Visceral fat and insulin resistance – causative or correlative?

Keith N. Frayn

Oxford Lipid Metabolism Group, Radcliffe Infirmary, Oxford OX2 6HE, UK

The association between abdominal fat accumulation and risk of chronic diseases, including type II diabetes and coronary heart disease, has long been recognized. Insulin resistance may be a key factor in this link. Many studies have pointed to an association between insulin resistance and intra-abdominal fat accumulation (visceral obesity). However, there is no clear proof of a causal link between visceral fat accumulation and insulin resistance. In assessing the probability of a causal link, it is useful to consider potential mechanisms. One such potential causal link is the release of non-esterified fatty acids from visceral fat into the portal vein, so that they have direct effects on hepatic metabolism. Visceral fat has been shown in many studies to exhibit a high rate of lipolysis compared with subcutaneous fat depots. However, if the idea that visceral fat releases fatty acids into the portal vein at a high rate is examined critically, a number of difficulties appear. Not least of these is the fact that continued high rates of lipolysis should lead to the disappearance of the visceral fat depot, unless these high rates of fat mobilization are matched by high rates of fat deposition. There is far less evidence for high rates of fat deposition in visceral adipose tissue, and some contrary evidence. Evidence for high rates of visceral lipolysis in vivo from studies involving catheterization of the portal vein is not strong. If this potential link is discounted, then other reasons for the relationship between visceral fat and insulin resistance must be considered. One is that there is no direct causal link, but both co-correlate with some other variable. A possibility is that this other variable is subcutaneous abdominal fat, which usually outweighs intra-abdominal fat several-fold. Subcutaneous fat probably plays the major role in determining systemic plasma non-esterified fatty acid concentrations, which are relevant in determining insulin resistance. In conclusion, there is at present no proof of a causal link between visceral fat accumulation and insulin resistance, or the associated metabolic syndrome. The possibility of co-correlation with some other factor, such as subcutaneous abdominal fat accumulation, must not be forgotten.

Visceral fat: Insulin resistance: Non-esterified fatty acids: Subcutaneous abdominal fat

Introduction

Jean Vague drew attention more than 50 years ago to the existence of two relatively distinct patterns of fat distribution in adult humans, which he called android, or male-type, and gynoid, or female-type (Vague, 1947). He showed that android, or upper-body, fat deposition was associated with increased risk of a number of chronic diseases, including type 2 diabetes, atherosclerosis and gout (Vague, 1956). Since that time his prescient work has been reinforced by a large number of studies, both cross-sectional and, more recently, prospective. Prospective studies have confirmed a link between upper-body fat accumulation and subsequent mortality (Fontbonne et al. 1992; Folsom et al. 1993; Kalmijn et al. 1999).

The diseases that Jean Vague showed to be associated with upper-body obesity tend to cluster together. Reaven (1988) proposed that a common feature underlying this cluster of related conditions is insulin resistance, or a failure of insulin to act normally on target tissues. Insulin resistance, according to Reaven, is associated with a constellation of risk factors for coronary heart disease and type 2 diabetes (Table 1). It is now recognized that upper-body fat deposition and insulin resistance are closely associated, and many would argue that lower-body obesity is relatively harmless and is much less strongly associated with insulin resistance (Björntorp, 1988; Kissebah & Krakower, 1994). Many studies now show an association between upper-body obesity and insulin resistance, and also risk of developing type 2 diabetes (reviewed by Kissebah & Krakower, 1994).

Understanding of the metabolic basis of the adverse effects of upper-body fat distribution increased in the 1980s when Ashwell and others showed that upper-body obesity was associated with fat accumulation within the abdomen, visualized with computerized tomography (Ashwell et al. 1985). The technique of magnetic resonance
imaging has also been used more recently to visualize and measure these intra-abdominal depots (Ross et al. 1992). There are several abdominal fat depots, including anterior and posterior subcutaneous depots, and both intra- and retroperitoneal intra-abdominal depots (Table 2). Of these the anterior subcutaneous depot is usually the largest and has the capacity to expand the most (Thomas et al. 1998). This ‘paunch’ depot has homologues in other primates, but is absent from rodents except when they are very obese (Pereira & Pond, 1995). Of the intra-abdominal depots, most attention has focused upon the omental and mesenteric depots (the visceral fat depots). One reason for this, which will be expanded upon below, is that venous drainage from these depots is directed mostly into the portal vein and therefore its metabolic products reach the liver directly (Björntorp, 1990).

