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Departamento de Matemática Aplicada, ETS de Ingenieros Industriales,
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Abstract. A polynomial P ∈ P(kE, F) is left �1-factorable if there are a polynomial
Q ∈ P(kE, �1) and an operator L ∈ L(�1, F) such that P = L ◦ Q. We characterise the
Radon–Nikodým property by the left �1-factorisation of polynomials on L1(μ). We
study the left �1-factorisation of nuclear, compact and Pietsch integral polynomials. For
Pietsch integral polynomials, we introduce the left integral �1-factorisation property,
obtaining a second polynomial characterisation of the Radon–Nikodým property and
showing that it plays a role somehow comparable, in this setting, to nuclearity of
operators. A characterisation of L1-spaces is also given in terms of the left compact
�1-factorisation of polynomials.

2000 Mathematics Subject Classification. Primary 46G25; secondary 47H60,
46B20, 46B22.

1. Introduction. The following result of Lewis and Stegall relates the Radon–
Nikodým property with the �1-factorisation of (linear bounded) operators.

THEOREM 1.1. [18, Theorem III.1.8] A Banach space F has the Radon–Nikodým
property if and only if for every finite measure space (�,�,μ), every operator T :
L1(μ) → F admits a factorisation T = L ◦ S

L1(μ) F

�1

T

S L

where S : L1(μ) → �1 and L : �1 → F are operators. Moreover, we have

‖T‖ = inf‖S‖‖L‖,

where the infimum is taken over all such factorisations.
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In particular, let T : L1(μ) → F be a weakly compact operator. Since T factors
through a reflexive Banach space [18, Corollary VIII.4.9] and reflexive Banach spaces
have the Radon–Nikodým property, T is also �1-factorable.

We say that a polynomial P ∈ P(kE, F) is left �1-factorable if there are a polynomial
Q ∈ P(kE, �1) and an operator L : �1 → F such that P = L ◦ Q:

E F

�1

P

Q L

In this case, we denote

γ left
�1

(P) := inf‖Q‖‖L‖,
where the infimum is taken over all such factorisations.

In the present work, we give conditions for a polynomial to be left �1-factorable.
The right �1-factorisation is defined in a ‘symmetric’ way and will be considered in a
forthcoming paper.

We prove that for every nuclear polynomial P ∈ PN(kE, F), there are a nuclear
polynomial Q ∈ PN(kE, �1) and an operator L : �1 → F such that P = L ◦ Q.
Moreover, the norms satisfy

‖P‖N = inf ‖Q‖N ‖L‖ ,

where the infimum is taken over all such factorisations.
We show that a similar result holds for Pietsch integral polynomials when the range

space F has the Radon–Nikodým property. Moreover, this left integral �1-factorisation
property of polynomials characterises the Radon–Nikodým property and replaces
somehow in this theory the nuclearity of operators.

A result similar to Theorem 1.1 is obtained for polynomials on L1(μ), giving
another polynomial characterisation of the Radon–Nikodým property.

Finally, we show that a compact polynomial on an L1-space factors compactly
through �1, and this property characterises L1-spaces.

The paper is organised as follows: Section 1 contains introductory material
and preparatory results. Section 2 studies the relationship of the left �1-factorable
polynomials with other ideals of polynomials (mainly nuclear and compact
polynomials). In Section 3 we introduce and study the left integral �1-factorisation
property. We show that it characterises the Radon–Nikodým property, and we give a
result on composition of polynomials and operators, which improves previous work
by the authors.

Throughout, E, F , G, X and Y denote Banach spaces, E∗ is the dual of E and BE

stands for its closed unit ball. The closed unit ball BE∗ will always be endowed with
the weak-star topology. By � we represent the set of all natural numbers and by � the
scalar field (real or complex). By E ≡ F , we mean that the Banach spaces E and F are
isometrically isomorphic, while E 	 F means that E and F are isomorphic.

We use the symbol L(E, F) for the space of all (linear bounded) operators from E
into F endowed with the operator norm. Its subspace of compact operators is denoted
by K(E, F). Given a space F , we shall denote by jF the natural isometric embedding of
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F into its bidual F∗∗. The sequence (en)∞n=1 represents the canonical unit vector basis
of �1.

Given k ∈ �, we denote by P(kE, F) the space of all k-homogeneous (continuous)
polynomials from E into F endowed with the supremum norm. When F is omitted, it
is understood to be the scalar field. Recall that with each P ∈ P(kE, F) we can associate
a unique symmetric k-linear mapping P̂ : E× (k). . . ×E → F so that

P(x) = P̂
(
x, (k). . ., x

)
(x ∈ E).

For the general theory of multilinear mappings and polynomials on Banach spaces,
we refer the reader to [19] and [29]. The notion of ideal of vector-valued polynomials
may be seen, for instance, in [24] and [8].

We use the notation ⊗kE := E⊗ (k). . . ⊗E for the k-fold tensor product of E, E ⊗π F
for the completed projective tensor product of E and F and ⊗k

πE (respectively ⊗k
εE) for

the space ⊗kE endowed with the completed projective (respectively injective) tensor
norm (see [18] for the theory of tensor products). By ⊗k

s E := E⊗s
(k). . . ⊗sE we denote

the k-fold symmetric tensor product of E, that is the set of all elements u ∈ ⊗kE of the
form

u =
n∑

j=1

λjxj⊗ (k). . . ⊗xj (n ∈ �, λj ∈ �, xj ∈ E, 1 ≤ j ≤ n).

