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Abstract. We report on our theoretical and numerical results concerning the transport mech-
anisms in the asteroid belt. We first derive a simple kinetic model of chaotic diffusion and
show how it gives rise to some simple correlations (but not laws) between the removal time
(the time for an asteroid to experience a qualitative change of dynamical behavior and enter a
wide chaotic zone) and the Lyapunov time. The correlations are shown to arise in two different
regimes, characterized by exponential and power-law scalings. We also show how is the so-called
“stable chaos” (exponential regime) related to anomalous diffusion. Finally, we check our re-
sults numerically and discuss their possible applications in analyzing the motion of particular
asteroids.
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1. Introduction
Despite some important breakthroughs in the research of transport mechanisms in

the Solar system in the past decade, we still lack a general quantitative theory of chaotic
transport, which is especially notable for the so-called stable chaotic bodies. In this paper,
we sketch a new kinetic approach, which, in our opinion, has a perspective of providing
us such a theory sometime in the future.

A kinetic model of transport has already been proposed by Murray & Holman (1997).
Although it is an important step forward, this model fails to include a number of impor-
tant effects. We also wish to emphasize the role of phase space topology in the transport
processes. This has only recently been understood in papers by Tsiganis, Varvoglis &
Hadjidemetriou (2000, 2002a, 2002b). Still, the exact role of cantori and stability islands
in various resonances remains unclear. This is one of the issues we intend to explore in
this paper. We argue that, due to the inhomogenous nature of the phase space, a sep-
arate kinetic equation for each transport mechanism should be constructed; after that,
one can combine them to obtain the description of long-time evolution. This is the basic
idea of our approach, which leads to some interesting statistical consequences, such as
anomalous diffusion and approximate scaling of removal times with Lyapunov times.

2. The kinetic scheme
In order to model the transport, we use the “building block approach” we have recently

developed for Hamiltonian kinetics (Čubrović 2004). We use the Fractional Kinetic Equa-
tion (FKE), a natural generalization of the diffusion equation for self-similar and strongly
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inhomogenous media (e. g. Zaslavsky 2002):

∂βf (I, t)
∂tβ

=
∂α

∂|I|α [D (I) f (I, t)] (2.1)

Thus, the evolution of the distribution function f(I, t) is governed by the transport
coefficient D (the generalization of the diffusion coefficient) and by the (non-integer,
in general) order of the derivatives α (0 < α � 2) and β (0 < β � 1). The quantity
µ ≡ 2β/α is called the transport exponent (for the second moment the following holds
asymptotically: 〈∆I2〉 ∝ tµ). If µ �= 1, the transport is called anomalous (in contrast to
normal transport or normal diffusion†).

We shall now very briefly describe each of the four building blocks; unfortunately,
most expressions are cumbersome and complicated, so we limit ourselves in this paper
to merely state the basic ideas and final results of the method. We use the planar MMR
Hamiltonians H2BR = H0

2BR + H ′
2BR and H3BR = H0

3BR + H ′
3BR for two- and three-

body resonances, taken from Murray, Holman & Potter (1998) and Nesvorný & Morbidelli
(1998), respectively. Under H0 we assume the action-only part of the Hamiltonian. H2BR

was modified to account for the purely secular terms; also, both Hamiltonians were
modified to include the proper precessions of Jupiter and Saturn‡:

H ′
2BR =

u5,u6∑
m=0,1;s=0...kJ −k

cmsu5u6 cos [m (kJλJ − kλ) + sp + (u5g5 + u6g6) t + u5βJ + u6βS ]

(2.2)

H ′
3BR =

u5,u6∑
m=0,1;s

cmsu5u6 cos [m (kJλJ + kSλS + kλ) + sp + (u5g5 + u6g6) t + u5βJ + u6βS ]

(2.3)
The notation is usual. In H ′

2BR, we include all possible harmonics; in H ′
3BR, we include

only those given in Nesvorný & Morbidelli (1998). In what follows, we shall consider only
the diffusion in eccentricity, i. e. P Delaunay variable. Inclusion of the inclination could
be important but we postpone it for further work.

We estimate the transport coefficient as:

D =
T

(α−β)
lib

2

∑
s

sαP sα

( ∑
u5,u6

c′0su5u6
(α) + jc′1su5u6

(α)

)
(2.4)

where Tlib denotes the libration period while c′msu5u6
are coefficients dependent on the

exponent α from (2.1), independent on angles and P , which were computed using the
algorithm from Ellis & Murray (2000), for H2BR, or taken from Nesvorný & Morbidelli
(1998), for H3BR. The indicator j can be equal to 0 or 1 (i. e. omission or inclusion of the
resonant terms), depending on the building block (see bellow). Although we were able
to compute also the higher-order corrections to this quasilinear result in some cases, we
neglect them in what follows, in order to be able to solve the FKE analytically.

