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ON UNITARY POLARITIES OF FINITE PROJECTIVE
PLANES

WILLIAM M. KANTOR

1. Introduction. A unitary polarity of a finite projective plane & of
order ¢? is a polarity 6 having ¢® + 1 absolute points and such that each non-
absolute line contains precisely ¢ + 1 absolute points. Let G() be thegroup
of collineations of & centralizing 6. In [15] and [16], A. Hoffer considered
restrictions on G (#) which force & to be desarguesian. The present paper is
a continuation of Hoffer’s work. The following are our main results.

THEOREM 1. Let 6 be a unitary polarity of a finite projective plane P of order .
Suppose that T is a subgroup of G(0) transitive on the pairs x, X, with x an abso-
lute point and X a nonabsolute line containing x. Then P is desarguesian and
I' contains PSU (3, q).

THEOREM 11. Let 6 be a unitary polarity of a finite projective plane P of
order q%. Suppose that there are at least three non-collinear absolute points x such
that G(0) contains q (x, x®)-elations. Then P is desarguesian.

Our definition of a unitary polarity shows that the absolute points and
nonabsolute lines form a 2 — (¢* + 1,¢ + 1, 1) design % (6) [7, p. 155].
Theorem I then implies that & is desarguesian if G (9) is flag-transitive on
9 (6). Theorem II is intended to parallel part of the Lenz-Barlotti classification
of projective planes (see [7]). This result was proved independently by
Hoffer, except when ¢ is odd and G(#) contains Baer involutions. See § 6 for
further remarks in the direction of a Lenz-Barlotti type of classification of
finite planes having a unitary polarity.

The proofs of these theorems depend heavily on recent classification theorems
concerning finite simple groups and permutation groups [1; 2; 4; 5; 11; 13;
14; 18; 20; 27; 28; 29]. For the most part, the proofs use standard ideas. The
only interesting feature is the use of methods and results involving transfer
and fusion in order to handle Baer involutions in planes of odd order. A great
deal of control over Baer involutions is provided by a result of Seib [26]. Our
arguments are, however, frequently too group theoretic, and more geometric
methods would be desirable.

We will use standard geometric and group theoretic notation. If A is a
subgroup of a finite group, C(A) and N(A) are its centralizer and normalizer,
A’ its commutator subgroup, and O(A) its largest normal subgroup of odd
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order. If o, 8 € A then [, 8] = a8~ a8 and of = B~ 1aB. If A acts on a set .S
of points, then A% is the induced permutation group, while, if |S| > 1, A(S)
denotes the pointwise stabilizer of .S; if 7" is a subset of .S, Ay is the global
stabilizer of 7. In particular, if A acts on a projective plane & and L is a line,
A(L) is the group of perspectivities with axis L. If x is a point, A(x) denotes
the linewise stabilizer of x. Thus, if also A centralizes a polarity 6 of &, then
A(L) consists of (L% L)-perspectivities, while A(x) consists of (x, x?)-perspec-
tivities. If § € A is planar, then &; will denote the subplane consisting of its
fixed points and lines. If S is a set of points of &, then £; N S is the set of
points of S in ;.

For all the relevant geometric definitions, see [7], especially §§ 3.1 and 3.3.

2. Preliminary lemmas. Let £ be a projective plane of odd order g.

LEmma (2.1). (Ostrom [23]; Liineburg [19].) Let ¢ be an involutory (x, X)-
homology and v an involutory (y, Y)-homology. If X % Y and or = 70 then

(1) or is an tnvolutory (X M Y, xy)-homology; and

(ii) o is the only involutory (x, X)-homology.

LEMMA (2.2). There is no abelian collineation group of order 8 generated by
three involutory homologies not all having the same axis.

Proof. Otherwise, let p, o, 7 be the given homologies and T = (p, o, 7). We
may assume that ¢ € T'(x, X) and that 7 € T'(y, V), X 5% Y. Then p fixes
x,y, XM Y, X, Y, and xy, so x,y or X M Y is the centre and X, ¥ or xy
the axis of p. This contradicts (2.1).

LEMMA (2.3). Let B be an oval and x,y € B, x # y. Then there is at most one
nontrivial homology preserving B fixing x and vy.

Proof. Such a homology ¢ fixes the tangents X and Y to B at x and y,
respectively. Then o fixes X M YV, so ¢ is an (X M Y, xy)-homology. If
z € B — {x,y}, the group of (X M Y, xy)-homologies preserving B moves z
to at most two points of B, proving the result.

LEMMA (2.4). Let B be an oval and T be a collineation group of & preserving
B and 2-transitive on B. If T contains an involutory homology, then & is desar-
guesian, B is a conic, and T has a normal subgroup acting faithfully on B as
PSL (2, q) in its usual representation.

Proof. We may assume that no proper normal subgroup of I' meets the
stated requirements. By a result of Lineburg [7, p. 186], it suffices to show
that T acts on B as PSL(2, ¢).

If no involution in T' fixes a point of B, then T is either PSL(2, ¢) or ¢ > 3
and T has a normal elementary abelian subgroup of order ¢ + 1 transitive
on B [4]. By (2.2), only the former possibility can occur.

If no involution in T fixes more than two points, but some involution fixes
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two points of B, then T is PSL(2,¢) or ¢ = 5 and T is 4 [13]. However,
in the latter case T' contains PSL(2, 5), so & is desarguesian and B is a conic
[7, p. 186], and then A cannot preserve B.

Finally, suppose that some involution « fixes more than two points of B.
Then « is a Baer involution, so ¢ = 1(mod 4). Since an involutory homology
fixing no points of B is an odd permutation of B, by (2.1) there is an involutory
homology ¢ fixing two points x, y € B, and by (2.2), no conjugate ¢ of ¢
fixes x and y. Once again, it follows that I' has a normal subgroup containing o
acting on B as PSL (2, ¢) [18, Theorem B].

LEMMa (2.5). Let T be a collineation group of &P such that the following
conditions hold:
(@) T contains involutory homologies having different centres and also tnvolu-
tory homologies having different axes;
(b) All involutions in T are homologies;
(¢) T has no normal subgroup of index 2; and
(d) Z(r/0(1)) = 1.
Then T/O(T) is isomorphic to one of the following:
(i) o subgroup of PTL (2, m) containing PSL (2, m), for some odd m;
(ii) « subgroup of PTL (3, m) containing PSL (3, m), for some odd m;
(iii) « subgroup of PT'U (3, m) containing PSU (3, m), for some odd m;
(IV) 147,'
(V) My
(vi) PSU(3, 4); or
(vil) @ subgroup of PTL(2,2°), AutSz(2¢), or PTU(@, 2% contuining
PSL (2, 2¢), Sz(2¢), or PSU(3, 29), respectively, where 2° = 8. Moreover, in
this case, commuting involutions have the same centre and axis.