By ⊗k
π,sE (respectively ⊗k

ε,sE) we represent the space ⊗k
s E endowed with the topology

induced by that of ⊗k
πE (respectively ⊗k

εE). For symmetric tensor products, the reader
is referred to [21].

By

δk : E −→ ⊗k
π,sE , or δk : E −→ ⊗k

πE , or δk : E −→ ⊗k
ε,sE,

we denote the canonical k-homogeneous polynomial given by

δk(x) := x⊗ (k). . . ⊗x (x ∈ E).

If A : E1 × · · · × Ek → F is a k-linear (continuous) mapping, the linearisation of
A is the operator

A : E1 ⊗π · · · ⊗π Ek −→ F

given by

A

⎛⎝ n∑
j=1

x1,j ⊗ · · · ⊗ xk,j

⎞⎠ =
n∑

j=1

A(x1,j, . . . , xk,j)

for all xi,j ∈ Ei (1 ≤ i ≤ k, 1 ≤ j ≤ n) [31, p. 24]. For a polynomial P ∈ P(kE, F), its
linearisation

P : ⊗k
π,sE −→ F
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is the operator given by

P

⎛⎝ n∑
j=1

λjxj⊗ (k). . . ⊗xj

⎞⎠ =
n∑

j=1

λjP(xj)

for all xj ∈ E and λj ∈ � (1 ≤ j ≤ n).
Given a polynomial P ∈ P(kE, F), its adjoint is the operator

P∗ : F∗ −→ P(kE)

defined by P∗(ψ)(x) := ψ ◦ P(x), for x ∈ E and ψ ∈ F∗. Note that up to the
isomorphism (⊗k

π,sE)∗ 	 P(kE), the adjoints P∗ and (P)∗ coincide.
A polynomial P ∈ P(kE, F) is (weakly) compact if P(BE) is a relatively (weakly)

compact subset of F . The space of compact polynomials from E into F is denoted by
PK(kE, F). We denote by Pwb(kE, F) the space of polynomials from E into F whose
restrictions to bounded subsets of E are weakly continuous. It is well known that
Pwb(kE, F) ⊆ PK(kE, F) (see [6, Lemma 2.2] and [5, Theorem 2.9]).

A polynomial P ∈ P(kE, F) is nuclear [3] if it can be written in the form

P(x) =
∞∑

i=1

x∗
i (x)kyi (x ∈ E), (1)

where (x∗
i ) ⊂ E∗ and (yi) ⊂ F are bounded sequences such that

∞∑
i=1

‖x∗
i ‖k‖yi‖ < ∞. (2)

We denote by PN(kE, F) the space of all k-homogeneous nuclear polynomials from E
into F endowed with the nuclear norm

‖P‖N := inf
∞∑

i=1

‖x∗
i ‖k‖yi‖,

where the infimum is taken over all bounded sequences (x∗
i ) ⊂ E∗ and (yi) ⊂ F which

satisfy (1) and (2).
A polynomial P ∈ P(kE, F) is Pietsch integral (respectively Grothendieck integral)

[3] if there exists a regular countably additive, F-valued (respectively F∗∗-valued) Borel
measure G of bounded variation on BE∗ such that

P(x) =
∫

BE∗
[x∗(x)]k dG (x∗) (x ∈ E). (3)

The symbol PPI(kE, F) (respectively PI(kE, F)) denotes the space of all Pietsch integral
(respectively integral) k-homogeneous polynomials from E into F endowed with the
Pietsch integral norm (respectively integral norm)

‖P‖PI := inf|G | (BE∗ ) (respectively ‖P‖I := inf|G | (BE∗ )) ,

where |G | denotes the variation of G and the infimum is taken over all vector measures
G satisfying the definition.
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It is well known and easy to verify that

PN(kE, F) ⊆ PPI(kE, F) ⊆ PI(kE, F)

with

‖P‖ ≤ ‖P‖I ≤ ‖P‖PI ≤ ‖P‖N for every P ∈ PN(kE, F).

The space of Pietsch integral operators from E into F is denoted by PI(E, F).
We consider in this paper L1(μ) spaces for finite measures μ, but this covers much

more general situations. Indeed, if ν is a σ -finite measure, then there is a probability
measure μ such that L1(μ) ≡ L1(ν) [1, Section 5.1].

A Banach space F has the Radon–Nikodým property if for every finite measure
space (�,�,μ) and for each μ-continuous vector measure G : � → F of bounded
variation, there exists g ∈ L1(μ, F) such that

G (A) =
∫

A
g dμ for all A ∈ �.

The space �1 and the reflexive Banach spaces have the Radon–Nikodým property.
The reader is referred to [18, Section VII.6] for many equivalent formulations of the
Radon–Nikodým property and to [18, Section VII.7] for a list of spaces with (and
without) the Radon–Nikodým property.

We shall need the following essentially known result.

