Proceedings of the Edinburgh Mathematical Society (1992) 35, 41-45 ©

EIGENVALUES OF SMOOTH POSITIVE DEFINITE KERNELS

by J. B. READE

(Received 25th January 1990)

For positive definite C^1 kernels on a finite real interval the eigenvalues λ_n are known to be $o(1/n^2)$. In this paper this result is shown to be best possible in the best possible sense, namely that, given any decreasing sequence λ_n which is $o(1/n^2)$, there exist positive definite C^1 kernels whose eigenvalues are λ_n .

1980 Mathematics subject classification (1985 Revision): 47G05.

1. Introduction

We showed in [4] that for any real positive sequence λ_n for which $n^2 \lambda_n$ decreases and tends to zero there exist positive definite C^1 kernels whose eigenvalues are λ_n . We now prove a slightly stronger result namely that if λ_n itself decreases and if $n^2 \lambda_n \rightarrow 0$ then there exist positive definite C^1 kernels whose eigenvalues are λ_n . The proof is based on an idea of Chaundy and Jolliffe originally given in [1] and later reproduced in [5].

2. Trigonometric series

We need some results on trigonometric sine series. The following estimates on partial sums are crucial.

Lemma 1. For all integers $N \ge 1$ and for all real t in the interval $0 < t < 2\pi$

(i)
$$\left|\sum_{1}^{N} \sin nt\right| \leq \frac{1}{\sin t/2}$$
,
(ii) $\sum_{1}^{N} n \sin nt = O\left(\frac{N}{\sin t/2}\right)$

Proof. Let us write

$$s_N(t) = \sum_{1}^{N} \sin nt.$$

	4
Δ	
-	r

Then we have

$$|s_N(t)| = \left| \sum_{1}^{N} \sin nt \right|$$
$$\leq \left| \sum_{1}^{N} e^{int} \right|$$
$$= \left| \frac{e^{it} - e^{i(N+1)t}}{1 - e^{it}} \right|$$
$$\leq \frac{1}{\sin t/2}.$$

Also

$$\sum_{1}^{N} n \sin nt = s_{1}(t) + \sum_{2}^{N} n(s_{n}(t) - s_{n-1}(t))$$

$$=-\sum_{1}^{N-1}s_{n}(t)+Ns_{N}(t).$$

Hence

$$\left|\sum_{1}^{N} n \sin nt\right| \leq \frac{2N-1}{\sin t/2}$$
$$= O\left(\frac{N}{\sin t/2}\right).$$

Lemma 2. If
$$\lambda_n$$
 is a real positive decreasing sequence such that $n^2 \lambda_n \rightarrow 0$ then

$$\sum_{1}^{\infty} \lambda_n \cos nt$$

is C^1 for all real t.

Proof. The series clearly converges (absolutely) for all t so it is sufficient to show the differentiated series

42

43

$$-\sum_{1}^{\infty}n\lambda_{n}\sin nt$$

is uniformly convergent over all t.

Suppose $\varepsilon > 0$ is given. Let N be chosen such that $n^2 \lambda_n < \varepsilon$ for all n > N. Consider the sum

$$\sum_{p}^{q} n\lambda_{n} \sin nt$$

where p, q are both > N and $0 < t < \pi$. We split this sum into two parts

$$\sum_{p}^{q} = \sum_{p}^{k} + \sum_{k+1}^{q}$$

where k (depending on t) is chosen such that

$$kt \leq \pi < (k+1)t.$$

Either of these smaller sums may be empty of course.