Proof. Suppose that T' contains no elementary abelian subgroup of order 8.
By [2], one of (i)-(vi) must hold.

Now suppose that I' has an elementary abelian subgroup Z of order 8.
By (2.2), £ = I'(x, X) for some x, X. Let 1 £ ¢ € Z. Set S = xT.

We claim that |T',| is odd if y € S — {«}. For if 7 € T, is an involution, it
centralizes some involution ¢’ having centre x and some involution ¢’’ having
centre y. We may assume that x is not the centre of 7, replacing y by «x if
necessary. Then (2.1ii) implies that ¢’ is the only (x, X’)-involution, where
X’ is the axis of ¢’. If X’ = X, this contradicts our choice of ¢. If X’ # X,
there is a unique (x, X)-involution [7, p. 120], which is again a contradiction.

It follows that |T'(S)| is odd and that T'® is one of the groups in (vii) (5],
except that 2¢ might be 4. However, PSL (2, 4) = PSL(2, 5) appears in (i),
while PSU (3, 4) appears in (vi).

3. Unitary polarities. Let 6 be a unitary polarity of a projective plane &
of order ¢2. Its set of absolute points is denoted 4.
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LemmA (3.1). (Seib [26].) Let o be a Baer involution in G(9). Then 0 induces
an orthogonal polarity on Pa. In particular,
(i) if q s even, then Py M\ A = LN A, for some nonabsolute line L; and
(i) if q 1s odd, then P, N\ A s an oval in P,, and « fixes some nonabsolute
line meeting P, M A and some nonabsolute line not meeting P, M A.

LEmMMA (3.2). If a € G(8) 7s a Baer involution and q = 3(mod 4), then a
induces an odd permutation on the set of nonabsolute lines.

Proof. By (3.1), a fixes g% of the ¢%(¢> — ¢ + 1) nonabsolute lines, and
¢*(¢* — ¢+ 1) — ¢* = 2(mod 4).

LemMa (3.3). If ¢ is odd and o € G(0) s a Baer involution, then (o) is the
pointwise stabilizer ® of P, M A in G (9).

Proof. By (3.1), & fixes &, pointwise and fixes some nonabsolute lines L
and L’ such that Z. NANL # @ = P, N AN L. Since ® acts regularly
on L— (P, NANL) and L — (P, NANL), it follows that
|2llg -1, g+ 1) =2

LEmMMA (3.4). If q is even, x € A, and there is a Baer involution o € G(6)
fixing x, then all involutory elations in G (0) with centre x commaute.

Proof. Choose L as in (3.11). Let ¢ and 7 be involutory (x, x?)-elations in
G(8). Then [a, ¢] is an elation fixing L M A pointwise, so ac is a Baer involu-
tion. Similarly, [ae, 7] = 1. Thus, aocr = 700 = aro.

LEMMA (3.5). If q is even, T < G(0) is transitive on A and T contains an
imvolutory elation o, then either
(1) O(T'){e) < T and O(T) is transitive on A; or
(ii) P is desarguesian and, if ¢ > 2, T contains PSU (3, q).

Proof. Suppose that (i) does not hold and that T has no proper normal
subgroup satisfying the conditions on I'. If I' contains a Baer involution
then, by (3.4), for each x € A there is a nontrivial normal 2-subgroup of
I'(x). By a theorem of Shult [27], T' has a normal subgroup satisfying our
conditions but containing no Baer involution.

Thus, T has no Baer involutions. By a theorem of Bender [5], T acts on 4
as PSL(2, ¢%), Sz(¢*’?), or PSU(3, ¢) in its usual representation. In the first
two cases, we have |T'(x)| = ¢® or ¢*?, respectively, which is absurd. In the
last case, (ii) holds by a result of Hoffer [16].

We note that if ¢ = 2, there is a group of order 18 meeting the requirements
of (3.5).

LEMMA (3.6). Suppose that q is even, T < G(0) s transitive on A, and T
has no nontrivial normal subgroup intransitive on A. If O(T') #£ 1, then ¢ = 2.

Proof. By the Feit-Thompson Theorem [9], ¢ + 1 = p¢ for some prime p.
Thus, g+ 1 =p = 3.
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LemMa (3.7). Let Ay be a subset of A containing at least three non-collinear
points. Suppose that whenever x,y € A, x # vy, we have xy N A C Ay. Then
Ao = A

Proof Let z € A — A, Each of the nonabsolute lines through z contains
at most one point of 4,. Thus, ¢ = |4,|. However, 4, is the set of points of a
design with # = ¢+ land A = 1. Thus, |[4do] 2 1 + k(k — 1) = ¢2 + ¢ + 1,
which is a contradiction.

We conclude this section with a general result concerning designs with
A=1

LeMMA (3.8). Let & be a design with X = 1 and T an automorphism group
transitive on non-incident point-line pairs. Then T is 2-transitive on points.

Proof. [24; 17]. For each point x, T', is transitive on the blocks not on x.
Let T, have ¢ orbits of points #x and ¢ orbits of blocks on x. As each point-
orbit determines such a block-orbit, we have ¢ < ¢. Also, t + 1 = ¢ + 1, by
[7, p. 78]. Thus, if x € X then T,x is transitive on X — {x}. Now Ty is
2-transitive on X, and the block-transitivity of T yields (3.8).

4. Preliminaries for Theorem I. Let &, ¢, 6 and T' be as in Theorem 1.
We may assume that T' has no proper normal subgroup flag-transitive on
9 (). By a result of Higman and McLaughlin [7, pp. 79-80], T' is primitive
on the set A of absolute points.

Letx,y € A,x # y,s0 L = xy ¢ A% Let = be a Sylow 2-subgroup of T.

LemMA (4.1). If g is even, then Theorem I holds.