THEOREM 1.2. Given a polynomial P ∈ P(kE, F), the following assertions are
equivalent:

(a) P is Pietsch integral.
(b) There are a compact Hausdorff space K, an into isomorphism

h ∈ L(E, C(K)),

a finite nonnegative countably additive, Borel measure μ on K and an operator

S ∈ L(L1(K, μ), F)

such that the following diagram is commutative:

E
P−−−−→ F

R

⏐⏐� 
⏐⏐S

C(K) −−−−→
J

L1(K, μ)

where J is the natural inclusion and R is the polynomial given by

R(x) := [h(x)]m for all x ∈ E.

Moreover, if P is Pietsch integral, we have

‖P‖PI = inf ‖R‖ ‖S‖ ‖J‖PI ,

where the infimum is taken over all possible factorisations.
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Proof. The equivalence (a) ⇔ (b) is proved in [16, Theorem 2.3]. Using [17, D5],
the equality ‖J‖ = ‖J‖PI [17, Theorem 10.5], and a slight modification of the proof of
[16, Theorem 2.3], we obtain the equality of the norms. �

As the referee pointed out, Theorem 1.2 can also be obtained from [11,
Proposition 2.10].

A similar result holds for integral polynomials, upon replacing P by jF ◦ P.

THEOREM 1.3. The class of all left �1-factorable k-homogeneous polynomials is a
Banach ideal of polynomials, endowed with the norm γ left

�1
.

Proof. By [23, Criterion 1.4], which is also valid for vector-valued polynomials, we
need to show that given a sequence (Pn) ⊂ P(kE, F) of left �1-factorable polynomials
so that

∞∑
n=1

γ left
�1

(Pn) < +∞,

P := ∑∞
n=1 Pn is left �1-factorable and

γ left
�1

(P) ≤
∞∑

n=1

γ left
�1

(Pn). (4)

Since ‖Pn‖ ≤ γ left
�1

(Pn) for all n ∈ �, the series
∑∞

n=1 Pn is absolutely convergent in
the Banach space P(kE, F) and so it is convergent. Let P := ∑∞

n=1 Pn. For each n ∈ �

and ε > 0, there are a polynomial Qn ∈ P(kE, �1) and an operator Tn ∈ L(�1, F) so
that Pn = Tn ◦ Qn, with ‖Tn‖ ≤ 1 and ‖Qn‖ ≤ γ left

�1
(Pn) + ε2−n. Define the polynomial

Q : E −→
( ∞∑

n=1

�1

)
1

by

Q(x) := (Qn(x))∞n=1 for x ∈ E.

Clearly, Q is well defined. Let

T :

( ∞∑
n=1

�1

)
1

−→ F

be the operator given by

T
(
(xn)∞n=1

)
:=

∞∑
n=1

Tn(xn) , for xn ∈ �1 (n ∈ �).

Since

∥∥T
(
(xn)∞n=1

)∥∥ ≤
∞∑

n=1

‖Tn(xn)‖ ≤
∞∑

n=1

‖xn‖ = ∥∥(xn)∞n=1

∥∥ ,

T is well defined, with ‖T‖ ≤ 1.
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On the other hand, we have

T ◦ Q(x) =
∞∑

n=1

Tn(Qn(x)) =
∞∑

n=1

Pn(x) = P(x) (x ∈ E).

Recalling that
(∑∞

n=1 �1
)

1 is isometrically isomorphic to �1 [35, Examples II.B.22], we
have that P is left �1-factorable. Moreover,

γ left
�1

(P) ≤ ‖T‖ ‖Q‖ ≤ ‖Q‖ ≤
∞∑

n=1

‖Qn‖ ≤
∞∑

n=1

γ left
�1

(Pn) + ε.

Since ε > 0 is arbitrary, we obtain the desired result (4). It is easy to see that the other
conditions of [23, Criterion 1.4] are fulfilled. �

2. Relationship with other ideals of polynomials. In this section, we show that
every nuclear polynomial factors through a nuclear polynomial into �1, and we obtain
norm estimates of the factors. We give a characterisation of the Radon–Nikodým
property in terms of left �1-factorisation of polynomials, extending Theorem 1.1 to
the polynomial setting. Finally, we characterise L1-spaces by the left compact �1-
factorisation of compact polynomials.

The ideal of nuclear polynomials is the smallest Banach ideal of polynomials. This
is proved in [22, Proposition 1.7] in the scalar-valued case, but the proof is also valid
in the vector-valued setting. Hence, every nuclear polynomial P is left �1-factorable
and

γ left
�1

(P) ≤ ‖P‖N .

We shall however give a theorem on left nuclear �1-factorisation of nuclear polynomials
in order to obtain norm equalities which are interesting in their own right. We shall see
that every nuclear polynomial factors through a ‘standard’ nuclear polynomial that we
consider in the next proposition whose proof is simple.

PROPOSITION 2.1. Given λ = (λn) ∈ �1, the polynomial Mλ ∈ P(k�∞, �1) defined by

Mλ(x) := (
λnxk

n

)∞
n=1 , for x = (xn)∞n=1 ∈ �∞,

is nuclear and

‖Mλ‖ = ‖Mλ‖N = ‖λ‖ .

