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The last years have seen a resurgence of interest in machine learning based on (deep) neural
networks driven mainly by increasing computational resources and the availability of huge data
sets for learning. Aside from their use in main stream data science applications, deep networks
(i.e., neural networks with many hidden layers) have led to new techniques for solving par-
tial differential equations (PDEs), particularly in high-dimensional settings. At the same time,
the interpretation of some deep neural networks as nonlinear (partial) differential equations has
led to a new frontier to gain theoretical insight and design new algorithms for deep learning.
Motivated by these trends, this special issue brings together new results at this new interface
between applied mathematics and data science. The papers in this special issue provide different
insights into the connection between deep learning and PDEs. On the one hand, they discuss the
use of deep learning methods for typical tasks in PDEs; on the other hand, they employ PDE
techniques to design novel classification schemes or to understand their continuum limits.

Deep learning and numerical solution of PDEs is a field that gained quite some early interest.
Training deep neural networks to lower the computational cost of simulating nonlinear PDEs
has potential applications in many-query problems such as parameter estimation and uncertainty
quantification. In contrast to data science applications, in this context, one can control the training
data’s accuracy and combine many relatively cheap low-fidelity samples with a few high-fidelity
samples. The theoretical arguments and numerical evidence in [5] show that such a multi-level
procedure can lower the generalisation error considerably. Becker et al [1] tackle optimal stop-
ping problems for financial derivatives such as American or Bermudan options. A deep neural
network predicts the stopping strategy to mitigate the curse of dimensionality when thousands
of underlying assets are considered. They show the accuracy of their approach by comparing
numerical results to reference values from the literature.
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Linearising nonlinear PDEs through coordinate transformations such as the Cole–Hopf trans-
formation or Inverse Scattering Transform is key to simulate, control or estimate nonlinear PDE
models. However, finding such a transformation analytically for an arbitrary nonlinear PDE is
virtually impossible. To linearise a wide class of PDEs, Gin et al [3] propose an autoencoder
architecture. They provide promising results for several examples, including the Kuramoto–
Sivashinsky equation. Another relevant topic in PDEs is quantification of uncertainty in presence
of random effects. In Khoo et al’s paper [4], the authors use convolutional neural networks to
map random parameters of the PDE to physical quantities of interest. Their theoretical moti-
vation links forward propagation to time evolution. In numerical experiments on a diffusion
equation and a nonlinear Schrodinger equation, they demonstrate that supervised training of
the network can yield accurate surrogates. Chen et al’s paper [2] tackles forward and inverse
problems with physics informed neural networks (PINN). In the numerical examples, the PINN
approach accurately estimates both random and deterministic parameters of the system from a
small number of measurements. They also demonstrate that Bayesian optimisation can automise
the hyper-parameter tuning in PINNs.

As mentioned above, ideas from PDEs increasingly find their way into learning schemes.
In their paper, Wang and Osher replace the data-agnostic softmax function with graph-based
interpolation to improve deep neural network classifiers’ accuracy and robustness. They show
that this choice, in the continuum limit, converges to the Laplace–Beltrami equation on high-
dimensional manifolds. Therefore, the work outlines new ways to combine advances in deep
neural nets and manifold learning. Savarino and Schnörr [6] propose a novel parameterisation
of the assignment flow in a continuous-domain setting. Their method provides a PDE-based
approach for solving classification problems on graphs using a sequence of linear elliptic PDEs.
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