Proof. We may assume that = fixes x. If a central involution ¢ of Z is an
elation, the result follows from (3.5) and (3.6). Suppose that ¢ is a Baer
involution and that 2, N4 = LM 4 (see (3.1)). Then = fixes L. Since I',
is transitive on the ¢ nonabsolute lines through x, this is impossible.

We may now assume in §§ 4 and 5 that ¢ is odd. From now on, we will also
assume that Theorem I is false for our & and T'.

Lemma (4.2). O(T) = 1, T has no central involution, and T' has no normal
subgroup of index 2.

Proof. Since |A| is even and T is primitive on A4, the first statement holds.
If ' > I'and |[T:T* = 2, then T'* is transitive on 4. Also, T',* is transitive
on the ¢? absolute lines on x, since ¢? is odd. This contradicts our minimal
choice of T.

LemMMmA (4.3). Suppose that T' contains an involutory homology. Then T is
generated by its involutory homologies. There are ¢*(¢*> — g + 1) involutory
homologies, and they are conjugate. If o is an involutory homology with axis L,
then ¢ € Z(T'(L)) and C(c) — (o) contains q*> — q tnvolutory homologics.
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Proof. If T* is the subgroup generated by the involutory homologies of T,
then Gleason’s lemma [7, p. 191] implies that T',* is transitive on the non-
absolute lines on x. Since I'* is transitive on 4, we must have I'* = T' by
the minimality of T.

By (2.1), ¢ € Z(I'(L)) and all involutory homologies are conjugate. There
are ¢2(¢> — g + 1) conjugates. If € 4 — A M L, then o centralizes the
unique involution in T'(zz°). Thus, o centralizes (¢°* — ¢)/(¢+ 1) = ¢* — ¢
involutory homologies other than o.

LEMMA (4.4). T contains Baer involutions.

Proof. Suppose that all involutions are homologies. By (2.2), T' has no
elementary abelian subgroup of order 8. By (4.2) and (2.5), T is isomorphic
to one of the following groups: PSL(2, m), 47, PSL(3, m), PSU (3, m), M,
or PSU(3, 4); here, m is an odd prime power. By (4.3), the ordered pair
(¢*(@*—q+1),¢* —¢q) must be @m@m+ 1)/2, (m=F1)/2), (15,38),
m2m? +m + 1), m®2+ m), m2(m2 —m + 1), m* —m), (11-5-3,12), or
(65 - 3, 2). It is immediate that T is PSU (3, ¢), and the lemma follows from
a result of Hoffer [16].

LeEmmA (4.5). ¢ = 1(mod 4), and we may assume that T < T4, = Ty

Proof. ¢ = 1(mod 4) by (4.4), (4.2), and (3.2), and the second statement
follows from ¢* + 1 = 2(mod 4).

The remainder of the proof of Theorem I will now be divided into two cases:
(A) T contains involutory homologies, and (B) T contains no involutory
homologies.

5. Proof of Theorem I.

Case A. T contains involutory homologies. In this case, T is generated by its
involutory homologies, and these are all conjugate by (4.3). I'(L) contains
a unique involutory homology o.

LemMmA (5.1). Let a be o Baer involution and set B = Py M\ A. Then C(a)®
is 3-transitive and acts as a subgroup of PTL(2,q) containing PGL(2, q).
Moreover, the subgroup Ci(a) of C(a) gemerated by its involutory homologies
is isomorphic to PGL (2, q), and all its involutions are homologies.

Proof. B is an oval in &, by (3.1). Let xo, y0 € B, %o # yo. Then « cen-
tralizes the unique involution ¢y € T'(xo, yo). Here, oo fixes just two points
of B. By Gleason’s lemma (7, p. 191], C(a)? is 2-transitive. By (2.4), C(a)®
contains a normal subgroup acting on B as PSL (2, ¢) in its usual representa-
tion.

By (3.1), « fixes a line L’ not meeting B. The involution in T'(L’) centralizes
a but fixes no point of B. Thus, Ci(a)? is PGL(2, ¢).
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It remains to show that C;(ax) contains no nontrivial element fixing B
pointwise. If this were not so, then « € Ci(a) by (3.3). Let =, be a Sylow
2-subgroup of Ci(a). Let o1 and ¢4 be involutory homologies in Z; such that
{01, 02)F = 215, By (3.1), (o1, 02) < 21, and « is conjugate to no element
of (o1, g2). Since |Zq:(o1, 02)] = 2 by (3.3), Thompson's transfer lemma
[14, Lemma 2.3] implies that Ci(a) has a normal subgroup of index 2 not
containing @. This contradicts the definition of Ci(e).

LEmMA (5.2). Let 2, x, v and L be as in Lemma (4.5). Then ¢ € Z(Z), and
3 has a normal Klein subgroup (s, a) with o a Baer involution.

Proof. Suppose first that £ has no normal Klein subgroup. Then T is
dihedral or quasidihedral [10, p. 199], and by (4.2) has a single class of involu-
tions [10, pp. 260, 265], which is not the case.

We may thus assume that 2 has a normal Klein subgroup of the form
(o, ). Here, |Z:Csz(p)| < 2.

Suppose that ¢ is a homology with axis L’. Then Cs(p) fixes {x,y} and
{x',v'}, where &',y € ANL, «x #43. Set A= Cs(¢)ey,. Then
|Cs(e):A| <4, so |A] = |Z|/8. Since x,y,x’,y are noncollinear, A fixes
pointwise a subplane of 2. Let o € Z(A) be an involution. We use the nota-
tion of (5.1). AZ fixes more than two points.

Let =, be a Sylow 2-subgroup of Ci(e) normalized by A. By (5.1),
Z1MNA = Cile) VYA = 1. Consequently, |Z:A| = [Z4]|A] = 8[A], since 3,
is dihedral of order =8. However, 8|A| = |Z| = |2:A]. Thus, Z:A is a Sylow
2-subgroup of T and |2 = 8. In particular, ¢ is not a square, so A% = 1,
Now =A = Zi{a) and « is conjugate to no element of =;. By Thompson’s
transfer lemma [14, Lemma 2.3], T has a normal subgroup of index 2. This
contradicts (4.2).

LeEmMaA (5.3). If an involutory homology p centralizes a 2-group A, all of whose
involutions are homologies, then either p € A or |A] = 2.

Proof. Suppose that p ¢ A, and let M be the axis of p. Then no nontrivial
element of A fixes a point of M M A. Since ¢ + 1 = 2(mod 4), we have
Al £ 2.