This result is also valid if the domain space is c0 instead of �∞.
The factorisations of the next theorem are proved in [13, Proposition 6]. Here we

add the equalities of the norms. We first give a (probably well-known) preparatory
lemma. Its proof is easy, using [30, Exercise 3.12].

LEMMA 2.2. Given λ = (λn) ∈ �1 and 0 < ε < 2, there are (αn)∞n=1 ∈ c0 with 0 ≤
αn ≤ 1 for all n ∈ � and τ := (τn) ∈ �1 such that λn = αnτn, with

‖τ‖ ≤ ‖λ‖ + ε.
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THEOREM 2.3. Let P ∈ P(kE, F) be a polynomial. The following assertions are
equivalent:

(a) P is nuclear.
(b) There are operators U ∈ L(E, �∞) and V ∈ L(�1, F) and a polynomial Mλ ∈

P(k�∞, �1) of the form Mλ(z) = (λnzk
n)∞n=1, where λ = (λn) ∈ �1 and z = (zn) ∈ �∞, such

that the following diagram commutes:

E
P−−−−→ F

U

⏐⏐� 
⏐⏐V

�∞ −−−−→
Mλ

�1

(c) There are compact operators T ∈ K(E, c0) and S ∈ K(�1, F) and a polynomial
M′

τ ∈ P(kc0, �1) of the form M′
τ (y) = (τnyk

n)∞n=1, where τ := (τn) ∈ �1 and y = (yn) ∈ c0,
such that the following diagram commutes:

E
P−−−−→ F

T

⏐⏐� 
⏐⏐S

c0 −−−−→
M′

τ

�1

Moreover, if P is nuclear, we have

‖P‖N = inf ‖U‖k ‖λ‖ ‖V‖ = inf ‖T‖k ‖τ‖ ‖S‖ ,

where the infimum is taken over all factorisations as in (b) and (c).

Proof. (a) ⇒ (b). Assume P ∈ PN(kE, F). For every ε > 0, there are bounded
sequences (φn) ⊂ E∗ and (yn) ⊂ F such that

P(x) =
∞∑

n=1

φn(x)kyn for all x ∈ E, with
∞∑

n=1

‖φn‖k ‖yn‖ < ‖P‖N + ε.

Define U ∈ L(E, �∞), V ∈ L(�1, F) and λ = (λn) ∈ �1 by

U(x) : =
(

φn(x)
‖φn‖

)∞

n=1
∈ �∞ (x ∈ E),

λn : = ‖φn‖k ‖yn‖ (n ∈ �),

V (en) : = yn

‖yn‖ ∈ F (n ∈ �).

Then, we easily obtain

V ◦ Mλ ◦ U(x) = P(x) (x ∈ E);

so the diagram of (b) is commutative. Moreover, ‖V‖ = ‖U‖ = 1 and

‖P‖N = ‖V ◦ Mλ ◦ U‖N ≤ ‖V‖ ‖λ‖ ‖U‖k = ‖λ‖ =
∞∑

n=1

‖φn‖k ‖yn‖ < ‖P‖N + ε,
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and we conclude that

‖P‖N = inf ‖V‖ ‖λ‖ ‖U‖k .

(a) ⇒ (c). Let P ∈ PN(kE, F). Given 0 < ε < 2, we can find a factorisation as in
(b) with ‖U‖ = ‖V‖ = 1 and

‖P‖N ≤ ‖λ‖ < ‖P‖N + ε

2
.

Then, by Lemma 2.2, there are (αn)∞n=1 ∈ c0 with 0 ≤ αn ≤ 1 for all n ∈ � and τ :=
(τn) ∈ �1 such that λn = αnτn, with

‖τ‖ ≤ ‖λ‖ + ε

2
.

Define operators B ∈ L(�∞, c0) and A ∈ L(�1, �1) and a polynomial M′
τ ∈ P(kc0, �1) by

B(z) : = (
α1/(2k)

n zn
)∞

n=1, for z = (zn) ∈ �∞,

A(ω) : = (
α1/2

n ωn
)∞

n=1 , for ω = (ωn) ∈ �1,

M′
τ (y) : = (

τnyk
n

)∞
n=1 , for y = (yn) ∈ c0.

Then, A and B are compact with norm ≤ 1 and

Mλ = A ◦ M′
τ ◦ B;

so the following diagram is commutative:

�∞
Mλ−−−−→ �1

B

⏐⏐� 
⏐⏐A

c0 −−−−→
M′

τ

�1

Let T := B ◦ U and S := V ◦ A. Then

P = V ◦ Mλ ◦ U = V ◦ A ◦ M′
τ ◦ B ◦ U = S ◦ M′

τ ◦ T ;

so

‖P‖N ≤ ‖S‖ ∥∥M′
τ

∥∥
N ‖T‖k ,

= ‖S‖ ‖τ‖ ‖T‖k ,

≤ ‖A‖ ‖τ‖ ‖B‖k (since ‖U‖ = ‖V‖ = 1),

≤ ‖λ‖ + ε

2
,

< ‖P‖N + ε,

and therefore

‖P‖N = inf ‖S‖ ‖τ‖ ‖T‖k .

https://doi.org/10.1017/S001708950999005X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950999005X


640 RAFFAELLA CILIA AND JOAQUÍN M. GUTIÉRREZ

(b) ⇒ (a) and (c) ⇒ (a). It is enough to use Proposition 2.1 and the comment after
it and the ideal property. �

COROLLARY 2.4. For every P ∈ PN(kE, F), there are a polynomial Q ∈ PN(kE, �1)
and an operator T ∈ L(�1, F) such that P = T ◦ Q and

‖P‖N = inf ‖Q‖N ‖T‖ ,

where the infimum is taken over all possible factorisations.

