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ABSTRACT 

This paper reviews the present status of research on the problem 
of stability of satellite and planetary systems in general. In addi­
tion new results concerning the stability of the solar system are 
described. Hill's method is generalized and related to bifurcation 
(or catastrophe) theory. The general and the restricted problems of 
three bodies are used as dynamical models. A quantitative measure of 
stability is introduced by establishing the differences between the 
actual behavior of the dynamical system as given today and its critical 
state. The marginal stability of the lunar orbit is discussed as well 
as the behavior of the Sun-Jupiter-Saturn system. Numerical values re­
presenting the measure of stability of several components of the solar 
system are given, indicating in the majority of cases bounded behavior. 

INTRODUCTION 

No more appropriate subject than the unsolved problem of the sta­
bility of the solar system may be contributed to a volume honoring 
Professor y. Hagihara. His fundamental contributions to celestial 
mechanics underline not only the importance of this subject but point 
out the basic difficulties encountered such as the non-uniform conver­
gence of series solutions and the non-existence of sufficient number of 
uniform integrals. Indeed, the semi-convergent series a.s shown by 
Poincare' (1892-1899), may be truncated and give solutions for certain 
intervals of time with excellent accuracy, but these series are of no 
use when solutions in the domain -°° <_ t <̂  °° are to be studied. Numer­
ical integrations give meaningful results for limited periods of time, 
but, once again, their applicability to stability problems raises 
serious questions. Modern, powerful topological theories by Kolmogorov, 
Arnold and Moser, while representing significant advances in the theory 
of dynamical systems are not applicable to the stability of the solar 
system because the actual perturbations are above the limits set by 
the theory. 
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With Hagihara (1970-1976), we may state that if the trigonometric 
series used in celestial mechanics are not uniformly convergent then 
they do not represent the solution of the differential equations des­
cribing the solar system. On the other hand, if these series were 
convergent and would contain no secular terms, the solar system's sta­
bility would be established by the classical methods of general 
perturbation theory. 

A complete solution would be available if sufficient number of 
uniform integrals would exist. Once again, the non-existence of such 
integrals was shown by Poincare (1892-1899) and by Bruns (1887). The 
use of existing integrals allows the reduction of the order of the pro­
blem as well as allows the establishment of certain topological 
properties of the manifold of the motion. This approach originally pro­
posed by Hill (1878) is one of the few methods which, with all its 
disadvantages, may be used in a precise, mathematically well formulated 
and exact manner to establish - if not the stability - at least certain 
boundaries of the motion. 

The basic problem of the stability of the solar system may be 
stated in a variety of ways. Hagihara1s (1957) unambiguous and clear 
mathematical formulation is: "What is the interval of time at the end 
of which the solar system deviates from the present configuration by a 
previously assigned small amount?" 

Professor Hagiharafs basic question has only partial answers today. 
An introductory, modern, non-mathematical treatment of the subject of 
the stability of the solar system is available elsewhere (Jefferys and 
Szebehely, 1978). 

THREE APPROACHES TO THE PROBLEM OF STABILITY 
In this section three fundamental approaches to stability are 

shortly described and their advantages and disadvantages are listed. 

(A) The method applicable to the solar system and offering mathe­
matically precise results is the previously mentioned method of Hill 
(1878). It uses integrals of the motion and was employed by Hill to 
study the stability of the lunar orbit. The method is also applicable 
to the model of the restricted problem (Szebehely, 1967) and it was 
generalized to other dynamical systems such as the general problem of 
three bodies. Between 1968 and 1977, a series of papers appeared in 
which the topology of the general problem of three bodies are discussed 
by Golubev (1968), Smale (1970), Marchal and Saari (1975), Bozis (1976), 
Zare (1977) and Szebehely (1977). 

The ideal in its simplest form may be expressed as: 

V2 = V(x,y)-C , 
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which for a two-degrees of freedom dynamical system represents the ener­
gy integral with V(x,y) the potential, v the velocity and C the constant 
of integration, determined by the initial conditions. For a given value 
of C motion is possible in those regions of the plane (x,y) for which 
V(x,y) > C. In this way boundaries of possible motions may be estab­
lished by a study of the topology of the curves C = V(x,y). Values of 
C associated with topological changes are bifurcation of critical values. 

