MAXIMUM SIZE OF SUBSETS OF
 PAIRWISE NONCOMMUTING ELEMENTS IN FINITE METACYCLIC p-GROUPS

S. FOULADI ${ }^{\boxtimes}$ and R. ORFI

(Received 11 January 2012)

Abstract

Let G be a finite group. A subset X of G is a set of pairwise noncommuting elements if any two distinct elements of X do not commute. In this paper we determine the maximum size of these subsets in any finite nonabelian metacyclic p-group for an odd prime p.

2010 Mathematics subject classification: primary 20D15; secondary 20D60.
Keywords and phrases: metacyclic p-group, covering, pairwise noncommuting elements.

1. Introduction

Let G be a finite nonabelian group and let X be a subset of pairwise noncommuting elements of G such that $|X| \geq|Y|$ for any other set of pairwise noncommuting elements Y in G. Then the subset X is said to have the maximum size, and this size is denoted by $\omega(G)$. Also $\omega(G)$ is the maximum clique size in the noncommuting graph of a finite group G. Let $Z(G)$ be the centre of G. The noncommuting graph of a group G is defined as a graph whose $G \backslash Z(G)$ is the set of vertices and two vertices are joined if and only if they do not commute. Various attempts have been made to find $\omega(G)$ for some groups G; see, for example, $[1,2,5,7,10,11]$. Moreover, there is a connection between sets of pairwise noncommuting elements in a finite group G and coverings of G. Following [4, Section 116], we say that a finite group G is covered by proper subgroups A_{1}, \ldots, A_{n} if $G=A_{1} \cup \cdots \cup A_{n}$. As a matter of fact, if G is covered by n proper abelian subgroups, then $\omega(G) \leq n$ since two elements that do not commute cannot be in the same abelian subgroup. Answering a question of Erdős and Straus [6], Mason [9] has shown that any finite group G can be covered with at most $\lfloor|G| / 2\rfloor+1$ abelian subgroups.

In this paper we prove the following main theorem.
Theorem 1.1. Let G be a finite nonabelian metacyclic p-group with $p>2$. Then $\omega(G)=\left|G^{\prime}\right|(1+p) / p$.

[^0]To prove this theorem for a finite nonabelian metacyclic p-group G with $p>2$, our main strategy is to find an upper bound and a lower bound for $\omega(G)$, both of which are equal to $\left|G^{\prime}\right|(1+p) / p$. For an upper bound we give an abelian covering for G and for a lower bound we find a set of pairwise noncommuting elements in G. We note that maximal subgroups of G play an important role in our proofs.

Throughout this paper the following notation is used. All groups are assumed to be finite. The letter p denotes a prime number. In a p-group G, we define $\mho_{i}(G)=\left\langle x^{p^{i}} \mid x \in G\right\rangle$. The minimal number of generators of G is denoted by $d(G)$. We write $[a, b]$ for $a^{-1} b^{-1} a b$. Also, a minimal nonabelian group is a nonabelian group such that all its proper subgroups are abelian.

2. Some basic results

In this section we give some basic results for metacyclic p-groups that are needed for the main results of the paper.

Let G be a finite metacyclic p-group. We know that there exists a normal cyclic subgroup $\langle a\rangle$ of G such that $G /\langle a\rangle$ is cyclic. Therefore we may choose an element $b \in G$ and a number $k \geq 1$ such that $G=\langle b, a\rangle$ and $b^{-1} a b=a^{k}$ and so any element of G has the form $b^{j} a^{i}$ for $j, i \geq 0$.