LEmma (5.4). Z(Z) contains no Baer involution.

Proof. Let a € Z(Z) be a Baer involution. Set Z; = /M Ci(a). Then
;1< 2 and T = ZiA, where o € A and A fixes more than 2 points. Here,
A/{a) is cyclic, so A is either cyclic or the direct product of {(a) with a cyclic
group. By (5.1) and Thompson’s transfer lemma [14, Lemma 2.3], A is not
cyclic.

Let 8 be an involution in A — (a). Set =; = {u, 7), with 7 an involutory
homology, u” = ' and [A, 7] = 1. Since ¢ is a square, |u| = 8.

Note that uf = po or u~lo. For, u fixes just two points of B. In view of the
action of 3 on B, 8 acts on (u) as the involutory automorphism of GF(g) acts
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on GF(g)*. Consequently, p# = uo if +/¢ =1(mod4), and uf = u1l¢ if
V¢ = 3(mod 4).

Set 8* = B or Br, so w#* = uo and B* is a Baer involution. Clearly, Cs(8*) =
(u?, 7,A) has index 2 in Z. By (5.1), C(8*) contains a Sylow 2-subgroup
=* > Cs(B*) of T, and since |u?| = 4, we have ¢ € Z(Z*).

On the other hand, (o, «) is the only Klein group in Z(Z). By a lemma of
Burnside [12, p. 203], @ and o« are not conjugate in I'. However, (¢, «) and
(o, B*) are conjugate in T and ** = ¢8*, which is a contradiction.

Lemma (5.5). Z has a normal subgroup Cs(a) = ZiA of index 2. Here,
21 = {u, 7) < 2 is a Sylow 2-subgroup of Ci(a), where u™ = u~1, 7 is an involu-
tory homology, and {c) = Z(Z1). Also, « € A and A is either a cyclic or Klein
group, and [A, 7] = 1. If B = P, N A, then A® fixes more than two points.
Each element of £ — Z1A conjugates a to oa.

Proof. By (5.2) and (5.4), |2:Cz(@)] = 2 and Cx(a) is a Sylow 2-subgroup
of C(a). Then =; = £ M Ci(a) is a Sylow 2-subgroup of C;(a) and is dihedral
of order at least 8, by (5.1). Also, {(¢) = Z(Z;).

By (5.1), Cs(a) = Z:1A, where o € A and AZ fixes more than 2 points.
Clearly, A centralizes an involution 7 in 2; — (o). Since AZ is cyclic, by (3.3)
A is cyclic or the direct product of {(a) with a cyclic group (y) & 1. If 8 is the
involution in {(y) and v 5 B, then (&, v) induces a group on &3 M A contain-
ing a Klein group and fixing more than 2 points, which contradicts (5.1).

Since 2 is generated by the involutory homologies in Z;4, it is normal in Z.
Finally, the last assertion follows from the fact that (¢, @) < Z.

LEMMA (5.6). A is cyclic.

Proof. Assume that A = (a, *) is a Klein group. Since ¢ is a square,
|u| = 8. As in the proof of (5.4), we can set 8 = §* or 78*, so 8 is a Baer
involution such that y# = po. Here, 2:A = Zi{a, B).

Since p” = p! and pf = po, we can find ¢ € T — Zi{e, 8) such that
w? = u. Then ¢? € C(u) N Zi(a, B) = (g, @) and o = oa, so ¢ € {(u). By
considering the abelian group (u, ¢), we may assume that ¢ = p or ¢? = 1.
Also, since (¢ centralizes u?, it belongs to {, a, 8) and hence even to (o, , 8).
Clearly, B¢ ¢ {0, ).

Suppose that ¢* = u. Set 7¢ = p'r. Then p~2r = 7¢* = uiu’r and 7 is odd.
However, 8¢ € (s, a, 8) — (o, @) centralizes 7¢, whereas 8 does not centralize
A8
Thus, ¢ = 1. Then B¢ € (s, 8), as, otherwise, (8¢)? = BB¢ = a or o«,
whereas B¢ € Cz(a). If B2 = B, then (aB)? = sacB = af. We can replace
B by B, if necessary, in order to obtain 8¢ = 8. Now |Z:Cz(8)| = 2. By
(5.1) and (5.4), Cs(8) is a Sylow 2-subgroup of C(8). Then =T M C:i(B)
contains a subgroup isomorphic to Z; and, hence, contains an involutory
homology p ¢ Zi. By (5.3), Cz,(p) = (s¢). Consequently, Z;(p) contains an
element whose square is u, and this leads to a contradiction as before.
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LemMa (5.7). If |A| = 2, then 1 and ur are conjugate in 2.

Proof. Let ¢ € = — Zi{a). Since ¢ normalizes {u) and p™ = u~!, we can
choose ¢ so that either p# = por |u| = 8 and p? = ou. Let 72 = u’r, with 7 an
integer.

Suppose that it is impossible to choose such an element ¢ of order 2. If
u? = u, then, by considering the abelian group {u, ¢), we may assume that
¢ = u. Then u2r = 7¢* = u%’r, so 7 is odd and (5.7) holds. Let u® = oy,
|ul = 8. Then ¢* € C(u?) M Zi{a) = (u, @), s0, since a¥ = ca, We may assume
that ¢? = pa or ¢ = u2. If ¢ = ue, then u2r = 79* = (uo)’u’r, 7 is odd, and
(5.7) holds. Let ¢* = p? and let k& be an integer such that u?* = ou=2. Here,
E is odd. Then (gu¥)? = @?(uf)?u* = u2ufou* = 1, which contradicts our
assumption.

Now suppose that we can choose ¢ of order 2. Then r = ¢ = (uo?)u’r,
where j = O or 1, s0 1 = ¢7%?% Since |u| = 8if j = 1, it follows that 7 is even
and hence that u® = 1 or ¢. In particular, + and pr are not conjugate in =.
Also, ¢* = dlp, ¢ = u'e, and ¢* = o, s0 (o, ¢) <I =. Since ¢ is a Baer
involution by (5.3), by (5.4), Cz(p) contains a Sylow 2-subgroup of C(¢).

If 7 = v then 7*¢ = g7, where » is an element of (u) of order 4. Here,
pe = u? and (vae)? = v(er)*¢ = oo = 1. We may assume that ¢ = or.