† From now on, we will refer to any transport in the phase space (i. e. evolution of the
momenta of the action I) as to “diffusion”; for the “classical” diffusion, we shall use the term
“normal diffusion”.

‡ All our computations, analytical and numerical, are performed with the osculating elements,
in order to gain as much simplification as possible. However, in order to avoid the non-diffusive
oscillations of the osculating elements, one should use the proper elements instead; we plan to
do this in the future.
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The first class of building blocks we consider are the overlapping stochastic layers of
subresonances. In this case, one expects a free, quasi-random walk continuous in both
time and space, since no regular structures are preserved. Therefore, the FKE simplifies
to the usual diffusion equation, i. e. we have α = 2, β = 1 in (2.4); also, j = 1 (the
resonant harmonics are actually the most important ones).

The above reasoning is only valid if the overlapping of subresonances is not much
smaller than 1. Otherwise, the diffusion can only be forced by the secular terms. Also,
long intervals between subsequent “jumps” induce the so-called “erratic time”, i. e. β can
be less than 1, its value being determined by the distribution of time intervals between
“jumps” p(∆t) = 1/∆t1+β . So, the transport coefficient (2.4) now has j = 0, α = 2 and
β < 1.

Our third class of building blocks are the resonant stability islands. To estimate β
we use the same idea as in the previous case; after that, we compute α from β and µ,
the transport exponent, which we deduce using the method developed in Afraimovich &
Zaslavsky (1997). Namely, analytical and numerical studies strongly suggest a self-similar
structure characterized by a power-law scaling of trapping times λT , island surfaces
λS and number of islands λN at each level. The transport exponent is then equal to
λNλS/λT . For some resonances and for some island chains, we computed the scaling
exponents applying the renormalization of the resonant Hamiltonian as explained in
Zaslavsky (2002); in the cases when we did not know how to do this, we used the relation
between the transport exponent and the fractal dimension dT of the trajectory in the
(P, p) space (the space spanned by the action P and the conjugate angle p), which is
actually the dimension of the Poincare section of the trajectory:

dT =
2λT

λNλS
(2.5)

The last remaining class of blocks are cantori. Here, we assume the scaling of gap area
on subsequent levels with exponent λS and an analogous scaling in trapping probability
with exponent λp, which determines the transport exponent as 2 ln λp/ ln λS ; see also the
reasoning from Shevchenko (1998). The scaling exponents were estimated analogously to
the previous case.

For each building block, we construct a kinetic equation and solve it. We always put
a reflecting barrier at zero eccentricity and an absorbing barrier at the Jupiter-crossing
eccentricity. The solution in Fourier space (q, t) can be written approximately in the
following general form:

fi(q, t) = Eβ(−|qα| � D̂it
β) (2.6)

where Eβ stands for the Mittag-Leffler function and D̂i denotes the Fourier transform
of Di. The index i denotes a particular building block. The key to obtaining the global
picture is to perform a convolution of the solutions for all the building blocks. Further-
more, one must take into account that the object can start in different blocks and also
that, sometimes, different ordering of the visited blocks is possible. Therefore, one has
the following sum over all possible variations of blocks (we call it Equation of Global
Evolution - EGE):

f(P, t) =
∑

[p1f1(P, t) � p2f2(P, t) � . . . � pifi(P, t) � . . .] (2.7)

To calculate it, one has to know also the transition probabilities pi, which is not possible
to achieve solely by the means of analytic computations. That is why we turn again to
semi-analytic results.
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3. Removal times, Lyapunov times and TL – TR correlations
The first task is to determine the relevant building blocks and transitional prob-

abilities. We do that by considering the overviews of various resonances as given in
Morbidelli & Moons (1993), Moons & Morbidelli (1995), Moons, Morbidelli & Migliorini
(1998). For the resonances not included in these references, we turn again to the inspec-
tion of Poincare surfaces of section, integrating the resonant models (2.2) and (2.3). In
this case, the probabilities are estimated as the relative measures of the corresponding
trajectories on the surface of section.