The first sum can be estimated as follows. Using the inequality $\sin \theta < \theta$ for $\theta > 0$ we have

$$\sum_{p}^{k} n\lambda_{n} \sin nt < \sum_{p}^{k} \varepsilon t$$
$$\leq \sum_{p}^{k} \varepsilon \pi/k$$
$$\leq \varepsilon \pi.$$

Estimating the second sum is not quite so easy. If we write

$$\sigma_N(t) = \sum_{1}^{N} n \sin nt$$

then, using the inequality $\sin \theta > 2\theta/\pi$ for $0 < \theta < \pi/2$, we have from Lemma 1

$$\sigma_N(t) = O\left(\frac{N}{\sin t/2}\right)$$
$$= O(N\pi/t)$$

Also

44

$$\sum_{k+1}^{q} n\lambda_n \sin nt = \sum_{k+1}^{q} \lambda_n(\sigma_n(t) - \sigma_{n-1}(t))$$
$$= \lambda_{k+1}\sigma_k(t) + \sum_{k+1}^{q-1} (\lambda_n - \lambda_{n+1})\sigma_n(t) + \lambda_q\sigma_q(t).$$

Therefore

$$\sum_{k+1}^{q} n\lambda_n \sin nt = O\left(\lambda_{k+1}k^2 + \sum_{k+1}^{q-1} (\lambda_n - \lambda_{n+1})nk + \lambda_q qk\right)$$
$$= O\left(\lambda_{k+1}(2k+1)k + \sum_{k+2}^{q} \lambda_n k\right)$$
$$= O\left(\varepsilon + \sum_{k+2}^{q} \varepsilon k/n^2\right)$$
$$= O(\varepsilon)$$

since

$$\sum_{k}^{\infty} 1/n^2 = O(1/k).$$

3. The kernels

Lemma 2 above enables us to construct smooth kernels with prescribed eigenvalues in the following way.

Theorem 1. If λ_n is real positive decreasing and $n^2\lambda_n \rightarrow 0$ then the kernel

$$K(x, t) = \sum_{1}^{\infty} \lambda_n \cos n\pi x \cos n\pi t$$
$$= \frac{1}{2} \sum_{1}^{\infty} \lambda_n (\cos n\pi (x+t) + \cos n\pi (x-t))$$

https://doi.org/10.1017/S0013091500005307 Published online by Cambridge University Press

is C^1 and the operator

$$Tf(x) = \int_{-1}^{1} K(x,t)f(t) dt$$

on $L^{2}[-1,1]$ has eigenvalues λ_{n} .

The same idea can be used to construct positive definite C^p kernels (p odd) with eigenvalues any given λ_n positive decreasing such that $n^{p+1}\lambda_n \rightarrow 0$. For p even one has to have

$$\sum_{1}^{\infty} n^{p} \lambda_{n} < \infty$$

(see [4]) which makes the proof that the corresponding kernel is C^{p} relatively trivial.

Regrettably this idea cannot be used to construct a symmetric C^1 kernel with eigenvalues any given λ_n decreasing in modulus such that $n^{3/2}\lambda_n \rightarrow 0$ (see [3]) since no symmetric C^1 kernel can have eigenvalues e.g. $|\lambda_n| = 1/n^{3/2} (\log n)^{1/2}$ on account of the fact that

$$\sum_{1}^{\infty} n^2 \lambda_n^2 < \infty$$

for such kernels (see [2]).

REFERENCES

1. T. W. CHAUNDY and A. E. JOLLIFFE, The uniform convergence of a certain class of trigonometrical series, *Proc. London Math. Soc.* (2), 15 (1916), 214–216.

2. J. B. READE, Eigenvalues of smooth kernels, Math. Proc. Cambridge Philos. Soc. 95 (1984), 135-140.

3. J. B. READE, On the sharpness of Weyl's estimate for the eigenvalues of smooth kernels, SIAM J. Math. Anal. 16 (1985), 548-550.

4. J. B. READE, Positive definite C^p kernels, SIAM J. Math. Anal. 17 (1986), 420-421.

5. E. C. TITCHMARSH, Theory of Functions (Oxford University Press, 1932).

MATHEMATICS DEPARTMENT MANCHESTER UNIVERSITY MANCHESTER M13 9PL England