By (5.1), Ci(¢) M = is dihedral of order |Z,]. Since 7 ¢ Ci(¢) M =, there
is an involutory homology p € £ — Cs(a). By (5.3), Cs,(p) = (o). It follows
that = and wr are conjugate in 2, which is not the case.

Lemma (5.8). If |A| = 4, then 7 and ur are conjugale in =.

Proof. We have u7 = p~'. As in the proof of (5.4), an element of A of order
4 conjugates u to po or u~lo. We can thus find ¢ € £ — Z;A such that u# = u.

If {p?) = {u), then (5.8) holds as in (5.7). By considering {u, ¢), we may
thus assume that ¢? = 1. If 72 =pu °7, then, as before, u* = loro. If » € {u) has
order 4, then 7"*¢ = ¢7¢, u* = u and (vap)? = 1. We may thus assume that
7 = 1. Now, Cx(Z1) = (o, a, ¢).

In fact, Cz(Z1) = {@, 0, ¢) = {a, ¢). For otherwise, |Z:Cs, (Z) M A| = 4.
However, if A € A has order 4 and v € Z;, then uy™ = (ut1)* = u.

Since 2 normalizes (@, ¢) and (a, o), it follows that = normalizes the second
Klein subgroup (o, ¢) of the dihedral group (e, ¢) of order 8. Now A acts on
(o, ¢) and |A| = 4, so « centralizes ¢, which is not the case.

LemMma (5.9). T is 2-transitive on A.

Proof. By (4.3), (5.7), and (5.8), C(¢) = T'; is transitive on the ¢> — ¢
involutory homologies 7 € C(s) — (o). Also, T' is transitive on L M A, where
[L M A] = ¢ 4+ 1. Thus, each orbit of C({(s, 7)) on L M A4 has length divisible
by (¢+ 1)/(g+ 1,9(g — 1)) = (¢ + 1)/2. Here, (¢ + 1)/2 is odd and 7
fixes no peoints of L M A. Thus, C({(s, 7)) is transitive on L M 4.

Let M be the axis of 7. Then C({s, 7)) is transitive on M M 4. Since C (o)
is transitive on the ¢ — ¢ axes of involutory homologies in C(s) — (o), and
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the union of these lines contains A — L M 4, it follows that C(¢) is transitive
ond — LM A. (5.9) now follows from (3.8).

Lemma (5.10). Each Baer involution in T, centralizes every homology inter-
changing x and y.

Proof. The number of involutory homologies moving x is ¢(¢2 — ¢ + 1) — ¢2.
By (5.9), ¢®(¢* — ¢)/¢* = g — 1 of these interchange x and y.

Let 8 be any Baer involution in T',,. By (5.1), Ci(8) has ¢ — 1 homologies
interchanging x and y. This proves (5.10).

Lemma (5.11). The Klein group (o, a) of (5.2) can be assumed to fix x and y.
No element #at"4 of 2,204 is conjugate to a%"4 in T, 204,

Proof. = fixes Po N LNA. If P.N\LNA# @, we may assume that
this set is {x, v}. If Z, N LN A = @, then (u) acts on the ¢ + 1 points of
P, N 4 and o induces an odd permutation, which is clearly impossible.

By (5.2), a4 ¢ Z(31M4), Let 8 = a¢ € 2 be a Baer involution conjugate
to a by an element e of T,, and suppose that 8=4 5 o204,

Since 8 € 2 = TI'(z,), B fixes x and y.

If 8 € Cs(a), then B € (Z1A),y = {u, A), so B € (o, a). This is not the case.
Thus, 2 = (Z:A){B), & = ga, and (af)? = ¢. Moreover, Z,, = {u, A, B).

Let w1 € {(u) have order 4. By (5.10), (n108)? = pi2(eB)? = oo = 1. Here,
waB € Z,,. By (5.10), B and waf centralize 2y, so p; centralizes Z;, which is
not the case.

We can now complete Case A. By (5.9), (5.10) and [18, Theorem D],
I', 204 has a normal subgroup acting as PSL (2, ¢). Using 774, we then find
that I', 274 even contains PGL (2, q).

By (3.1), Z(L M A4) is cyclic or generalized quaternion. By the Frattini
argument, I'y = T(L)N(Z(L M A)). Also, N(Z(L N A))/C(Z(LMN 4)) -
S(L M A) is isomorphic to a group of outer automorphisms of (L M 4).
Since ¢ = 1(mod 4), PSL(2, g) is simple, and it follows that C(Z (LM A4))*M4
contains PSL(2, ¢). Let II be the preimage of PSL(2,¢) in C(Z(L M 4)).
Then £ M I is a Sylow 2-subgroup of II. Also, (LN A) N 1T £ Z(II), so
IMLNA) = (SLNA)NTI) X Oo(I).

Now II/O(I1) is a central extension of PSL (2, ¢) by the 2-group Z(L N 4) -
O(I1)/O(II). By a result of Schur [25], II/O (II) has a unique normal subgroup
A/0(11) isomorphic to PSL(2,¢) or SL(2,¢).SinceZ>Z(LMNA4), 2 >N A.

If A/0(11) is PSL(2,q) then = /M A does not contain o. However,
(TN AN Z(Z) 1, and this contradicts (5.4).

Thus, £ M A is a generalized quaternion group. 7 acts on £ M A. By (5.3),
Csna(r) = (o) and (2 M A)(r) is quasidihedral.

Let 2¢ be the largest power of 2 dividing ¢ — 1. Then (2 M A){r) contains
2¢ homologies interchanging x and y. These are all in C(a) N = and, hence,
in ;. However, Z; has only 2¢ homologies interchanging x and y. Thus,
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(2 N A){r) contains Z; as a subgroup of index 2. Clearly, (£ M A){(r) =
(ZMNA)Z; A 2. Also, TN Ais not in Cz(a), so = = (ZM A)Z;- A. The
involution & € A is conjugate to no involution in (£ M A)Z;. We can now
apply Thompson’s transfer lemma in order to contradict (4.2). Consequently,
Case A cannot occur.

Remark. Once (5.5) and (5.6) are known, it is possible to eliminate Case A
solely by group theoretic methods. Dr. Anne MacWilliams has done this
using ingenuity and a transfer theorem of Griin. We have chosen a slightly
shorter approach, involving the comparatively difficult result [18, Theorem D]
in order to exhibit more of the geometric nature of our situation. In particular,
it should be clear that Case A would be greatly simplified if we had started
with a group 2-transitive on 4.