For the rest of the paper we fix the above notation.
Lemma 2.1. Let G be a nonabelian metacyclic p-group. Then:
(i) $k \equiv 1(\bmod p)$;
(ii) $\left[a^{i}, b^{j}\right]=[a, b]^{i\left(1+k+\cdots+k^{j-1}\right)}$ for $i, j \geq 1$;
(iii) $\quad G^{\prime}=\langle[a, b]\rangle$;
(iv) any two arbitrary elements $x=b^{j} a^{i}$ and $y=b^{s} a^{r}$ in G commute if and only if $\left(1+k+\cdots+k^{s-1}\right) i \equiv\left(1+k+\cdots+k^{j-1}\right) r\left(\bmod \left|G^{\prime}\right|\right)$, where $i, j, r, s \geq 0$ and we take $1+k+\cdots+k^{m-1}=0$ when $m=0$;
(v) $\left(b a^{i}\right)^{n}=b^{n} a^{i\left(1+k+\cdots+k^{n-1}\right)}$ for $i, n \geq 1$;
(vi) $\Phi(G)=\left\langle b^{p}, a^{p}\right\rangle$.

Proof. (i) Obviously $G^{\prime} \leq\langle a\rangle$ and $\left\langle a^{k-1}\right\rangle \leq G^{\prime}$. Now if $(p, k-1)=1$, then $G^{\prime}=\langle a\rangle$, a contradiction.
(ii) This follows from $b^{-1} a b=a^{k}$.
(iii) We have $G^{\prime}=\langle[x, y] \mid x, y \in G\rangle$, which completes the proof by using (ii).
(iv) This is a consequence of (ii).
(v) We use induction on n.
(vi) On setting $H=\left\langle a^{p}, b^{p}\right\rangle$, we see that $G^{\prime} \leq H$ by (i) and (iii) and so $|G / H| \leq p^{2}$. Now we can complete the proof since $H \leq \Phi(G)$ and $d(G)=2$.

Following [3, Section 26], we state the definition of powerful p-groups for $p>2$ and some of their properties which will be used in the following. Let $p>2$. A finite p-group G is said to be powerful if $\mho_{1}(G)=\Phi(G)$.

Lemma 2.2. Let G be a metacyclic p-group with $p>2$. Then:
(i) see G and all its subgroups are powerful;
(ii) see $G=\langle a\rangle\langle b\rangle$;
(iii) see $\mho_{i}(G)=\left\{x^{p^{i}} \mid x \in G\right\}$ for $i \geq 1$.

Proof. (i) [3, Section 26, Exercise 1].
(ii) [3, Corollary 26.12].
(iii) [3, Proposition 26.10].

3. Maximal subgroups

In this section we proceed to find all maximal subgroups of a noncyclic metacyclic p-group G for an odd prime p. Obviously the number of maximal subgroups of G is $1+p$ since $d(G)=2$.

First we state the following lemma due to Berkovich [4].
Lemma 3.1 [4, Lemma 124.27]. Let G be a nontrivial metacyclic p-group and suppose that $A<B \leq G$. Then $A^{\prime}<B^{\prime}$ unless B is abelian.

Corollary 3.2. Let G be a metacyclic p-group and $\left|G^{\prime}\right|=p$. Then G is minimal nonabelian.

Proof. By Lemma 3.1, for any maximal subgroup M of G we have $M^{\prime}<G^{\prime}$, as desired.

Theorem 3.3. Let G be a noncyclic metacyclic p-group with $p>2$. Then:
(i) $K_{1}=\left\langle b, a^{p}\right\rangle, K_{2}=\left\langle b^{p}, a\right\rangle$ and $H_{i}=\left\langle b a^{i}, a^{p}\right\rangle$, for $1 \leq i \leq p-1$, are all distinct maximal subgroups of G;
(ii) $\left|K_{j}^{\prime}\right|=\left|H_{i}^{\prime}\right|=\left|G^{\prime}\right| / p$, for $1 \leq j \leq 2$ and $1 \leq i \leq p-1$, when G is not abelian.