A number of studies have been aimed at identifying which of these various abdominal depots is most closely associated with insulin resistance. This is problematic since the subcutaneous and intra-abdominal depots are themselves correlated, with correlation coefficients from 0·72 (Abate et al. 1995) to 0·92 (Thomas et al. 1998; raw data kindly supplied by Dr E. Louise Thomas). One approach used specifically to examine the contribution of the intra-abdominal depots has been to select subjects with large or small amounts of intra-abdominal fat, but to match them for total body fat and for subcutaneous abdominal fat. One study using this approach seemed to show that intra-abdominal fat accumulation is associated with insulin resistance (Després et al. 1989). However the correlation between depots makes this difficult, and in this particular study the groups did also differ in subcutaneous abdominal fat (by 11% on average). Furthermore, the complementary experiment, matching for intra-abdominal fat and comparing people with high and low amounts of subcutaneous abdominal fat, has not been done. Another approach is to study a large number of people and use correlation analysis. Studies using this technique show that the closest correlation with insulin resistance is seen with the subcutaneous abdominal depots (Abate et al. 1995, 1996; Misra et al. 1997). Interestingly, these studies seem to show that the posterior subcutaneous depot is more closely associated with insulin resistance than is the anterior depot (paunch) (Misra et al. 1997). The perirenal depot in these studies is clearly not associated with insulin resistance (Abate et al. 1995, 1996).

There is, then, a clear association between abdominal obesity and insulin resistance. Some studies suggest that the intra-abdominal or visceral depots show the closest link with insulin resistance, although others do not, and more evidence on this point is needed. However the observation of a link between abdominal obesity and insulin resistance does not mean that the former causes the latter. It could mean that insulin resistance causes abdominal obesity, or that both abdominal obesity and insulin resistance co-correlate with some other factor. This dilemma was encapsulated by Seidell and Bouchard when they asked: ‘‘Visceral fat in relation to health: is it a major culprit or simply an innocent bystander?’’ (Seidell & Bouchard, 1997).

How can causality be proved? One clear proof would be to show that specific removal of abdominal fat relieves insulin resistance. Although complete omentectomy is a standard surgical procedure, its effects on insulin resistance or lipid metabolism have not been reported. In one study in rats, elderly (and therefore obese) rats were subjected to surgery to remove two intra-abdominal fat depots, the epididymal and the perirenal. This resulted in marked improvement of the insulin resistance characteristic of elderly, obese rats (Barzilai et al. 1999). However, it should be noted that these two particular depots are not the typical visceral depots, and as noted above the perirenal depot has not been found to relate to insulin resistance in humans. Therefore whilst such a study seems to prove causality, in this case its relevance to human abdominal obesity is not clear.

Table 1. Metabolic and other factors that associate with insulin resistance

<table>
<thead>
<tr>
<th>Factor</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertriacylglycerolaemia</td>
<td>Often mild</td>
<td>(Jeppesen et al. 1995)</td>
</tr>
<tr>
<td>Increased postprandial lipaemia</td>
<td>Low HDL-cholesterol concentration</td>
<td>(Reaven et al. 1992)</td>
</tr>
<tr>
<td>Preponderance of small, dense LDL particles</td>
<td>LDL-cholesterol concentration is often normal or only mildly elevated</td>
<td></td>
</tr>
<tr>
<td>Glucose intolerence</td>
<td>Associated with impaired fibrinolysis</td>
<td>(Landin et al. 1990)</td>
</tr>
<tr>
<td>Obesity, especially visceral obesity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The basis of this table is the original description of the ‘insulin resistance syndrome’ or Syndrome X by Reaven (1988), but it has been expanded since that time.

Table 2. Major abdominal fat depots in humans

<table>
<thead>
<tr>
<th>Depot</th>
<th>Approximate size</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaneous (anterior + posterior)</td>
<td>1–20</td>
<td>The most variable of the abdominal depots</td>
</tr>
<tr>
<td>Intra-abdominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omental</td>
<td>0·5–3</td>
<td>‘Visceral’ depots; drain mostly to portal vein</td>
</tr>
<tr>
<td>Mesenteric</td>
<td>0·5–2</td>
<td></td>
</tr>
<tr>
<td>Perirenal</td>
<td>0·5–2</td>
<td>Retro-peritoneal</td>
</tr>
</tbody>
</table>

Data from Abate et al. (1995, 1997); Thomas et al. (1998) and also collated with help from Dr Caroline Pond, Open University, UK.
Mechanisms linking abdominal obesity with insulin resistance

In the absence of definitive proof in humans of a causal link between visceral obesity and insulin resistance, it is helpful to ask if a plausible mechanism (or mechanisms) exists that could explain such a link. There are perhaps three major hypotheses (Table 3).