Case B. All involutions are Baer involutions. By (3.1), each involution in
I',ZN4 fixes 0 or 2 points, and some involution 8 fixes 0 points, while some
other involution fixes 2 points. Here, 8 is an odd permutation of L M A. Let IT
be the subgroup of I'; consisting of even permutations on L M 4, so that
|Tp:00| = 2.

Let 2, x and y be as in (4.5). We may assume that 8 € = — Z,,.

LEMMA (5.12). One of the following holds:

(1) = s dihedral or quasidihedral; or

(i1) 2, = U, I has two orbits on L (M A of length 3(qg + 1), and 11 acts on
each of these as a 2-tramsitive group containing a normal subgroup acting as
PSL (2, 2¢), Sz(2°%), or PSU (3, 2°), 2¢ = 4, in its usual representation.

Proof. By the preceding remarks, if (i) does not hold, then [13, Hilfsatz 6]
implies that 2,, £ II, II has two orbits on L M 4 of length 3(¢ + 1), and II
acts on each of these orbits as a transitive group in which each involution fixes
a single point. By Bender’s theorem [5], either (ii) holds or = M 1I is cyclic or
generalized quaternion. In the latter case, Klein groups fix no absolute points.
B acts on 3 M II and Cznu(B) acts on PPg M A. Since a acts as an odd per-
mutation of s M A, CsAn(8) = {a). Thus, (i) again holds in this case.

We now consider (i) and (ii) separately.

(i) Recall that O(T') = 1 and that I" has no normal subgroup of index 2. T,
is a subgroup of I' containing a Sylow 2-subgroup 2 and having a normal
subgroup II of index 2. Here, |II| is even.

Suppose first that 2 is dihedral. By the Gorenstein-Walter Theorem [11],
T is isomorphic to 47 or has a normal subgroup I'* = PSL (2, m), for some
odd m, where [I': T*|isodd. If I' = A3, itis easy to use the property |T',:II| = 2

to check that |[I:T'z| = 7, 7<g> or 7-5-9, whereas none of these numbers

has the form ¢2(¢*> — ¢ + 1). Next, consider the group I'* = PSL(2, m).
Set II* = I M T*, so that |T*,:T1* = 2. By [8, pp. 285-286], I'*, either
centralizes an involution in IT* or is isomorphic to .Sy. Then II* has a non-
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trivial characteristic elementary abelian 2-subgroup Z*. Here, Z* < T';.
Since {x, v} is fixed by Z, if {x7, 37} # {x, y}, with ¥ € T, then =* fixes both
{x,y} and {x, y7}. By (3.1), either |Z*| = 2 0or ¢ + 1 = 4. If =* = (a), with
a € II a Baer involution, then T'; fixes , M A M L, which is not the case.
If |2*| > 2 and ¢+ 1 = 4, then some involution in =* fixes no point of
LN A = {x,y,x7, 97}, which contradicts (3.1).

Thus, £ must be quasidihedral. By a result of Alperin, Brauer, and Goren-
stein [1], T is isomorphic to My; or has a normal subgroup I'* = PSL (3, m)
or PSU (@3, m), for some odd m. If T' = My, it is easy to use the property
|T,:1| = 2 to check that |T:T ] = 11, (121>, 11(120), or (131>, whereas
none of these numbers has the form ¢%(¢> — ¢ + 1). Next, consider the group
I'* = PSL(3,m) or PSU(3, m). Since T'* contains all involutions of T, we
have |T*,:1*| = 2, where II* = II N\ I'*. Using results of Mitchell [21]
or Bloom [6] we find that the subgroup I'*, of PSL(3,m) or PSU(3, m)
containing a Sylow 2-subgroup and having a normal subgroup of index 2 has
one of the following forms: T';* centralizes a unique involution; II* = A4
but T*, # S¢, where T* = PSU(3, 5); or T* = PSL(3,m) and T*, is in
the normalizer of an elementary abelian subgroup M, of order m?2, all of whose
elements are elations of PG (2, m).

The first possibility is eliminated as in the dihedral case. Suppose that
II* = A,. Let E be an orbit of II* on L M A4 such that some involution in IT*
fixes a point of E. Since As has no transitive representation in which all
involutions fix a single point, E is unique. Then IT* < I'; implies that
E = LN A. Also, IT*, is a self-normalizing subgroup of II*. Since ¢ + 1 =
2(mod 4), IT*, contains either a cyclic group of order 4 or a Klein group. It
follows that ¢ + 1 = 6 or 10. However, I'*;, is not isomorphic to Ss, so ¢ = 9.
Thus, |I'*| divides ¢%(¢> — g + 1) - 2|4e| = 92- 73 - 2|44, which is not the
case.

Now assume that I';* is in the normalizer of M, in T* = PSL(3, m).
Since Nrp«(Mo)/Mo has a central involution, so does II*/M, where
M=1* N\ My = T*, N\ M, Thus, M{a) < I'*, for some involution «, so
T*, = M(T*, N C(e)) and II* = MCnx(a). Since TI'*, = =, M{a) is
characteristic in I'*;. Then M{a) < T';. Each point of L M A4 is fixed by a
conjugate of o in I'z, and all such involutions are even conjugate in M{a).
Consequently, |[LN 4 N Z,| = 2 implies that M has just two orbits on
LM A. From the transitivity of 'y, on L M A4, it follows that ¢ + 1 = 2p°
for some ¢, where p is the prime dividing .

Clearly, £ M II is a maximal subgroup of the quasidihedral group £ such
that £ — Z M 1II contains an involution. Consequently, = M II is a cyclic or
generalized quaternion group. In particular, II, contains no Klein group.
Then neither T,z nor T, can contain a Klein group. It follows that T'* has a
single class of involutions. This implies that Cr«(a) is transitive on
B=2,NA.
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By (3.3), Cr+(a)/{a) acts faithfully on B. Clearly,
Cr*(a)/Z(Cr*(a)) = PGL(Q, m),

where Z(Cr«(a)) has order 2¢ = (m — 1)/ (m — 1, 3). The transitivity of
Cr+(a)? implies that all orbits of Z(Cr+(@))? have length ¢. Thus,
t\q—l— 1=2p% so t=1or 2, and m = 3,5,7, or 13 is a prime. Since
q + 1] |Cr+(a)], it follows that ¢ + 1 = 2m. In each case, ¢* £ |PTL(3, m)|.
This is a contradiction.