Proof. (i) First we see that $\Phi(G)<K_{j}<G$, for $1 \leq j \leq 2$, by Lemma 2.1(vi). Also, by considering $\left(b a^{i}\right)^{p}$, we see that $b^{p} \in H_{i}$, for $1 \leq i \leq p-1$, by Lemma 2.1(v), (i). Therefore $\Phi(G)<H_{i}<G$ for $1 \leq i \leq p-1$. Moreover, it is easy to check that these maximal subgroups are distinct.
(ii) Obviously $\left\langle\left[a^{p}, b a^{i}\right]\right\rangle$ and $\left\langle\left[a^{p}, b\right]\right\rangle$ are subgroups of H_{i}^{\prime} and K_{1}^{\prime} respectively and are of order $\left|G^{\prime}\right| / p$ by Lemma 2.1(ii), (iii), for $1 \leq i \leq p-1$. Also, by Lemma 2.1(i), (ii), (iii), $\left\langle\left[a, b^{p}\right]\right\rangle \leq K_{2}^{\prime}$ is of order $\left|G^{\prime}\right| / p$ since p divides $1+\cdots+k^{p-1}$ and p^{2} does not divide $1+\cdots+k^{p-1}$. Moreover, by Lemma 3.1, we see that $H_{i}^{\prime}<G^{\prime}$ and $K_{j}^{\prime}<G^{\prime}$, for $1 \leq i \leq p-1$ and $1 \leq j \leq 2$, which completes the proof.

Corollary 3.4. If G is a nonabelian metacyclic p-group with $p>2$ and G possesses an abelian maximal subgroup, then $\left|G^{\prime}\right|=p$.

Proof. This follows from Theorem 3.3(ii).

4. Covering and pairwise noncommuting elements

Let G be a finite nonabelian metacyclic p-group with $p>2$. In this section we show that $\omega(G)=\left|G^{\prime}\right|(1+p) / p$. Our strategy is to find an upper bound and a lower bound for $\omega(G)$ both of which are equal to $\left|G^{\prime}\right|(1+p) / p$. To find an upper bound for $\omega(G)$, we cover G by its abelian subgroups; in fact any maximal subgroup of G is covered by abelian subgroups. To find a lower bound, we give a set of pairwise noncommuting elements in G, again by finding a set of pairwise noncommuting elements in each maximal subgroup of G. We note that if $\left|G^{\prime}\right|=p$, then by [4, Lemma 116.1(a)], $\omega(G)=1+p$ since G is minimal nonabelian.

Lemma 4.1. Let G be a powerful p-group with $p>2$ and $G=M_{1} \cup \cdots \cup M_{t} \cup \Phi(G)$, where M_{i} are subgroups of G. Then $G=M_{1} \cup \cdots \cup M_{t}$.

Proof. Assume that $1 \neq x \in \Phi(G)$. It is enough to show that $x \in M_{i}$ for some $1 \leq i \leq t$. Since G is finite, we may write $1=\mho_{s}(G) \leq \cdots \leq \mho_{2}(G) \leq \mho_{1}(G)=\Phi(G)$ for some $s>1$. Therefore there exists $1 \leq k \leq s-1$ such that $x \in \mho_{k}(G) \backslash \mho_{k+1}(G)$. By [3, Proposition 26.10], $x=g^{p^{k}}$ for some $g \in G$. We see that $g \notin \mho_{1}(G)=\Phi(G)$. Therefore $g \in M_{i}$ for some $1 \leq i \leq t$ and so $x \in M_{i}$.

Theorem 4.2. Let G be a nonabelian metacyclic p-group with $p>2$ and $\left|G^{\prime}\right|=p^{n}$. Then any maximal subgroup of G is covered by $\Phi(G)$ and p^{n-1} abelian subgroups of G.

Proof. We use induction on n. For $n=1$ this is obvious by Corollary 3.2. Now assume that $n \geq 2$ and that the result holds for any nonabelian metacyclic p-group with the derived subgroup of order p^{n-1}. Let H be a maximal subgroup of G. Then by Corollary $3.4, H$ is not abelian and so H has $1+p$ maximal subgroups, of which $\Phi(G)$ is one. Therefore $H=M_{1} \cup \cdots \cup M_{p} \cup \Phi(G)$, where the elements of the union are all maximal subgroups of H. Now by Theorem 3.3(ii), $\left|H^{\prime}\right|=p^{n-1}$ and so by the induction hypothesis $M_{i}=\bigcup_{j=1}^{p^{n-2}} A_{i j} \cup \Phi(H)$, where $A_{i j}$ is abelian for $1 \leq i \leq p$ and $1 \leq j \leq p^{n-2}$. Hence we can complete the proof by the fact that $\Phi(H) \leq \Phi(G)$.