The idea that accumulation of intra-abdominal adipose tissue causes mechanical interference, for instance with hepatic function, has no supporting evidence and will not be considered in detail. This is not to say that it is not plausible. In gross obesity (BMI >40 kg/m²) the intra-abdominal fat depots may exceed 6 litres in volume (Thomas et al. 1998). Professor Peter Jones (Loughborough University), using data from Snyder (1975), has estimated the normal intra-abdominal volume at 8-8 litres (P. Jones, unpublished results). Therefore the accumulation of intra-abdominal fat in massive obesity is almost certain to cause compression of the viscera and, by displacement of the diaphragm, of the lungs. Whether this will have metabolic effects is not clear.

The recent recognition of adipose tissue as a major secretory organ (Siiteri, 1987; Mohamed-Ali et al. 1998) has led to the suggestion that visceral fat might release some factor that leads to systemic disturbances in metabolism. In a number of studies, differential display or similar techniques have been used to investigate genes that might be over-expressed in visceral fat compared with subcutaneous fat. Some differences have been found: for instance, the cellular inhibitor of apoptosis protein-2 is expressed more highly in visceral than subcutaneous adipose tissue (Montague et al. 1998). Amongst secreted peptides there are two major differences between the depots: leptin is both more highly expressed in, and secreted from, subcutaneous than visceral adipose tissue (Montague et al. 1998; Van Harmelen et al. 1998), whereas plasminogen activator inhibitor-1 (PAI-1) is more highly secreted from visceral fat (Alessi et al. 1997). Both provide possible links with some aspects of insulin resistance. If fat is deposited more in visceral than subcutaneous depots, it could be argued that the lower leptin secretion from the visceral fat will lead to less effective responses to obesity, and thus fat accumulation and associated insulin resistance is more likely to increase. But that does not really address the specific relationship between visceral fat and insulin resistance. Elevated circulating concentrations of PAI-1 are associated with insulin resistance (Landin et al. 1990) and may have a role in the impaired fibrinolysis associated with that condition. Therefore visceral fat accumulation could lead directly to some of the consequences of insulin resistance, although no-one has proposed that PAI-1 itself can lead to all aspects of insulin resistance.

There has been considerable interest in the finding that adipocytes express a number of cytokines including interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) (Mohamed-Ali et al. 1998). Of these, IL-6 is more highly secreted from visceral than subcutaneous adipose tissue (Fried et al. 1998), whereas there is no difference (at least in expression) for TNF-α (Montague et al. 1998). It is also relevant, as discussed earlier, that the venous drainage from visceral fat enters the portal vein and so cytokines secreted from visceral adipose tissue could have particularly marked effects on hepatic metabolism. The relevance to insulin resistance is not clear, however. Insulin resistance (as usually measured with the euglycaemic–hyperinsulinaemic clamp technique) involves a reduction in peripheral sensitivity to insulin, and it seems more likely that local expression of TNF-α is involved: its expression is up-regulated in skeletal muscle (Saghizadeh et al. 1996) as well as in adipose tissue (Hotamisligil et al. 1995) in insulin-resistant states. This view is reinforced by the recent demonstration that no secretion into the circulation of TNF-α is detectable from human adipose tissue in vivo, although IL-6 is released (Mohamed-Ali et al. 1997).

The third plausible mechanism linking visceral adiposity with insulin resistance is the liberation of non-esterified fatty acids (NEFA) from visceral depots. This hypothesis is attractive for several reasons. Many of the conditions associated with insulin resistance might reflect increased delivery of fatty acids to the liver: for instance, stimulation of hepatic gluconeogenesis (Ferrannini et al. 1983) would lead to glucose intolerance; stimulation of hepatic VLDL-triaclylglycerol (TG) secretion would lead to hypertriglyceridaemia, and potentially to impaired postprandial lipid metabolism (via competition with chylomicron-TG for peripheral clearance); and fatty acids have been shown to interfere with hepatic insulin removal (Svedberg et al. 1990; Wiesenthal et al. 1999), thus leading to hyperinsulinaemia. NEFA released from visceral adipose tissue, and delivered into the portal vein, might therefore have a particularly important role in bringing about many of the features of insulin resistance. In addition, in studies of adipose tissue explants or isolated adipocytes from different depots, it has consistently been shown that omental and mesenteric adipocytes have higher rates of lipolysis than subcutaneous, and that their lipolysis is more readily stimulated by catecholamines and less readily suppressed by insulin (Östman et al. 1979; Engfeldt & Arner, 1988). The mechanisms that bring about this high lipolytic capacity in visceral adipocytes include greater sensitivity to the stimulatory β-adrenoceptors and lower sensitivity to the anti-lipolytic α-adrenoceptors, as well as to the receptors for other inhibitory agents such as adenosine and insulin (Maurière et al. 1987; Van Harmelen et al. 1997; Arner, 1998).