Proof. By Theorem 2.3, we have a commutative diagram

E
P−−−−→ F

S

⏐⏐� 
⏐⏐T

�∞ −−−−→
Mλ

�1

and

‖P‖N = ‖T ◦ Mλ ◦ S‖N ≤ ‖T‖ ‖Mλ ◦ S‖N ≤ ‖T‖ ‖λ‖ ‖S‖k.

Given ε > 0, we can choose S, λ and T so that

‖T‖ ‖λ‖ ‖S‖k < ‖P‖N + ε.

So, letting Q := Mλ ◦ S ∈ PN(kE, �1), we have

‖P‖N = inf ‖Q‖N ‖T‖ ,

and the proof is finished. �

Using Theorem 2.3(c) we can assume T in Corollary 2.4 to be compact.
Recall [7, p. 168] that for each i ∈ �, there are operators

πi : ⊗i+1
π,s E −→ ⊗i

π,sE and ji : ⊗i
π,sE −→ ⊗i+1

π,s E

such that πi ◦ ji is the identity map on ⊗i
π,sE.

Observe that if a polynomial P ∈ P(kE, F) is left �1-factorable in the form
P = L ◦ Q, then its linearisation P ∈ L(⊗k

π,sE, F) is �1-factorable in the form
P = L ◦ Q.

PROPOSITION 2.5. Let E and F be Banach spaces, and let k ∈ �. Assume that every
polynomial P ∈ P(kE, F) is left �1-factorable. Then every operator T ∈ L(E, F) is �1-
factorable.

Proof. Let T ∈ L(E, F) be given. Consider the polynomial

P := T ◦ π1 ◦ . . . ◦ πk−1 ◦ δk : E −→ F.

By the hypothesis, P is left �1-factorable. By the above comment, its linearisation

P = T ◦ π1 ◦ . . . ◦ πk−1 : ⊗k
π,sE −→ F
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is �1-factorable. It follows that the operator

T = T ◦ π1 ◦ · · · ◦ πk−1 ◦ jk−1 ◦ · · · ◦ j1 ∈ L(E, F)

is also �1-factorable. �
REMARK 2.6. In Proposition 2.5, from the fact that every k-homogeneous

polynomial between E and F satisfies a property, we deduce that every operator between
E and F satisfies the same property. This is also done in the proof of Theorem 2.9, part
(b) ⇒ (d), and in Proposition 3.1.

A general procedure (not using tensor products) to pass from properties of ideals
of polynomials to properties of operator ideals and vice versa has been developed in
[8] and [10, Proposition 1.6].

THEOREM 2.7. Given a Banach space F, the following assertions are equivalent:
(a) F has the Radon–Nikodým property;
(b) for every finite measure space (�,�,μ) and for every k ∈ �, every polynomial

P ∈ P(kL1(μ), F) is left �1-factorable;
(c) for every finite measure space (�,�,μ), there is an integer k ∈ � such that every

polynomial P ∈ P(kL1(μ), F) is left �1-factorable.

Proof. (a) ⇒ (b). Let P ∈ P(kL1(μ), F) be a polynomial. Since ⊗k
πL1(μ) is

isometrically isomorphic to L1(ν) for some finite measure ν [33, Exercise 2.8], by
Theorem 1.1, there are operators S ∈ L

(⊗k
πL1(μ), �1

)
and L ∈ L(�1, F) such that

P̂ = L ◦ S;

L1(μ) F

L1(ν) ≡ ⊗k
πL1(μ) �1

P

P̂

δk

S

L

Then, P = L ◦ Q, with Q := S ◦ δk ∈ P(kL1(μ), �1).
(b) ⇒ (c) is obvious.
(c) ⇒ (a). By Proposition 2.5, every operator T ∈ L(L1(μ), F) is �1-factorable.

By the Lewis–Stegall theorem (Theorem 1.1), F has the Radon–Nikodým
property. �

We do not know if the equality ‖P‖ = inf ‖Q‖ ‖L‖ holds, where the infimum
should be taken over all possible factorisations. It seems to us that in order to prove
such an equality, we would need to introduce the concept of representable polynomials,
which is beyond the scope of this paper.

REMARK 2.8. If P ∈ P(kL1(μ), F) is a weakly compact polynomial, there are a
reflexive Banach space G, a polynomial Q ∈ P(kL1(μ), G) and an operator U ∈ L(G, F)
such that P = U ◦ Q [32, Theorem 3.7]. Since G has the Radon–Nikodým property,
Theorem 2.7 implies that P is left �1-factorable.

