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Abstract

Let G be a finite group. A subset X of G is a set of pairwise noncommuting elements if any two distinct
elements of X do not commute. In this paper we determine the maximum size of these subsets in any
finite nonabelian metacyclic p-group for an odd prime p.

2010 Mathematics subject classification: primary 20D15; secondary 20D60.

Keywords and phrases: metacyclic p-group, covering, pairwise noncommuting elements.

1. Introduction

Let G be a finite nonabelian group and let X be a subset of pairwise noncommuting
elements of G such that |X| ≥ |Y | for any other set of pairwise noncommuting elements
Y in G. Then the subset X is said to have the maximum size, and this size is denoted
by ω(G). Also ω(G) is the maximum clique size in the noncommuting graph of a finite
group G. Let Z(G) be the centre of G. The noncommuting graph of a group G is
defined as a graph whose G\Z(G) is the set of vertices and two vertices are joined if
and only if they do not commute. Various attempts have been made to find ω(G) for
some groups G; see, for example, [1, 2, 5, 7, 10, 11]. Moreover, there is a connection
between sets of pairwise noncommuting elements in a finite group G and coverings
of G. Following [4, Section 116], we say that a finite group G is covered by proper
subgroups A1, . . . , An if G = A1 ∪ · · · ∪ An. As a matter of fact, if G is covered by
n proper abelian subgroups, then ω(G) ≤ n since two elements that do not commute
cannot be in the same abelian subgroup. Answering a question of Erdős and Straus [6],
Mason [9] has shown that any finite group G can be covered with at most b|G|/2c + 1
abelian subgroups.

In this paper we prove the following main theorem.

T 1.1. Let G be a finite nonabelian metacyclic p-group with p > 2. Then
ω(G) = |G′|(1 + p)/p.
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To prove this theorem for a finite nonabelian metacyclic p-group G with p > 2, our
main strategy is to find an upper bound and a lower bound for ω(G), both of which are
equal to |G′|(1 + p)/p. For an upper bound we give an abelian covering for G and for
a lower bound we find a set of pairwise noncommuting elements in G. We note that
maximal subgroups of G play an important role in our proofs.

Throughout this paper the following notation is used. All groups are assumed
to be finite. The letter p denotes a prime number. In a p-group G, we define
fi(G) = 〈xpi

| x ∈G〉. The minimal number of generators of G is denoted by d(G).
We write [a, b] for a−1b−1ab. Also, a minimal nonabelian group is a nonabelian group
such that all its proper subgroups are abelian.

2. Some basic results

In this section we give some basic results for metacyclic p-groups that are needed
for the main results of the paper.

Let G be a finite metacyclic p-group. We know that there exists a normal cyclic
subgroup 〈a〉 of G such that G/〈a〉 is cyclic. Therefore we may choose an element
b ∈G and a number k ≥ 1 such that G = 〈b, a〉 and b−1ab = ak and so any element of G
has the form b jai for j, i ≥ 0.

For the rest of the paper we fix the above notation.

L 2.1. Let G be a nonabelian metacyclic p-group. Then:

(i) k ≡ 1 (mod p);
(ii) [ai, b j] = [a, b]i(1+k+···+k j−1) for i, j ≥ 1;
(iii) G′ = 〈[a, b]〉;
(iv) any two arbitrary elements x = b jai and y = bsar in G commute if and only

if (1 + k + · · · + ks−1)i ≡ (1 + k + · · · + k j−1)r (mod |G′|), where i, j, r, s ≥ 0 and
we take 1 + k + · · · + km−1 = 0 when m = 0;

(v) (bai)n = bnai(1+k+···+kn−1) for i, n ≥ 1;
(vi) Φ(G) = 〈bp, ap〉.