(ii) This situation is simpler than that of (i). Here, 3(¢ + 1) = 2°? 4 1,
with 2 = 1,2, or 3, so ¢ = 21 4 1 is a square only if ¢ =9, e = 2, and
1= 1.

Suppose that ¢ is not a square. Let a be an involution in Z(Z,,). By (3.1)
and (3.3), 2,,/(a) acts faithfully on the oval £, N\ 4 and each of its involu-
tions induces a homology of &,. Since Z,,/(e) contains a Klein group, this
contradicts (2.3).

Thus, ¢ = 9, |2, = 4, and |Z| = 8. Since 2 is not dihedral (by (i)) and
contains a Klein group, Z is abelian. Since 8 € £ — Z,,, 2 is elementary
abelian. By (4.2), all involutions in 2 are conjugate, and there is a 7-element
0 € N(Z) — C(2) [12, pp. 203, 215]. Let = = {«, 8, 7).

Suppose that ¢ fixes some nonabsolute line L’. Since 74 |24,
¢ € T(L' M A). Also, ¢ fixes one of the ¢> — ¢ = 9 - 8 nonabsolute lines on
L%, say M. As before, ¢ € T(M M A), so ¢ is planar. However, ¢ fixes at
least 11 points of L', namely, M? and the points of L’ M A4, which is impossible.

Consequently, the number of fixed nonabsolute lines of X is divisible by 7.

If 8 induces a Baer involution on &, then v acts on the plane 2, N %5
of order 3 and fixes a nonabsolute line. Now ¢ acts on the set of lines of
P, N Psg MNP, and, hence, fixes one of them, which is not the case.

Thus, 8 and v induce homologies on &, and = fixes their axes. By (2.1),
2 fixes just three nonabsolute lines.

This contradiction completes the proof of Theorem I.

6. Elations. We next turn to unitary polarities  centralized by many
perspectivities of the plane & of order g2 If there are enough homologies in
G(9), then £ is desarguesian (see (6.5)). However, if, for example, |I'(L)| =
q + 1 for only a few nonabsolute lines, it seems difficult to obtain information
concerning G () or 2.

Consequently, we shall consider elations. Let T' = G(#) and set

Ao = {x € A||T(x)| = ¢}.

Conceivably, |4 = 1. Theorem II concerns the case T = G(f) and
|4o] > ¢ + 1. We first consider what happens when 1 < |4 < ¢ + 1.

TreorREM III. Let 8 be a unitary polarity of a projective plane of order ¢>.
Set T = G(8), and let A be the set of absolute points of 6 and L a nonabsolute line.
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Suppose that |T'(x)| = g for at least two points x of L N\ A. Then one of the
following holds for T = (T'(x)|x € LM A):

(a) I = SL(2, q) and I acts on L M A as PSL (2, q) in its usual 2-transitive
representation; or

(b) ¢ = 2% with e = 2 and T acts on LM A as PSU(3, 2°) in its usual
2-transitive representation.

We have not been able to eliminate (b). However, Theorem III will be used
in the proof of Theorem II only when g is odd. We also do not know whether &
must be desarguesian when (a) holds. This is quite a difficult question, as is
shown by the fact that in [22], O’Nan implicitly had much more information
than this and yet needed to use a very long and ingenious argument in his
situation.

Proof of Theorem 111. Clearly, TI*"'4 is 2-transitive and satisfies the hypoth-
eses of the theorems of Shult [28] and Hering, Kantor, and Seitz [14]. Since
[Mx), TI{LNA)] =1, LN A) £ Z(M). Thus, I is a central extension
of IMZ"4, We may assume that IIZ"4 is not of the form (b).

LeEmMMA (6.1). Edther 11 is as in Theorem 111 or one of the following holds:
(i) T = PSL(2, q) and q is odd;
(i) WZN44s sharply 2-transitive, ¢ = 3, and either Il = M= 4org + 1 = pe,
for an odd prime p, and (L M A) is a p-group;
(iii) ¢ is odd, |TI(L M A)|is odd, and TIE"4 45 PSU (3, ¢\/3) or a group of
Ree type; or
(iv) q s a power of 2 and 1L = Sz(g'/?).

Proof. The following argument is that of [14, Lemma 4.4]. TI*"4 is sharply
2-transitive, PSL (2, q), Sz(¢¥/?), PSU (3, ¢'/?), or a group of Ree type [28; 14].

If M="4 js PSL(2, q), ¢ > 3, then II(x) < I/, so II = II'. By results of
Schur [25], IT is PSL (2, ¢), SL(2, ¢), or is a homomorphic image of the cover-
ing group of PSL(2,4) or PSL(2,9). In the latter cases, if 2 is a Sylow
2-subgroup or 3-subgroup of II,, then £ = I(x) X Z(L M A4), so a result
of Gaschiitz [12, p. 246] implies that II splits over = (L M 4), which is not the
case.

If II*"4 is unitary or of Ree type, then (iii) holds by [14, Lemmas 3.2 (ix)
and 3.3 (x)]. If 04 is Sz(g'/2), then, by [3], (iv) holds unless ¢ = 64 and
(LM A) is a 2-group. As in the preceding paragraph, the latter situation
cannot occur.

Finally, suppose that II#"4 is sharply 2-transitive of degree ¢ + 1 = p¢,
with p a prime. There is a unique Sylow p-subgroup = in II, and II = 2T (x).
If p is odd, then (ii) holds. Let p = 2. Then II is generated by elements of odd
order and, hence, has no normal subgroup of index 2. By [14, Lemma 2.7], (ii)
holds if ¢ + 1 5 4, while if ¢ + 1 = 4, then II is PSL(2, 3) or SL(2, 3). This
proves (6.1).
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We now treat these possibilities separately.

(i) Suppose first that each involution in II is a homology. Let (e, 7) be a
Klein group, and suppose that ¢ and 7 have different axes. Since (o, ) fixes
L, L must be the axis of ¢, 7, or o7, which is not the case. Thus, if ¢ and 7 are
commuting involutions then they have the same axis. It follows that ¢ # 5
and all involutions have the same axis L’. Consequently, II = II(L’) has order
dividing ¢ + 1, which is not the case.

Thus, all involutions in IT are Baer involutions, and by (3.2), ¢ = 1(mod 4).