We now study the left �1-factorisation of compact polynomials on L1-spaces. The
definition and basic properties of Lp-spaces may be seen in [27, 28]. We say that an
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operator T ∈ K(E, F) factors compactly through �1 if there are operators S ∈ K(E, �1)
and L ∈ K(�1, F) such that T = L ◦ S.

THEOREM 2.9. Given a Banach space E, the following assertions are equivalent:
(a) E is an L1-space;
(b) for every (some) k ∈ � and every Banach space F, for every polynomial P ∈

PK(kE, F), there are a polynomial Q ∈ PK(kE, �1) and an operator L ∈ K(�1, F) such
that P = L ◦ Q;

(c) for every (some) k ∈ � and every Banach space F, for every polynomial P ∈
Pwb(kE, F), there are a polynomial Q ∈ Pwb(kE, �1) and an operator L ∈ K(�1, F) such
that P = L ◦ Q;

(d) for every Banach space F, every operator T ∈ K(E, F) factors compactly
through �1.

Proof. (a) ⇒ (b). Suppose that E is an L1-space. Let P ∈ PK(kE, F) be a
compact polynomial. Then the linearisation P is compact [31, Lemma 4.1]. By [20,
Corollary 3.3], there are a Banach space G and operators A ∈ K(⊗k

π,sE, G) and
B ∈ K(G, F) such that P = B ◦ A:

⊗k
π,sE F

G

P

A B

The range of A∗ is in P(kE) 	 (⊗k
π,sE)∗ which is an L∞-space [14, p. 233]. By [26,

Theorem 2], A∗ factors compactly through c0; so there are operators U ∈ K(G∗, c0)
and V ∈ K(c0,P(kE)) such that A∗ = V ◦ U :

F∗ P(kE)

G∗ c0

P∗

A∗

B∗

U

V

Taking adjoints, we have that P∗∗ factors compactly through �1. Note that the
ranges of P∗∗ and B∗∗ are contained in F :

E F G∗∗

⊗k
π,sE

(⊗k
π,sE

)∗∗ 	 P(kE)∗ �1

P B∗∗

δk

j⊗k
π,sE

P∗∗

V∗

U∗

Since the above diagram is commutative, letting Q := V∗ ◦ j⊗k
π,sE ◦ δk ∈ PK(kE, �1)

and L := B∗∗ ◦ U∗ ∈ K(�1, F), the result is proved.
(b) ⇒ (d). Suppose (b) holds for some k ∈ �. A simple modification of the proof

of Proposition 2.5 allows us to obtain (d).
(d) ⇒ (c). Let P ∈ Pwb(kE, F) be a polynomial whose restrictions to bounded

subsets are weakly continuous. By [25, Corollary 15], there are a Banach space G, an
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operator S ∈ K(E, G) and a polynomial R ∈ Pwb(kG, F) such that P = R ◦ S. By (d),
there are operators A ∈ K(E, �1) and B ∈ K(�1, G) such that S = B ◦ A:

E F

�1 G ⊗k
πG

⊗k
π�1

P

A

B

R

S

δ′
k

R̂

δk ⊗kB

Let δk : �1 → ⊗k
π�1 and δ′

k : G → ⊗k
πG be the canonical polynomials. Let Q :=

δk ◦ A ∈ Pwb(kE,⊗k
π�1) and let L := R̂ ◦ (⊗kB) ∈ K(⊗k

π�1, F) (L is compact since R̂ is
compact). Then,

P = R ◦ S = R ◦ B ◦ A = R̂ ◦ δ′
k ◦ B ◦ A = R̂ ◦ (⊗kB) ◦ δk ◦ A = L ◦ Q.

Since ⊗k
π�1 is isometrically isomorphic to �1 [33, Exercise 2.6], the result is proved.

(c) ⇒ (a). Let P ∈ Pwb(kE, F) be a polynomial whose restrictions to bounded
subsets are weakly continuous, and let S ∈ L(G, F) be a surjective operator. By (c), there
are a polynomial R ∈ Pwb(kE, �1) and an operator L ∈ K(�1, F) such that P = L ◦ R:

E F

�1 G

P

L

R

L0

S

Since �1 is an L1-space, L has a compact lifting L0 ∈ K(�1, G) such that L = S ◦ L0

[28, Theorem 4.2]. Let Q := L0 ◦ R ∈ Pwb(kE, G), which is a lifting of P, since

P = L ◦ R = S ◦ L0 ◦ R = S ◦ Q.

By [14, Theorem 7], E is an L1-space. �

3. Left integral �1-factorisation property. In this section, we introduce the left
integral �1-factorisation property of Pietsch integral polynomials. We prove that it
characterises the Radon–Nikodým property and show that it plays to some extent the
role of nuclear operators with range in spaces with the Radon–Nikodým property. As
an application, we give a result on composition of polynomials and operators.

We say that a polynomial P ∈ PPI(kE, F) has the left integral �1-factorisation
property if there are a polynomial Q ∈ PPI(kE, �1) and an operator L ∈ L(�1, F) such
that P = L ◦ Q.