P. (i) Obviously G′ ≤ 〈a〉 and 〈ak−1〉 ≤G′. Now if (p, k − 1) = 1, then G′ = 〈a〉, a
contradiction.
(ii) This follows from b−1ab = ak.
(iii) We have G′ = 〈[x, y] | x, y ∈G〉, which completes the proof by using (ii).
(iv) This is a consequence of (ii).
(v) We use induction on n.
(vi) On setting H = 〈ap, bp〉, we see that G′ ≤ H by (i) and (iii) and so |G/H| ≤ p2.
Now we can complete the proof since H ≤ Φ(G) and d(G) = 2. �

Following [3, Section 26], we state the definition of powerful p-groups for p > 2
and some of their properties which will be used in the following. Let p > 2. A finite
p-group G is said to be powerful if f1(G) = Φ(G).
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L 2.2. Let G be a metacyclic p-group with p > 2. Then:

(i) see G and all its subgroups are powerful;
(ii) see G = 〈a〉〈b〉;
(iii) see fi(G) = {xpi

|x ∈G} for i ≥ 1.

P. (i) [3, Section 26, Exercise 1].
(ii) [3, Corollary 26.12].
(iii) [3, Proposition 26.10]. �

3. Maximal subgroups

In this section we proceed to find all maximal subgroups of a noncyclic metacyclic
p-group G for an odd prime p. Obviously the number of maximal subgroups of G is
1 + p since d(G) = 2.

First we state the following lemma due to Berkovich [4].

L 3.1 [4, Lemma 124.27]. Let G be a nontrivial metacyclic p-group and
suppose that A < B ≤G. Then A′ < B′ unless B is abelian.

C 3.2. Let G be a metacyclic p-group and |G′| = p. Then G is minimal
nonabelian.

P. By Lemma 3.1, for any maximal subgroup M of G we have M′ <G′, as
desired. �

T 3.3. Let G be a noncyclic metacyclic p-group with p > 2. Then:

(i) K1 = 〈b, ap〉, K2 = 〈bp, a〉 and Hi = 〈bai, ap〉, for 1 ≤ i ≤ p − 1, are all distinct
maximal subgroups of G;

(ii) |K′j| = |H
′
i | = |G

′|/p, for 1 ≤ j ≤ 2 and 1 ≤ i ≤ p − 1, when G is not abelian.

P. (i) First we see that Φ(G) < K j <G, for 1 ≤ j ≤ 2, by Lemma 2.1(vi). Also,
by considering (bai)p, we see that bp ∈ Hi, for 1 ≤ i ≤ p − 1, by Lemma 2.1(v), (i).
Therefore Φ(G) < Hi <G for 1 ≤ i ≤ p − 1. Moreover, it is easy to check that these
maximal subgroups are distinct.

(ii) Obviously 〈[ap, bai]〉 and 〈[ap, b]〉 are subgroups of H′i and K′1 respectively and
are of order |G′|/p by Lemma 2.1(ii), (iii), for 1 ≤ i ≤ p − 1. Also, by Lemma 2.1(i),
(ii), (iii), 〈[a, bp]〉 ≤ K′2 is of order |G′|/p since p divides 1 + · · · + kp−1 and p2 does
not divide 1 + · · · + kp−1. Moreover, by Lemma 3.1, we see that H′i <G′ and K′j <G′,
for 1 ≤ i ≤ p − 1 and 1 ≤ j ≤ 2, which completes the proof. �

C 3.4. If G is a nonabelian metacyclic p-group with p > 2 and G possesses
an abelian maximal subgroup, then |G′| = p.

P. This follows from Theorem 3.3(ii). �
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4. Covering and pairwise noncommuting elements

Let G be a finite nonabelian metacyclic p-group with p > 2. In this section we show
that ω(G) = |G′|(1 + p)/p. Our strategy is to find an upper bound and a lower bound
for ω(G) both of which are equal to |G′|(1 + p)/p. To find an upper bound for ω(G),
we cover G by its abelian subgroups; in fact any maximal subgroup of G is covered
by abelian subgroups. To find a lower bound, we give a set of pairwise noncommuting
elements in G, again by finding a set of pairwise noncommuting elements in each
maximal subgroup of G. We note that if |G′| = p, then by [4, Lemma 116.1(a)],
ω(G) = 1 + p since G is minimal nonabelian.