Let w€ L — LN A and set w' = LN w’. Then 3(¢2 — q) = |[: Ty 0]
implies that |y, .| = g + 1. Clearly, (g, |[Lw.»|) = 1. By [8, pp. 285-286],
either Iy, ., is dihedral of order ¢ + 1 or is isomorphic to 44, S4, or 45.

Suppose that I, . is dihedral of order ¢ + 1. Then a Klein group {(«, 8)
in II fixes no points of L, since (¢ + 1) is odd. However, 8 acts on &, as an
involution, so o and 8 have a common fixed point z # L?, and then {(a, 8)
fixes zLL? M L, which is a contradiction.

Thus, each ) is A4, S4, or As. There are integers a, b, ¢ such that

3@ —q) =a-3q(¢® — 1)/12 + b - 39(¢* — 1)/24 + ¢ - 3¢(¢* — 1)/60.

Then (g + 1)|120. Since ¢ = 1(mod 4) and (g, |[Mpwy|) = 1, ¢ = 5 or 29 is
prime. Each Iy, ., contains a subgroup 4, fixing w and w’. Also, II is not
transitive on the pairs {w, w’}; this is clear if ¢ = 5, while, if ¢ = 29, we have
[T (y,0y] = 30, and hence @ = b = 0 and ¢ = 2. Consequently, a Klein group
(@, B) fixes more than 2 points of L. Since 8 induces a homology on Z,, L
must be its axis. In particular, g8 fixes (%, M L) M A pointwise. However,
this set is nonempty since ¢ = 1(mod 4), and this contradicts the fact that
Klein groups in II*"4 fix no points.

(ii) Now suppose that |[I*"4| = (¢ + 1)g, with ¢ + 1 = p°. Let = be the
Sylow p-subgroup of II. Let p = 2, so |Z| = 2¢ by (6.1). If an involution
o € 2 is a Baer involution, then, since ¢ + 1 = 0(mod 4), II has a normal
subgroup of index 2 by (3.2), which is not the case. Thus, ¢ is a homology
fixing L. Since II(x) moves each line not on x, £ must contain two involutions
o, 7 with different axes. Since (o, 7) fixes L, L must be the axis of o, 7, or o7,
which is again a contradiction.

Consequently, » > 2. Since 2 acts on the ¢> — ¢ points of L — L M A4, it
fixes one of them, say M?° Using II(x) we find that 2 fixes ¢gd points of
L —LMNA, whered = 1.

Let 2 € MM A4 and suppose that 1 # e € II,. Then ¢ € Z. Clearly, € is
planar. &, has order m = gd — 1. By Bruck’s lemma [7, p. 145], m = ¢ — 1
or g. Then ¢ fixes no absolute points on L, but fixes an even number of non-
absolute points of L [7, p. 153], so m + 1 is even and, hence, m = ¢. Then
e acts on the (¢ + 1) — (¢ + 1) lines on L not in &, and fixes at least one
of them, which is a contradiction.

Thus, X is faithful and sharply transitive on M M A. It follows that
|2l =¢+1 and [ = (g+ 1)g. Let z#22€¢ 4 —ANL, vy I If
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> fixes zz7, then 22" does not meet L M 4 and vy € 2. If 2 does not fix 227,
then zz¥ must meet L M A in the centre of v. In either case, 4 N zz2» C 4, =
(LM A)Ue2t By (3.7) we must have 4 =4, (g+ 1)¢g =¢% — ¢, ¢ = 2,
and Theorem III holds in this case.

(iii) Here the involutions in II fix ¢'/* 4+ 1 points of L M A4, contradicting
(3.1).

(iv) The case of Sz(g!/?) is handled as in (i) using Suzuki’s list of subgroups
[29]. We omit the proof as it is straightforward.

Note that when IIZ74 = PSU(3,2¢) it is still conceivable that
II(L M A) # 1. It can be shown that II(L N 4) = II(L) has odd order, and
the action of I on L — L M A can be completely determined.

Proof of Theorem 11. We may assume that ¢ > 2 and that T is generated by
the given elations.

LEmMMA (6.2). T is transitive on A, and Theorem 111 applies to each non-
absolute line.

Proof. Let x € A with |[T'(x)| = ¢q. Let 4g = xT. If y,2 € Ao, y # 2, then
using (T'(y), I'(z)) we find that y2M\ 4 C 4,. By (3.7), 40 = 4, and (6.2)
holds.

LEmMmA (6.3). Each nontrivial normal subgroup of T s transitive on A.
Moreover, O(T) = 1 if q is even.

Proof. Let 1 % A < T' and suppose that A has an orbit 4y on 4, with
1 < |4 < |A4]. If x € 4o, then T(x) fixes Ao. Thus, if x,y € 4o, x =y,
then xy YA C 4,. By (3.7), 49 = A N L for some nonabsolute line L.
Then A fixes each of the (¢ + 1)/(¢ + 1) > 3 images of L under T. Since
I' leaves invariant the set £, of fixed points and lines of A, while T fixes no
point or line of &, it follows that £, is a subplane. 8 induces a polarity 8 on
2 . However, A fixes no point of 4. Thus,  has no absolute points, contradict-
ing a theorem of Baer [7, p. 152].

The last assertion follows from (3.6).

LEMMA (6.4). We may assume that g is odd. Then T is flag-transitive on U ().

Proof. If q is even, the theorem follows from (6.3) and (3.5). Assume that ¢
is odd. By (6.1) and Theorem III, each nonabsolute line is the axis of an
involutory homology. Then (6.4) follows, as in (4.3), from Gleason’s lemma.

Theorem II now follows from Theorem I.

We note that most of the difficulties in the proof of Theorem I could have
been eliminated if we had only proved Theorem II; the latter theorem is
much simpler than the former. Also, an alternative approach, avoiding
Theorem III, can be obtained by using the argument of § 5, Case B, keeping
in mind that I'; is 2-transitive on L M 4.
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We cornclude by pointing out a corollary of Theorem I.

COROLLARY (6.5). If & is a finite projective plane, 0 1is a unitary polarity

of P, p 1s a prime, and each nonabsolute line is the axis of a homology in G (8)
of order p, then P s desarguesian.

This is again proved as in (4.3). In particular, if ¢ > 2 and each nonabsolute

line is the axis of (¢ + 1)/(g + 1, 3) or ¢ + 1 homologies in G(6), then the
plane is desarguesian.
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