The operators πi and ji used in the proof of Proposition 2.5 are also continuous
when the tensor products are endowed with the injective topology [4, 3.5]. This allows
us to obtain the next result.

https://doi.org/10.1017/S001708950999005X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950999005X


644 RAFFAELLA CILIA AND JOAQUÍN M. GUTIÉRREZ

PROPOSITION 3.1. Let E and F be Banach spaces, and let k ∈ �. Assume that every
polynomial P ∈ PPI(kE, F) has the left integral �1-factorisation property. Then, for every
operator T ∈ PI(E, F), there are operators S ∈ PI(E, �1) and L ∈ L(�1, F) such that
T = L ◦ S.

Proof. Let T ∈ PI(E, F) be given. Define a polynomial P as the composition of
the following mappings:

E
δk−−−−→ ⊗k

ε,sE
πk−1−−−−→ ⊗k−1

ε,s E
πk−2−−−−→ · · · π1−−−−→ E

T−−−−→ F.

Since its linearisation P, given by the composition

⊗k
ε,sE

πk−1−−−−→ ⊗k−1
ε,s E

πk−2−−−−→ · · · π1−−−−→ E
T−−−−→ F,

is continuous and Pietsch integral, P is also Pietsch integral [34, Corollary 2.8]. So there
are a polynomial Q ∈ PPI(kE, �1) and an operator L ∈ L(�1, F) such that P = L ◦ Q:

E F

�1

P

Q L

Hence, the operator P, defined on ⊗k
ε,sE, is �1-factorable:

⊗k
ε,sE F

�1

P

Q L

with Q ∈ PI(⊗k
ε,sE, �1) again by [34, Corollary 2.8]. Since

T = T ◦ π1 ◦ · · · ◦ πk−1 ◦ jk−1 ◦ · · · ◦ j1 = P ◦ jk−1 ◦ · · · ◦ j1,

T is also �1-factorable through a Pietsch integral operator. �
THEOREM 3.2. Given a Banach space F, the following assertions are equivalent:
(a) F has the Radon–Nikodým property;
(b) for every (some) k ∈ � and for every Banach space E, every polynomial P ∈

PPI(kE, F) has the left integral �1-factorisation property;
(c) for every (some) k ∈ �, every polynomial P ∈ PPI(kC[0, 1], F) has the left

integral �1-factorisation property;
(d) for every Banach space E and every operator T ∈ PI(E, F), there are operators

S ∈ PI(E, �1) and L ∈ L(�1, F) such that T = L ◦ S;
(e) for every operator T ∈ PI(C[0, 1], F), there are operators S ∈ PI(C[0, 1], �1)

and L ∈ L(�1, F) such that T = L ◦ S;
(f) every operator T ∈ PI(C[0, 1], F) is nuclear.
Moreover, if F has the Radon–Nikodým property and P ∈ PPI(kE, F), then

‖P‖PI = inf ‖Q‖PI ‖L‖ ,

https://doi.org/10.1017/S001708950999005X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950999005X


LEFT �1-FACTORABLE POLYNOMIALS 645

where the infimum is taken over all factorisations as in (b). And if T ∈ PI(E, F), then

‖T‖PI = inf ‖S‖PI ‖L‖ ,

where the infimum is taken over all factorisations as in (d).

Proof. (a) ⇒ (b). Let P ∈ PPI(kE, F). By Theorem 1.2, given ε > 0, there is a
factorisation P = S ◦ J ◦ R (see the diagram below) with

‖P‖PI ≤ ‖R‖ ‖S‖ ‖J‖PI < ‖P‖PI + ε

2
.

Since F has the Radon–Nikodým property, applying Theorem 1.1, we can find
operators A ∈ L(L1(K, μ), �1) and L ∈ L(�1, F) so that S = L ◦ A:

E F

C(K) L1(K, μ) �1

P

R

J

S

A

L

(5)

Moreover, we can assume that

‖S‖ ≤ ‖A‖ ‖L‖ < ‖S‖ + ε

2 ‖R‖ ‖J‖PI
.

Let Q := A ◦ J ◦ R. By Theorem 1.2, Q is a Pietsch integral polynomial. Then, by the
ideal property,

‖P‖PI ≤ ‖Q‖PI ‖L‖ ,

≤ ‖R‖ ‖A ◦ J‖PI ‖L‖ (see Remark 3.3),

≤ ‖A‖ ‖J‖PI ‖R‖ ‖L‖ ,

< ‖R‖ ‖J‖PI

(
‖S‖ + ε

2‖R‖‖J‖PI

)
,

= ‖R‖ ‖J‖PI ‖S‖ + ε
2 ,

< ‖P‖PI + ε.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

Hence,

‖P‖PI = inf ‖Q‖PI ‖L‖ , (7)

where the infimum is taken over all possible factorisations of the form P = L ◦ Q, with
Q a Pietsch integral polynomial into �1.