L 4.1. Let G be a powerful p-group with p > 2 and G = M1 ∪ · · · ∪ Mt ∪ Φ(G),
where Mi are subgroups of G. Then G = M1 ∪ · · · ∪ Mt.

P. Assume that 1 , x ∈ Φ(G). It is enough to show that x ∈ Mi for some 1 ≤ i ≤ t.
Since G is finite, we may write 1 =fs(G) ≤ · · · ≤f2(G) ≤f1(G) = Φ(G) for some
s > 1. Therefore there exists 1 ≤ k ≤ s − 1 such that x ∈fk(G) \fk+1(G). By [3,
Proposition 26.10], x = gpk

for some g ∈G. We see that g <f1(G) = Φ(G). Therefore
g ∈ Mi for some 1 ≤ i ≤ t and so x ∈ Mi. �

T 4.2. Let G be a nonabelian metacyclic p-group with p > 2 and |G′| = pn.
Then any maximal subgroup of G is covered by Φ(G) and pn−1 abelian subgroups
of G.

P. We use induction on n. For n = 1 this is obvious by Corollary 3.2. Now
assume that n ≥ 2 and that the result holds for any nonabelian metacyclic p-group
with the derived subgroup of order pn−1. Let H be a maximal subgroup of G. Then by
Corollary 3.4, H is not abelian and so H has 1 + p maximal subgroups, of which Φ(G)
is one. Therefore H = M1 ∪ · · · ∪ Mp ∪ Φ(G), where the elements of the union are all
maximal subgroups of H. Now by Theorem 3.3(ii), |H′| = pn−1 and so by the induction
hypothesis Mi =

⋃pn−2

j=1 Ai j ∪ Φ(H), where Ai j is abelian for 1 ≤ i ≤ p and 1 ≤ j ≤ pn−2.
Hence we can complete the proof by the fact that Φ(H) ≤ Φ(G). �

C 4.3. If G is a nonabelian metacyclic p-group with p > 2, then G is covered
by |G′|(1 + p)/p abelian subgroups. Therefore ω(G) ≤ |G′|(1 + p)/p.

P. It is clear that G = H1 ∪ · · · ∪ H1+p, where H1, . . . , H1+p are all maximal
subgroups of G. Therefore by Theorem 4.2, G is covered by |G′|(1 + p)/p abelian
subgroups and Φ(G). Now the result follows immediately from Lemma 2.2(i) and
Lemma 4.1. �

Now we proceed to find the lower bound for ω(G).

L 4.4. Let G be a nonabelian metacyclic p-group with p > 2 and H, K be two
distinct maximal subgroups of G. Then:

(i) for any x ∈ H \ Φ(G) and any y ∈ K \ Φ(G), xy , yx;
(ii) H ∩ K = Φ(G).
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P. (i) By Theorem 3.3(i), distinct maximal subgroups of G are K1 = 〈b, ap〉, K2 =

〈bp, a〉 and Hi = 〈bai, ap〉 for 1 ≤ i ≤ p − 1. Therefore we may assume, for example,
that H = Hi and K = H j for 1 ≤ i < j ≤ p − 1. Now if x ∈ H \ Φ(G) and y ∈ K \ Φ(G),
then by Lemmas 2.1(vi) and 2.2(i), (ii), x = (bai)napm and y = (ba j)raps, where
n , 0, r , 0, (n, p) = (r, p) = 1 and m, s ≥ 0. So by way of contradiction, if xy = yx,
then

(i(1 + k + · · · + kn−1) + pm)(1 + k + · · · + kr−1)

≡ ( j(1 + k + · · · + kr−1) + ps)(1 + k + · · · + kn−1) (mod |G′|),

by Lemma 2.1(v), (iv). This implies that inr ≡ jrn (mod p), by using Lemma 2.1(i), a
contradiction. The proof of other cases for H and K is the same as above.