The greatest advantage of the method is that it is an exact, non­
linear analysis. Consequently, it's free of the criticisms raised 
against the method of small disturbances, periodic or quasi-periodic 
motions have no importance and the fact that it is also devoid of any 
reference to commensurabilities may be considered an advantage because 
of the ambiguous role of resonances in celestial mechanics. Another 
great advantage of the method is its applicability to non-integrable 
dynamical systems, such as the gravitational problem of n bodies. On 
the other hand, its greatest disadvantage is that it gives partial re­
sults only and at best it establishes upper or lower boundaries of the 
motion. The importance of these limitations calls for an explanation 
by two simple examples. The "stability11 of the lunar orbit proved by 
Hill may be formulated precisely as follows: if the dynamical model 
adopted by Hill is accepted to describe the motion of the Moon, then 
the Moon may not leave the Earth and may not become an (independent) 
planet of the Sun. Note that this result does not mean that the Moon 
cannot collide with the Earth and that all Hill's assumptions must be 
dynamically correct. In this example Hill meant by "stability" the 
existence of an upper bound of the Moon's distance from the Earth. 

The second example is the application of the method to the stabili*-
ty of Saturn in the Sun-Jupiter-Saturn system. The meaning of 
"stability" now becomes quite different. If the assumptions of the 
(circular) restricted problem are accepted then Saturn can not penetrate 
the region occupied by the Sun and by Jupiter, i.e., it can not become 
an interior planet or it can not form a binary system with Jupiter. 
But, Saturn may escape the system. Therefore, by "stability" we mean a 
lower bound for Saturn's distance from the Sun. Both examples lack two 
bounds. The lunar distance has no lower bound and the orbit of Saturn 
has no upper bound. Both examples ignore other influences such as tidal 
effects, resonance conditions and perturbations by other planets. Never­
theless, the limited results of these examples, accepting the validity 
of the dynamical models are exact and no mathematical approximations 
are involved. 

As the degree of freedom of the dynamical system increases the re­
sults remain exact but their significance becomes more limited. If the 
model of the restricted problem is not applicable and the general three-
body problem must be used, the topology .of the boundary surfaces becomes 
rather complicated and in few cases may we offer statements concerning 
boundedness or stability of general validity. For instance, with our 
present day knowledge regarding the existence of uniform integrals of the 
three-body problem we find that all boundary surfaces are open to 
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infinity, making escape always possible. Direct exchange, on the other 
hand, between the roles played by the three bodies, is not always possi­
ble. 

A distinct advantage of Hill's method is that it may be used to de­
fine a measure of stability via bifurcation theory. When the controlling 
parameters of the system are such that in its present state the system 
is far removed from the nearest bifurcation then a strong stability 
exists. On the other hand, when slight changes in the dynamic parameters 
describing the system throw it into bifurcation, its stability is low. 
A measure of stability S = (s -s )/s was introduced by Szebehely 

J ac cr cr J J 

(1977) indicating the differences between the present (actual) system 
and its nearest bifurcation value. This parameter is the Jacobian 
constant s=C for dynamical systems described by the restricted problem 
and it is the quantity s = -(c2h)/G2m5 for the general three-body pro­
blem. (Here c is the angular momentum, h the total energy, G the 
constant of gravity and m the average mass). The subscripts "ac" and 
"cr" refer to the actual or present value and to the critical or bi­
furcation value respectively. It may be shown for the restricted problem 
that C 21 3 and that for the general problem s ^ 0 as long as two 
of the' three bodies have non-zero mass. The normalization is quite ar­
bitrary as is the definition used for C and h. Nevertheless, accepting 
the sape definition for all examples offers meaningful comparisons re­
garding the measures of stability. Note that if S > 0 the dynamical 
system is removed from its nearest possible bifurcation. When S < 0 
the possibility of changing to a different type of motion exists but 
will not necessarily occur. 