Table 3. Potential mechanisms linking visceral obesity with insulin resistance

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>No evidence for this although volume of intra-abdominal fat may be considered (see text)</td>
</tr>
<tr>
<td>Secretion of proteins or other factors</td>
<td>Differential secretion or expression of a few factors has been shown (in visceral versus subcutaneous fat) and is discussed in the text</td>
</tr>
<tr>
<td>Liberation of non-esterified fatty acids (NEFA)</td>
<td>Visceral depots drain mostly into the portal vein, so NEFA released from them would have direct effects on hepatic metabolism. Discussed further in the text</td>
</tr>
</tbody>
</table>

I thank Dr Peter Arner for suggesting these hypotheses.
In vivo of lipolysis. In one study rates of lipid deposition in visceral fat than to the regulation marked in the fasting state or in stressful conditions. Presumably TG will be accumulated after meals, and lipolysis will be most rates of lipid deposition at other times. Presumably TG will with high rates of lipolysis at certain times matched by high depot is characterized by a high rate of lipid turnover, visceral fat is rather obstinate and tends to accumulate in the fasting state, or in stressful conditions. In most people the opposite is true: visceral fat is rather obstinate and tends to accumulate rather than disappear. Therefore we must postulate that the depot is characterized by a high rate of lipid turnover, with high rates of lipolysis at certain times matched by high rates of lipid deposition at other times. Presumably TG will be accumulated after meals, and lipolysis will be most marked in the fasting state or in stressful conditions.

Much less attention has been paid to the necessary high rates of lipid deposition in visceral fat than to the regulation of lipolysis. In one study in vivo, subjects were given isotopically labelled fatty acids, and biopsies of different depots were taken at abdominal surgery 24 h later (Márín et al. 1992); accumulation of label was most marked (per g TG) in the omental and retroperitoneal depots. This is in agreement with a high rate of lipid turnover. Studies of the pathway of TG deposition have been less convincing. There have been many studies of the expression or activity of lipoprotein lipase (EC 3.1.1.34) in omental versus subcutaneous adipose tissue, but with conflicting results (e.g. Márín et al. 1992; Pedersen et al. 1994; Mauriègue et al. 1995; Lefebvre et al. 1998). Studies of fatty acid incorporation into TG in isolated adipocytes show a lower rate of TG synthesis in omental than subcutaneous tissue (Maslowska et al. 1993), which is difficult to reconcile with the Portal Theory.

Furthermore, a high rate of lipid deposition in visceral adipose tissue in the postprandial period could be seen in another light. It can be argued that increased delivery of fatty acids to the liver is most likely to lead to the adverse consequences of insulin resistance in the postprandial, rather than the postabsorptive, state. In the postprandial state the liver receives a substantial proportion of its fatty acid supply in the form of chylomicron remnant-TG fatty acids. A high rate of TG deposition in omental adipose tissue could therefore be seen to protect the liver from an influx of fatty acids in the postprandial period, which should be beneficial rather than deleterious.

Confirmation of the Portal Theory in vivo really requires assessment of NEFA concentrations in the portal vein, just as arteriovenous difference measurements across a subcutaneous adipose depot have clarified the regulation of NEFA delivery from this site (Frayn et al. 1993). Sampling from the portal vein is not easy in humans, but it has been performed in a small number of metabolic studies. In these studies, concentrations of NEFA or glycerol (another product of lipolysis) in the portal vein have been found to be close to those in arterial plasma (Hagenfeldt et al. 1972; Björkman et al. 1990; Blackard et al. 1993). One example is the study of Blackard et al. (1993): during laparotomy in obese women the portal vein was catheterized and samples taken. On the arguments above, surgical stress is one time when the high rates of lipolysis postulated for omental adipose tissue might be most evident, and yet there was no consistent difference in NEFA concentrations between arterial and hepatic portal plasma.