The result of solving the EGE is again a Mittag-Leffler function:

fglobal(q, t) = Eγ(−|q|δtγ) (3.1)

The asymptotic behavior of this function, described e. g. in Zaslavsky (2002), has two
different forms: the exponential one and the power-law one, depending on the coefficients
γ and δ, which are determined by the probabilities pi and transport coefficients and
exponents of the building blocks. In the small γ limit, the behavior is exponential and
the second momentum scales with τcross, where τcross is the timescale of crossing a single
subresonance, which we interpret as the Lyapunov time†. When γ becomes large and the
role of stickiness more or less negligible, one gets a power-law dependance on τcross, i. e.
TL. So, we have the expressions:

TR ∝ exp (T x
L) Φ (Λ0, cos(ln P0), Q0) (3.2)

for the exponential or stable chaotic regime, and:

TR ∝ (T y
L) Φ (Λ0, cos(ln P0), Q0) (3.3)

for the power-law regime. The scalings are not exact because the fluctuational terms
Φ (Λ0, P0, Q0) appear. These terms are log-periodic in P0 and can explain the log-normal
tails of the TR distribution, detected numerically e. g. in Tsiganis, Varvoglis & Had-
jidemetriou (2000).

4. Results for particular resonances
We plan to do a systematic kinetic survey of all the relevant resonances in the asteroid

belt. Up to now, we have only preliminary results for some resonances.
Table 1 sums up our results for all the resonances we have explored. For each resonance,

we give our analytically calculated estimates for TL and TR. We always give a range of
values, obtained for various initial conditions inside the resonance. If the “mixing” of the
phase space is very prominent, we sometimes get a very wide range, which includes both
normal and stable chaotic orbits. One should note that the “errorbars” in the plot are
simply the intervals of computed values – they do not represent the numerical errors.
We also indicate if the resonance has a resonant periodic orbit, which is, according to
Tsiganis, Varvoglis & Hadjidemetriou (2002b), the key property for producing the fast
chaos‡. Bulirsch-Stoer integrator with Jupiter and Saturn as perturbers was used for the
integrations.

We have also tried to deduce the age of the Veritas family, whose most chaotic part lies
inside the 5 − 2 − 2 resonance. Our EGE gives an approximate age about 9 Myr while,
assuming a constant diffusion coefficient (Knežević, personal communication), one gets

† One should bear in mind that this is just an approximation; strictly speaking, Lyapunov
time is not equal, nor simply related to the subresonance crossing time.

‡ The existence of the periodic orbit for 13 : 6 and 18 : 7 resonances has not been checked
thus far; however, we think this would be highly unlikely for such high-order resonances
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Table 1. Analytical and numerical values of the Lyapunov time (in Kyr) and removal time (in
Myr). Existence of the periodic orbit in the planar problem for the 2BR is also indicated; the
data in this column were taken from Tsiganis, Varvoglis & Hadjidemetriou (2002b).

Resonance TL (Kyr) T N um
L (Kyr) TR (Myr) T N um

R (Myr) Per. orbit ?
2 : 1 1.1–3.4 2.9–5.2 0.8–19.4 1.1–31.2 Yes
3 : 2 1.4–3.5 3.1–6.2 0.9–19.1 3.2–142.7 Yes
3 : 1 6.2–8.2 6.8–9.4 0.8–8.0 1.0–21.2 Yes
5 : 3 1.9–2.2 1.1–3.5 0.9–4.1 0.8–7.4 Yes
5 : 2 6.9–9.2 8.3–14.4 7.6–13.4 9.2–28.7 Yes
7 : 4 2.7–5.3 1.8–3.9 6.9–23.4 12.2–41.3 Yes
8 : 5 3.7–6.7 4.1–7.6 8.2–18.2 7.3–23.4 No
7 : 3 5.0–6.9 6.9–9.1 16.7–62.2 22.4–91.2 No
9 : 5 5.4–6.8 3.1–5.2 23.2–86.7 11.3–104.2 No
11 : 7 7.1–14.1 3.4–9.7 10.6–73.4 8.4–88.2 Yes
11 : 6 10.8–22.7 10.1–16.5 16.4–330.3 13.2–≈ 500 No
12 : 7 11.1–14.7 4.1–15.2 4.6–278.1 5.2–≈ 1000 No
13 : 7 65.1–84.6 43.3–76.1 23.2– ≈ 1000 14.2– > 1000 No
13 : 6 55.1–77.6 14.6–24.5 41.3– ≈ 1000 21.1– > 1000 No
18 : 7 ≈ 500 300-600 ≈ 20000 > 1000 No
5 − 2 − 2 11.4–13.7 8.4—10.9 ≈ 10000 > 1000 No
2 + 2 − 1 90–160 130–240 ≈ 20000 > 1000 No
6 + 1 − 3 130–150 130–170 ≈ 40000 > 1000 No

about 8.3 Myr. The similarity is probably due to the young age of the family: were it
older, the effects of non-linearity would prevail and our model would give an age estimate
which is substantially different from that obtained in a linear approximation.