(b) ⇒ (c) and (d) ⇒ (e) are obvious.
(b) ⇒ (d) and (c) ⇒ (e) by Proposition 3.1.
(e) ⇒ (f). Since S is Pietsch integral and �1 has the Radon–Nikodým property, S

is nuclear [18, Corollary VI.4.5]. Therefore, T = L ◦ S is nuclear.
(f) ⇒ (a). Let T ∈ L(C[0, 1], F) be an absolutely summing operator. By [17,

Proposition D6], T is Pietsch integral. By (f), T is nuclear. By [18, Corollary VI.4.6],
F has the Radon–Nikodým property.

https://doi.org/10.1017/S001708950999005X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950999005X


646 RAFFAELLA CILIA AND JOAQUÍN M. GUTIÉRREZ

The argument used in the proof of (a) ⇒ (b) to obtain equality (7) is also valid in
the linear case (k = 1). Hence, if T ∈ PI(E, F), we have

‖T‖PI = inf ‖S‖PI ‖L‖ ,

where the infimum is taken over all factorisations as in (d), and this finishes the
proof. �

REMARK 3.3. In the formulas of (6), we use the inequality

‖Q‖PI ≤ ‖R‖ ‖A ◦ J‖PI

which is an easy consequence of known results. Indeed, if Q and R are the linearisations
of Q and R defined on the k-fold symmetric tensor product of E endowed with the
symmetric injective tensor norm, then we have

‖Q‖PI =
∥∥∥Q

∥∥∥
PI

[11, Proposition 2.10],

= ∥∥A ◦ J ◦ R
∥∥

PI [16, Lemma 2.2],

≤ ‖A ◦ J‖PI

∥∥R
∥∥ ,

= ‖A ◦ J‖PI ‖R‖ [16, Lemma 2.2].

REMARKS 3.4. (a) If F has the Radon–Nikodým property, since the operator J in
diagram (5) is Pietsch integral, then S ◦ J is nuclear [18, Corollary VI.4.5] with

‖S ◦ J‖N = ‖S ◦ J‖PI ≤ ‖S‖ ‖J‖PI .

Hence, P is the composition of a polynomial R with a nuclear operator S ◦ J. However,
P need not be nuclear. Indeed, the polynomial P ∈ P(2C[0, 1]) given by

P(f ) :=
∫ 1

0
f (t)2 dt (f ∈ C[0, 1])

is (Pietsch) integral with values in the scalar field (which has trivially the Radon–
Nikodým property), but P is not nuclear [2, Remark 2.4].

(b) Since �1 has the Radon–Nikodým property, the operator A ◦ J in diagram (5)
is also nuclear, and we have

‖A ◦ J‖PI = ‖A ◦ J‖N ;

so the inequalities of (6) show that

‖P‖PI = inf ‖R‖ ‖A ◦ J‖N ‖L‖ .

(c) If F has the Radon–Nikodým property, since the operator S ◦ J is nuclear
in diagram (5), the polynomial P = S ◦ J ◦ R is compact. This was known, since the
Radon–Nikodým property implies the compact range property, and it is proved in
[15, Theorem 4.10] that F has the compact range property if and only if every Pietsch
integral polynomial with values in F is compact.
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As an application, we extend to the polynomial setting the following well-known
result [18, Theorem VIII.4.12].

THEOREM 3.5. Consider the operators T ∈ L(E, F) and S ∈ L(F, Y ). Then:
(a) if T is integral and S is weakly compact, S ◦ T is nuclear;
(b) if T is weakly compact and S is integral, S ◦ T is nuclear into Y∗∗.

Using the left integral �1-factorisation property, we can improve the results of [13,
Proposition 5].

THEOREM 3.6. Let P ∈ P(kE, F) be a polynomial, and let S ∈ L(F, Y ) and T ∈
L(X, E) be operators. Then:

(a) if P is integral and S is weakly compact, S ◦ P has the left integral �1-factorisation
property;

(b) if T is integral and P is weakly compact, P ◦ T has the left integral �1-factorisation
property;

(c) if T is weakly compact and P is integral, P ◦ T is nuclear into F∗∗.

Proof. (a) By Theorem 1.2, we can find a factorisation of jF ◦ P as in the diagram
below:

E F F∗∗ Y

C(K) L1(μ) �1

P jF

R

J

S∗∗

U

A L

Since S∗∗ ◦ A is weakly compact, the comment after Theorem 1.1 yields an �1-
factorisation S∗∗ ◦ A = L ◦ U . Then, letting Q := U ◦ J ◦ R which is a Pietsch integral
polynomial by Theorem 1.2, we have

S ◦ P = S∗∗ ◦ jF ◦ P = S∗∗ ◦ A ◦ J ◦ R = L ◦ U ◦ J ◦ R = L ◦ Q.

(b) We can find an integral factorisation of T as in the diagram below:

X E E∗∗ F

C(K) L1(μ) �1

T jE

B

J

P̃

R

A L

The Aron–Berner extension P̃ of P is F-valued and is itself weakly compact (see [9,
Proposition 1.4] and its proof); so P̃ ◦ A is a weakly compact polynomial on L1(μ). By
Remark 2.8, it is left �1-factorable in the form P̃ ◦ A = L ◦ R, where R is a polynomial.

Since J ◦ B is integral, the polynomial Q := R ◦ J ◦ B is (Pietsch) integral [12,
Corollary 2.7] and so

P ◦ T = P̃ ◦ jE ◦ T = P̃ ◦ A ◦ J ◦ B = L ◦ R ◦ J ◦ B = L ◦ Q.

(c) is proved in [13, Proposition 5]. �
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