(B) Stability investigations by numerical methods is the second 
basic approach. A great variety of possibilities exist along these lines 
and with present day high speed electronic computers, interesting exper­
imental results became available in the past few years. The stability 
of numerically established periodic and quasi-periodic planetary and 
satellite type orbits give indication of the long-range behavior of the 
system. Because of the numerical nature of these investigations, they 
are approximate and their precise mathematical validity is always ques­
tionable. Using the restricted problem Henon (1970) studied the linear 
stability of periodic and quasi-periodic orbits as well as their global, 
non-linear behavior using the method of the surfaces of section (Henon 
and Heiles, 1964). These results reveal the existence of stable retro­
grade orbits, far removed from the primaries. Similar numerical inves­
tigations for planetary type three and many-body periodic orbits, per­
formed by Hadjidemetriou (1976), indicate linear stability of the solar 
system using the model of the general problem of three bodies. 

It is known that when the participating masses in the general pro­
blem of three bodies are of the same order of magnitude, random initial 
conditions result, most of the time, in escapes even for negative total 
energy (Szebehely, 1971). Such unstable motions contradict the general­
ly found stable behavior of planetary type motions when the mass of one 
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body dominates. Kuiper (1973), therefore, recommended that increased 
masses for the planets be used in numerical experiments and an artifi­
cial instability be created. With increased masses a shorter numerical 
integration time is expected to determine the behavior of the system. 
Numerical integrations have shown (Nacozy, 1976) no secular trends in 
the motion of the Sun-Jupiter-Saturn system until the masses of Jupiter 
and Saturn were increased 25 times of their actual value. The sudden 
appearance of instability with increased masses is an indication of the 
stability of the system with its present (actual) masses. This method 
is known as the Kuiper-Nacozy-Szebehely (K-N-S) theory. Note that 
Hill's method gives a factor of 15 instead of 25 for the onset of possi­
ble instability, (Szebehely and McKenzie, 1977). 

Other long-time numerical integrations seem to show stability for 
over 107 years. These integrations do not include the inside planets, 
and do not offer analytical proof of stability inspite of their unques­
tionably ingenious techniques and reliable results (Birn (1973), Cohen, 
Hubbard and Oesterwinter (1968)). 

(C) The third approach to stability investigations is the classi­
cal general perturbation method. Once again no mathematical results 
exist which would show long-time behavior because of the previously 
mentioned divergence of the series. Until new, uniformly convergent 
series solutions become available, the various averaging techniques, 
truncations, secular perturbations, etc., will furnish results useful 
for finite time only. Sundman (1912), has shown the existence of the 
solution of the pertinent differential equations. The radius of con­
vergence of his series is so small that not even a general pattern of 
dynamical behavior emerges, not to mention stability properties. 
Message's (1978) recent proof of the non-existence of secular terms to 
any order in the formal solution for the semi-major axis is an impor­
tant result considering formal solutions. An analytical approach along 
these lines is the K-A-M (Kolmogorov (1954), Arnol'd (1963), Moser 
(1973)) theory which states that if the perturbations to a soluble 
(two-body) problem are small enough, the commensurabilities are of high 
enough order and certain continuity conditions are satisfied, then 
quasi-periodic solutions exist. Unfortunately, for the solar system 
the first condition is not satisfied and, therefore, the KAM theory is 
not applicable. 

STABILITY MEASURES FOR THE SOLAR SYSTEM 

In this section, the results of calculations are given according 
to the first approach (A). The satellite systems of the solar system 
are discussed first, followed by remarks on the planetary system it­
self. The numerical values given are based on the most recent astro­
nomical constant accepted by the International Astronomical Union in 
1976. Table I. lists values of S for the satellite systems. 
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PLANET 

Earth 
Mars 

Jupiter 

SATELLITE 

Moon 
Phobos 
Deimos 
V 
Io 
Europa 
Ganymede 
Callisto 
XIII 
VI 
VII 
X 
XII R 
XI R 
VIII R 
IX R 