Figure 1 gives the results from table 1 plotted along the semimajor axis. It can be noted
that the agreement is good within an order of magnitude, with some exceptions. Actually,
one can see that the disagreement with the simulations is most significant exactly in the
resonances with a periodic orbit, which might actually require a completely different
treatment of transport.

In Figure 2, we plot the numerical TL – TR relation for the resonances 5 : 3 and
12 : 7, examples of normal and stable chaos, respectively. The largest discrepancies in
the Figure 2a are probably for objects near the stability islands; in the Figure 2b, the fit
fails completely. To check the assumption that this is due to the mixing of populations, we
integrate a larger population of objects and divide them into two classes (the criterion
being the prominence of anomalous diffusion, see later). For each class, we perform a
separate fit with the corresponding TL – TR relation. Now most objects can be classified
into one of the two scaling classes. In particular, this shows that the famous stable-chaotic
object 522 Helga is probably not a remnant of some larger initial population but rather
a member of one of the two populations existing in this resonance.

Finally, in Figure 4, we give the time evolution of the dispersion in P (i. e. 〈∆P 2〉) for
a set of clones of 522 Helga, using the procedure described in Tsiganis, Anastasiadis &
Varvoglis (2000). Anomalous diffusion is clearly visible. This confirms the stable chaotic
nature of this object and shows that we can use the anomalous character of diffusion as
an indicator of stable chaos.

5. Conclusions and discussion
We have given a kinetic model of chaotic transport in the asteroid belt, based on the

concept of convolution of various building blocks. Combining numerical and analytical
results, we have shown how the removal time can be calculated and interrelated with the
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Figure 1. Analytical (points) and numerical (circles) values from table 1, for Lyapunov time
(a) and removal time (b). Arrows correspond to extremely uncertain numerical values, usually
the values close to or larger than the integration timespan (1 Gyr).
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Figure 2. Plot of TL – TR dependance for the resonances 5 : 3 (a), fit with a power-law, and
12 : 7 (b), fit with the exponential law. The straight line obtained by linear regression in the
logarithmic scale is an obviously bad fit. See text for comments.

Lyapunov time. We have obtained two regimes for chaotic bodies, the power-law one and
the exponential one. Due to the fractal structure of the phase space, however, asteroids
from different regimes can be “mixed” in a small region of the phase space.

We would like to comment briefly on the controversial issue of the TL – TR relation.
First of all, the correlations we have found are of statistical nature only and should not
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Figure 3. The same as in Figure 2b but with two separate plots for the exponential regime
population, and for the power-law regime population. Obviously, we have a substantially better
fit.
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Figure 4. Diffusion in eccentricity for a set of clones of 522 Helga. Domination of anomalous
transport is obvious. The reference line for normal diffusion (µ = 1) is also plotted.

be regarded as “laws” in the sense of Murison, Lecar & Franklin (1994). Furthermore,
due to their statistical nature, they cannot be used for any particular object, only for
populations. Finally, it is clear that the scalings are non-universal, i. e. the scaling ex-
ponents are different for different resonances (possibly also in disconnected regions of a
single resonance).
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The exponential regime, characterized mainly by anomalous transport through vari-
ous quasi-stable structures, corresponds to the stable chaotic regime, discussed e. g. in
Tsiganis, Varvoglis & Hadjidemetriou (2000) and Tsiganis, Varvoglis & Hadjidemetriou
(2002a). The reason that the exponential TL – TR correlation was not noticed thus far
are in part very large values of TR in this regime, and in part the fact that stable chaotic
objects are typically mixed with the objects in the normal chaotic regime. Also, it is
interesting to note that the exponential scalings are of the same form as those predicted
in Morbidelli & Froeschlé (1996) for the Nekhoroshev regime; therefore, it seems that the
exponential stability can arise also due to stickyness, not necessarily as a consequence of
the Nekhoroshev structure.

Finally, we hope that our research will stimulate further work in this field, since the
results presented here are no more than just a sketch of possible general theory.
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Morbidelli, A. & Froeschlé, C. 1996, Cel. Mech. Dyn. Ast. 63, 227
Morbidelli, A., Moons, M. 1993, Icarus 102, 316
Murison, M., Lecar, M. & Franklin, F. 1994, Astron. J. 108, 2323
Murray, N. & Holman, M. 1997, Astron. J. 114, 1246
Murray, N., Holman, M. & Potter, M. 1998, Astron. J. 116, 2583
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