Corollary 4.3. If G is a nonabelian metacyclic p-group with $p>2$, then G is covered by $\left|G^{\prime}\right|(1+p) / p$ abelian subgroups. Therefore $\omega(G) \leq\left|G^{\prime}\right|(1+p) / p$.

Proof. It is clear that $G=H_{1} \cup \cdots \cup H_{1+p}$, where H_{1}, \ldots, H_{1+p} are all maximal subgroups of G. Therefore by Theorem 4.2, G is covered by $\left|G^{\prime}\right|(1+p) / p$ abelian subgroups and $\Phi(G)$. Now the result follows immediately from Lemma 2.2(i) and Lemma 4.1.

Now we proceed to find the lower bound for $\omega(G)$.
Lemma 4.4. Let G be a nonabelian metacyclic p-group with $p>2$ and H, K be two distinct maximal subgroups of G. Then:
(i) for any $x \in H \backslash \Phi(G)$ and any $y \in K \backslash \Phi(G)$, $x y \neq y x$;
(ii) $H \cap K=\Phi(G)$.

Proof. (i) By Theorem 3.3(i), distinct maximal subgroups of G are $K_{1}=\left\langle b, a^{p}\right\rangle, K_{2}=$ $\left\langle b^{p}, a\right\rangle$ and $H_{i}=\left\langle b a^{i}, a^{p}\right\rangle$ for $1 \leq i \leq p-1$. Therefore we may assume, for example, that $H=H_{i}$ and $K=H_{j}$ for $1 \leq i<j \leq p-1$. Now if $x \in H \backslash \Phi(G)$ and $y \in K \backslash \Phi(G)$, then by Lemmas 2.1(vi) and 2.2(i), (ii), $x=\left(b a^{i}\right)^{n} a^{p m}$ and $y=\left(b a^{j}\right)^{r} a^{p s}$, where $n \neq 0, r \neq 0,(n, p)=(r, p)=1$ and $m, s \geq 0$. So by way of contradiction, if $x y=y x$, then

$$
\begin{aligned}
& \left(i\left(1+k+\cdots+k^{n-1}\right)+p m\right)\left(1+k+\cdots+k^{r-1}\right) \\
& \quad \equiv\left(j\left(1+k+\cdots+k^{r-1}\right)+p s\right)\left(1+k+\cdots+k^{n-1}\right) \quad\left(\bmod \left|G^{\prime}\right|\right)
\end{aligned}
$$

by Lemma 2.1(v), (iv). This implies that $i n r \equiv j r n(\bmod p)$, by using Lemma 2.1(i), a contradiction. The proof of other cases for H and K is the same as above.
(ii) This is evident.

Theorem 4.5. Let G be a nonabelian metacyclic p-group $(p>2)$ with $\left|G^{\prime}\right|=p^{n}$, where $n \geq 2$ and let H be a maximal subgroup of G. Then there exist p^{n-1} pairwise noncommuting elements in $H \backslash \Phi(G)$.

Proof. We use induction on n. For $n=2$, by Theorem 3.3(ii), we see that $\left|H^{\prime}\right|=p$ and so H is minimal nonabelian by Corollary 3.2. Therefore $\omega(H)=1+p$ by [4, Lemma 116.1(a)]. Hence there exist p pairwise noncommuting elements in $H \backslash \Phi(G)$ since $\Phi(G)$ is abelian. Now suppose that $n \geq 3$ and that the result holds for any nonabelian metacyclic p-group with the derived subgroup of order p^{n-1}. Let M_{1}, \ldots, M_{1+p} be all distinct maximal subgroups of H; obviously we may assume that $M_{1+p}=\Phi(G)$. By Theorem 3.3(ii), $\left|H^{\prime}\right|=p^{n-1}$ and so H is nonabelian. Now by using the induction hypothesis for H, we see that there exists a subset A_{i} of pairwise noncommuting elements in $M_{i} \backslash \Phi(H)$ such that $\left|A_{i}\right|=p^{n-2}$ for $1 \leq i \leq p$. On setting $A=A_{1} \cup \cdots \cup A_{p}$, we see that $A \subseteq H \backslash \Phi(G)$ and $|A|=p^{n-1}$ by Lemma 4.4(ii). Moreover, by Lemma 4.4(i), elements of A_{i} and A_{j} do not commute for $1 \leq i<j \leq p$, as desired.