(ii) This is evident. �

T 4.5. Let G be a nonabelian metacyclic p-group (p > 2) with |G′| = pn, where
n ≥ 2 and let H be a maximal subgroup of G. Then there exist pn−1 pairwise
noncommuting elements in H \ Φ(G).

P. We use induction on n. For n = 2, by Theorem 3.3(ii), we see that |H′| = p
and so H is minimal nonabelian by Corollary 3.2. Therefore ω(H) = 1 + p by
[4, Lemma 116.1(a)]. Hence there exist p pairwise noncommuting elements in
H \ Φ(G) since Φ(G) is abelian. Now suppose that n ≥ 3 and that the result holds
for any nonabelian metacyclic p-group with the derived subgroup of order pn−1. Let
M1, . . . , M1+p be all distinct maximal subgroups of H; obviously we may assume
that M1+p = Φ(G). By Theorem 3.3(ii), |H′| = pn−1 and so H is nonabelian. Now
by using the induction hypothesis for H, we see that there exists a subset Ai of
pairwise noncommuting elements in Mi \ Φ(H) such that |Ai| = pn−2 for 1 ≤ i ≤ p. On
setting A = A1 ∪ · · · ∪ Ap, we see that A ⊆ H \ Φ(G) and |A| = pn−1 by Lemma 4.4(ii).
Moreover, by Lemma 4.4(i), elements of Ai and A j do not commute for 1 ≤ i < j ≤ p,
as desired. �

C 4.6. If G is a nonabelian metacyclic p-group with p > 2, then |G′|(1 +

p)/p ≤ ω(G).

P. If |G′| = p, then by Corollary 3.2, G is minimal nonabelian and soω(G) = 1 + p
by [4, Lemma 116.1(a)]. Now let |G′| = pn and n ≥ 2. Assume that H1, . . . , H1+p

are all maximal subgroups of G. Then by Theorem 4.5, there exists a subset Ai of
pairwise noncommuting elements in Hi \ Φ(G) such that |Ai| = pn−1, for 1 ≤ i ≤ p + 1.
On setting A = A1 ∪ · · · ∪ A1+p, we see that |A| = (1 + p)pn−1 by Lemma 4.4(ii) and A
is a set of pairwise noncommuting elements in G by Lemma 4.4(i), as desired. �

P  T 1.1. This is an immediate consequence of Corollaries 4.3 and 4.6.

R. We note that Theorem 1.1 does not hold for nonabelian metacyclic 2-groups.
To verify this we use GAP [8]. The notation group(m, n) is used for the nth group
of order m as quoted in the ‘Small Groups’ library of GAP. For example, if G =
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group(16, 7), then |G′| = 4 and ω(G) = 5. If G = group(32, 18), then |G′| = 8 and
ω(G) = 9. If G = group(64, 46), then |G′| = 8 and ω(G) = 11.
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[10] B. H. Neumann, ‘A problem of Paul Erdős on groups’, J. Aust. Math. Soc. Ser. A 21(4) (1976),

467–472.
[11] L. Pyber, ‘The number of pairwise noncommuting elements and the index of the centre in a finite

group’, J. Lond. Math. Soc. 35(2) (1987), 287–295.

S. FOULADI, Department of Mathematics, Faculty of Science,
Arak University, Arak 38156-8-8349, Iran
e-mail: s-fouladi@araku.ac.ir

R. ORFI, Department of Mathematics, Faculty of Science,
Arak University, Arak 38156-8-8349, Iran
e-mail: r-orfi@araku.ac.ir

https://doi.org/10.1017/S0004972712000111 Published online by Cambridge University Press

http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
https://doi.org/10.1017/S0004972712000111