An alternative to catheterization of the portal vein is the assessment of splanchnic fatty acid release using tracer methods. If an isotopically labelled fatty acid is infused.
intravenously, its specific radioactivity or isotopic enrichment as measured in arterial plasma will be diluted in the splanchnic bed as unlabelled fatty acids are added from the visceral depots. Assuming that the liver does not release fatty acids (it will take them up), then the specific radioactivity or enrichment will not change further during passage through the liver. Therefore the specific radioactivity or enrichment measured in the hepatic vein (which can be catheterized relatively easily) will be lower than in arterial plasma, to an extent that reflects splanchnic NEFA release. (An assumption has to be made about the relative contributions of portal vein and hepatic artery blood flow to the liver.) Several such studies have been performed. In an early study in non-obese, normallipidaemic subjects, Havel et al. (1970) found that fatty acids released within the splanchnic bed (presumably from visceral adipose tissue) contributed about 10% of the total NEFA delivery to the liver. More recently Jensen and colleagues have used this technique, in combination with selective catheterization, to estimate the delivery of fatty acids from different regions of the body. Their studies have shown clearly increased release of fatty acids in women with upper-body obesity compared with non-obese women; women with lower-body obesity were more similar to the non-obese (Martin & Jensen, 1991). However, the source of the additional fatty acids, according to these studies, is not splanchnic (visceral) adipose tissue, but upper-body non-splanchnic (subcutaneous) tissue (Martin & Jensen, 1991). The same group have now been able to demonstrate increased delivery of fatty acids to the liver in upper-body obesity, and again have shown that the source of these additional fatty acids is not splanchnic but upper-body non-splanchnic adipose tissue (Guo et al. 1999). These observations are interesting, and fit well with the greater mass of subcutaneous adipose tissue, as well as with the correlation studies described earlier showing that insulin resistance is more highly related to subcutaneous than to intra-abdominal fat (Abate et al. 1995, 1996). However, they cast further doubt upon the Portal Theory.

Other interpretations of the link between visceral fat and insulin resistance

Given that the putative mechanistic link between visceral fat accumulation and the development of insulin resistance is not so solid as is sometimes suggested, it is important to look for other possible interpretations of the link between visceral fat and insulin resistance (Fig. 2).

There seem to be two other major possibilities. One is that insulin resistance causes visceral fat accumulation. This is not implausible. Insulin resistance affects the ability of adipose tissue to take up fatty acids. If subcutaneous adipose tissue were to become ‘insulin resistant’ then fat might tend to be deposited in visceral fat stores. However the mechanisms behind such a process are not clear, and there is no real evidence that this is so.

Another possible explanation is that both visceral fat accumulation and insulin resistance are related to some other biological process (Fig. 2). For instance, Björntorp has pointed out the relationships between stress and visceral obesity (Björntorp, 1997a, b). Activation of the hypothalamic–pituitary axis might lead to both conditions (Björntorp, 1996, 1997a).

A further potential common correlate is upper-body subcutaneous fat (Fig. 2). As stated earlier, abdominal subcutaneous and intra-abdominal fat are strongly correlated. The subcutaneous depot is generally considerably larger than the intra-abdominal and so has a greater potential to contribute to insulin resistance through release of NEFA into the systemic circulation. In fact, insulin resistance is usually measured by the euglycaemic–hyperinsulinaemic clamp procedure, and reflects mainly impaired peripheral glucose uptake. If this is a result of competition from fatty acids, those fatty acids presumably reflect subcutaneous adipose tissue (see Fig. 1). Such an interpretation also fits the tracer studies described earlier (Martin & Jensen, 1991; Guo et al. 1999).

Conclusions

There is a clear link between visceral adiposity and insulin resistance. The nature of this link is, unfortunately, not so clear. The Portal Theory, which holds that increased release of NEFA from visceral adipose depots leads to insulin resistance through effects on the liver, lacks supporting evidence in vivo. Of several alternative explanations for the link between visceral adiposity and insulin resistance, I prefer the idea that both are common correlates of subcutaneous abdominal adipose tissue accumulation.

Acknowledgements

I warmly thank Professor Peter Arner (Karolinska Institute, Huddinge), friend and collaborator for several years, whose seminal work on this topic has greatly influenced my thinking, even if in the end I do not totally agree with his interpretation. I also thank Professor Per Björntorp (Göteborg) for equally seminal contributions. Dr Caroline Pond (Open University) and Professor Peter Jones (Loughborough University) provided me with important data for this review. Finally, I am grateful to my colleagues in the Oxford Lipid Metabolism Group, whose support has enabled me to think about these issues.

References

Pedersen SB, Jønler M & Richelsen B (1994) Characterization of regional and gender differences in glucocorticoid receptors and...

© Nutrition Society 2000