Corollary 4.6. If G is a nonabelian metacyclic p-group with $p>2$, then $\left|G^{\prime}\right|(1+$ $p) / p \leq \omega(G)$.

Proof. If $\left|G^{\prime}\right|=p$, then by Corollary 3.2, G is minimal nonabelian and so $\omega(G)=1+p$ by [4, Lemma 116.1(a)]. Now let $\left|G^{\prime}\right|=p^{n}$ and $n \geq 2$. Assume that H_{1}, \ldots, H_{1+p} are all maximal subgroups of G. Then by Theorem 4.5, there exists a subset A_{i} of pairwise noncommuting elements in $H_{i} \backslash \Phi(G)$ such that $\left|A_{i}\right|=p^{n-1}$, for $1 \leq i \leq p+1$. On setting $A=A_{1} \cup \cdots \cup A_{1+p}$, we see that $|A|=(1+p) p^{n-1}$ by Lemma 4.4(ii) and A is a set of pairwise noncommuting elements in G by Lemma 4.4(i), as desired.

Proof of Theorem 1.1. This is an immediate consequence of Corollaries 4.3 and 4.6.
Remark. We note that Theorem 1.1 does not hold for nonabelian metacyclic 2-groups. To verify this we use GAP [8]. The notation $\operatorname{group}(m, n)$ is used for the nth group of order m as quoted in the 'Small Groups' library of GAP. For example, if $G=$
$\operatorname{group}(16,7)$, then $\left|G^{\prime}\right|=4$ and $\omega(G)=5$. If $G=\operatorname{group}(32,18)$, then $\left|G^{\prime}\right|=8$ and $\omega(G)=9$. If $G=\operatorname{group}(64,46)$, then $\left|G^{\prime}\right|=8$ and $\omega(G)=11$.

References

[1] A. Abdollahi, A. Akbari and H. R. Maimani, 'Noncommuting graph of a group', J. Algebra 298(2) (2006), 468-492.
[2] A. Azad and Cheryl E. Praeger, 'Maximal subsets of pairwise noncommuting elements of three-dimensional general linear groups', Bull. Aust. Math. Soc. 80(1) (2009), 91-104.
[3] Y. Berkovich, Groups of Prime Power Order, Vol. 1 (Walter de Gruyter, Berlin, 2008).
[4] Y. Berkovich and Z. Janko, Groups of Prime Power Order, Vol. 3 (Walter de Gruyter, Berlin, 2011).
[5] A. M. Y. Chin, 'On noncommuting sets in an extraspecial p-group', J. Group Theory 8(2) (2005), 189-194.
[6] P. Erdős and E. G. Straus, 'How abelian is a finite group?', Linear Multilinear Algebra 3(4) (1976), 307-312.
[7] S. Fouladi and R. Orfi, 'Maximal subsets of pairwise noncommuting elements of some p-groups of maximal class', Bull. Aust. Math. Soc. 84(3) (2011), 447-451.
[8] The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.4.10, 2007, (http://www.gap-system.org).
[9] D. R. Mason, 'On coverings of a finite group by abelian subgroups', Math. Proc. Cambridge Philos. Soc. 83(2) (1978), 205-209.
[10] B. H. Neumann, 'A problem of Paul Erdős on groups', J. Aust. Math. Soc. Ser. A 21(4) (1976), 467-472.
[11] L. Pyber, 'The number of pairwise noncommuting elements and the index of the centre in a finite group', J. Lond. Math. Soc. 35(2) (1987), 287-295.

S. FOULADI, Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
e-mail: s-fouladi @araku.ac.ir

R. ORFI, Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
e-mail: r-orf @araku.ac.ir

[^0]: (C) 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