STABILITY 

0.00015 
0.00254 
0.00098 
1.33570 
0.56521 
0.35058 
0.21478 
0.11663 
0.0106 
0.00988 
0.00944 
0.00925 

-0.00536 
-0.00612 
-0.00656 
-0.00666 

PLANET 

Saturn 

Uranus 

Neptune 

SATELLITE 

Mimas 
Enceladus 
Tethys 
Dione 
Rhea 
Titania 
Hyperion 
Iapetus 
Phoebe 
Miranda 
Ariel 
Umbriel 
Titania 
Oberon 
Triton 
Nereid 

STABILITY 

0.72023 
0.56154 
0.45187 
0.35133 
0.25030 
0.10458 
0.08531 
0.03221 
0.00313 
0.33493 
0.21569 
0.15462 
0.09358 
0.06939 
0.21629 
0.01206 

Table I. Stability of Satellites in the Solar System 

The model of the restricted problem is used with the three bodies being 
the Sun, the planet and its satellite. The assumptions of the restric­
ted problem are acceptable for this case since the satellites' effects 
of the primaries are less than approximately 1% when compared to the 
effects of the primaries on each other. (The only exception is of 
Neptune's Triton). Attention is directed to the low stability of the 
Earth's moon. This small positive number (S = 1.5 x 10"4) becomes 
negative (S = -2.75 x 10_1+) if the model of the general problem of three 
bodies is used (Szebehely and McKenzie, 1977), indicating a borderline 
case of bifurcation. The four outer retrograde satellites of Jupiter 
are below the bifurcation value (S < 0) suggesting the possibility of 
capture-origin. 

The discussion of satellite stability in the solar system may be 
closed by mentioning several approaches to the problem of finding the 
limiting orbital radii of natural or artificial satellites around the 
planets of the solar system. Such formulae were given among others by 
Hagihara (1952), Kuiper (1953), and Szebehely (1978). 

Regarding planetary stability, the dynamical situation is consider­
ably more complicated. Table II. shows the results of the bifurcation 
computations, assuming the model of the restricted problem and using 
the Sun and Jupiter as primaries. This Table needs careful interpre­
tation. The numbers decrease as the planetary orbit approaches 
Jupiter's orbit and the minimum is shown for Saturn. Uranus, Neptune 
and Pluto show increasing numbers since they are farther removed from 
Jupiter's orbit. 
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MERCURY 

3.60 

VENUS 

1.61 

EARTH 

1.00 

MARS 

0.48 

SATURN 

0.07 

URANUS 

0.35 

NEPTUNE 

0.64 

PLUTO 

0.85 
Table II. Stability of Sun-Jupiter-Planet Systems. 

Table III. shows more appropriate combinations from a dynamical point 
of view. Since the principal effect in the secular variation in the 
mean motion on Mercury is by Venus, on Venus is by the Earth, on the 
Earth by Jupiter and on Mars by the Earth, Table III. shows also the 
corresponding stability measures. 

PRIMARIES SUN-MERCURY SUN-VENUS SUN-EARTH 
PLANET VENUS EARTH MARS 
STABILITY 0.110 0.027 0.041 

Table III. Planetary Stabilities in the Solar System. 

Studies performed regarding the effect of Jupiter's orbital eccen­
tricity e on the stability of planetary orbits shows that the increase 
of e has a destabilizing effect. The same is true if the values used 
for the planetary masses are increased and the general problem is used 
as the underlying dynamical model. 
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DISCUSSION 

Kiang: I would like to suggest a new approach to questions of 
stability, less sophisticated than the topological method. As 
soon as we write Hill's equation for a closed orbit (in phase 
space, in general), we can define its stability in,terms of the 
solution of Hill's equation. In this way, I was able to show that 
a typical Hilda asteroid (at the 3/2 commensurability) is stable 
while a Hecuba asteroid (at the 2/1 point) with the same eccen­
tricity is unstable. In this particular problem it is possible to 
write down Hill's equation only after radically departing from 
the classical treatment of the virtual displacement. 

Szebehely: Thank you. 
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