$, where $(e_n)_n$ denotes the usual vector basis of l_q .

Now Remark 2.7, Theorem 3.2 and [8, Theorem 13] imply again a well-known result of Bonet, Diaz and Taskinen [9, Theorem 15], that is,

COROLLARY 3.3. Let $1 and let A be an increasing sequence of strictly positive weights on <math>\mathbb{N}$. Then $L_b(\lambda_p(A), l_q)$ is quasibarrelled if and only if it is bornological if and only if the sequence A satisfies condition (D).

REMARK 3.4. Let 1 . Let A be an increasing sequence of strictly $positive weights on I such that A does not satisfy condition (D). Let <math>F = \lambda_q(A)$ or let F be a Fréchet space which contains a complemented copy of l_q (as $(l_q)^N$, $(l_q)^N \cap l_r(l_r), r > q, L^q_{loc}(\Omega)$ with Ω an open set of \mathbb{R}^n , etc.). Then $LB_i(\lambda_p(A), F)$ is not a topological subspace of $L_b(\lambda_p(A), F)$.

Acknowledgement

The author gratefully thanks J. Bonet for turning her attention to references [9] and [13].

References

- A. A. Albanese, 'A projective description of Fréchet valued co-echelon spaces of infinite order', *Results Math.* 37 (2000), 283-290.
- [2] K. D. Bierstedt and J. Bonet, 'Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces', *Math. Nachr.* **135** (1988), 149–180.
- [3] -----, 'Dual density condition in (DF)-spaces, I', Results Math. 14 (1988), 242-274.
- [4] ——, 'Projective descriptions of weighted inductive limits: the vector valued cases', in: Advances in the theory of Fréchet spaces (ed. T. Terziŏglu) (Kluwer Academic Publisher, 1989) pp. 195–221.
- [5] K. D. Bierstedt and R. Meise, 'Distinguished echelon spaces and the projective description of weighted inductive limits of type 𝒞_d𝔅(X)', in: Aspects of mathematics and its applications (ed. J. A. Barroso) (Elsevier, North-Holland Library, Amsterdam, 1986) pp. 169–226.
- [6] K. D. Bierstedt, R. Meise and W. H. Summers, 'Köthe sets and Köthe sequence spaces', in: Functional analysis, holomorphy and approximation theory (ed. J. A. Barroso), North-Holland Math. Studies 71 (North-Holland, Amsterdam, 1982) pp. 27-91.
- [7] _____, 'A projective description of weighted inductive limits', Trans. Amer. Math. Soc. 272 (1982), 107–160.
- [8] J. Bonet and J. C. Diaz, 'The problem of topologies of Grothendieck and the class of Fréchet T-spaces', Math. Nachr. 150 (1991), 109–118.
- [9] J. Bonet, J. C. Diaz and J. Taskinen, 'Tensor stable Fréchet and (DF)-spaces', Collect. Math. 42 (1991), 199-236.
- [10] J. Bonet, P. Domański and J. Mujica, 'Complete spaces of vector-valued holomorphic germs', Math. Scand. 75 (1994), 150-160.
- [11] S. Dierolf, 'On spaces of continuous linear mappings between locally convex spaces', *Note Mat.* 5 (1985), 147–255.
- [12] S. Dierolf and P. Domański, 'Factorization of Montel operators', Studia Math. 107 (1993), 15-32.
- [13] P. Domański, 'On spaces of continuous functions with values in coechelon spaces', Rev. R. Acad. Cienc. Exact. Fis. Nat. (Esp) 92 (1998), 61-66.
- [14] S. Heinrich, 'Ultrapowers of locally convex spaces and applications I', Math. Nachr. 118 (1984), 285-315.
- [15] G. Köthe, Topological vector spaces I, II (Springer, Berlin, 1969, 1979).
- [16] E. Mangino, L. Frerick, J. Wengenroth and S. Dierolf, 'Strong regularity conditions for some classes of (LF)-spaces', in: *Functional analysis* (eds. S. Dierolf, S. Dineen and P. Domański) (W. de Gruyter, Berlin, 1996) pp. 293-304.
- [17] P. Pèrez Carreras and J. Bonet, *Barrelled locally convex spaces*, North-Holland Math. Studies 131 (North-Holland, Amsterdam, 1987).
- [18] A. Peris, 'Topological tensor product of Fréchet-Schwartz space and a Banach space', *Studia Math.* 106 (1993), 189–196.
- [19] J. Schmets, 'Spaces of continuous functions', in: Functional analysis: Surveys and recent results (eds. K. D. Bierstedt and B. Fuchssteiner), North-Holland Math. Studies 27 (North-Holland, Amsterdam, 1977) pp. 89-104.

- [20] —, Spaces of vector-valued continuous functions, Lecture Notes in Math. 1003 (Springer, Berlin, 1983).
- [21] J. Taskinen, 'The projective tensor product of Fréchet-Montel spaces', Studia Math. 91 (1988), 17-30.
- [22] D. Vogt, 'Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist', J. Reine Angew. Math. 345 (1983), 182–200.
- [23] ——, 'Some results on continuous linear maps between Fréchet spaces', in: Functional analysis: Surveys and recent results III (eds. K. D. Bierstedt and B. Fuchssteiner), North-Holland Math. Studies 90 (North-Holland, Amsterdam, 1984) pp. 349–381.

Dipartimento di Matematica 'E. De Giorgi' Università di Lecce, C.P. 193 Via Per Arnesano 73100 Lecce Italy e-mail: albanese@ilenic.unile.it

180