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Abstract

We consider Monte Carlo methods for the classical nonlinear filtering problem. The
first method is based on a backward pathwise filtering equation and the second method is
related to a backward linear stochastic partial differential equation. We study convergence
of the proposed numerical algorithms. The considered methods have such advantages as
a capability in principle to solve filtering problems of large dimensionality, reliable error
control, and recurrency. Their efficiency is achieved due to the numerical procedures
which use effective numerical schemes and variance reduction techniques. The results
obtained are supported by numerical experiments.
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1. Introduction

Let (�,F ,P) be a complete probability space, let Ft , 0 ≤ t ≤ T , be a filtration satisfying
the usual hypotheses, and let (w(t),Ft ) and (v(t),Ft ) be d1-dimensional and r-dimensional
independent standard Wiener processes, respectively. We consider the following classical
filtering scheme:

dX = α(X) ds + σ(X) dw(s), X(0) = x, (1.1)

dy = β(X) ds + dv(s), y(0) = 0, (1.2)

where X(t) ∈ R
d is the unobservable signal process, y(t) ∈ R

r is the observation process,
α(x) and β(x) are d-dimensional and r-dimensional vector functions, respectively, and σ(x)
is a d×d1 dimensional matrix function. We assume that the functions α, β, and σ are bounded
and have bounded derivatives up to some order. The vector X(0) = x in (1.1) can be random,
it is independent of both w and v and its density ϕ(·) is supposed to be known.

Let f (x) be a function on R
d with the same properties as those of α, β, and σ . The

filtering problem consists in constructing the estimate f̂ (t) = f̂ (X(t)) based on the observation
y(s), 0 ≤ s ≤ t , which is the best in the mean-square sense. Our aim is to give effective
numerical procedures for realization of the conditional mean:

f̂ (t) = f̂ (t, y(·)) := E[f (X(t)) | y(s), 0 ≤ s ≤ t]. (1.3)
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To this end, we consider Monte Carlo methods. They exploit the Kallianpur–Striebel
formula.

The first method is based on backward pathwise filtering equations [3], [6]–[8],[14], [23],
[24], [26]. We emphasize that the pathwise filtering equations are ordinary (not stochastic)
partial differential equations. Owing to this fact, nonlinear filtering problems are reduced
to comparatively standard problems for linear equations of parabolic type and probabilistic
representations of their solutions can be obtained. Then the ideas of the weak-sense numerical
integration of stochastic differential equations (SDEs) are used and, finally, the Monte Carlo
technique is applied. Among numerous works devoted to the numerical solution of nonlinear
filtering problems, very few (see [27] and [28]) use the pathwise approach. Here we revisit this
approach and develop it further. In particular, we prove that the Euler method converges with
weak order 1 − ε for almost every observation y(s), 0 ≤ s ≤ t . The proof is nontrivial since
here a part of the SDE system is approximated in the weak sense while the other part (which
involves the observation) is simulated pathwisely.

The second method deals with direct Monte Carlo simulation of the numerator and
denominator in the Kallianpur–Striebel formula. To the best of the authors’ knowledge, the
first theoretical study in this direction was done in [25]. This approach is related to backward
linear stochastic partial differential equations (SPDEs) of nonlinear filtering [14], [23], [26].
We represent solutions of these SPDEs as a conditional expectation over characteristics (they
are solutions of SDEs). We first approximate the characteristics in the weak sense and then
apply the Monte Carlo technique to simulate the conditional expectation over the approximate
characteristics. This way allows us to again exploit ideas from the well-developed theory of
weak-sense numerical integration of SDEs (see, e.g. [18]). Our approach to numerical solution
of linear SPDEs differs from the one often exploited in nonlinear filtering (see, e.g. [13] and
the references therein). The approach used in [13] works in the reverse order to ours: first the
expectations are approximated via a Monte Carlo procedure and then paths of the signal are
discretized. In our approach the use of weak schemes for the characteristics arises naturally,
while in the other approach one usually exploits mean-square approximations of the signal [13].
Let us mention that in [13] a more general nonlinear filtering problem is studied than (1.1)–
(1.3); there, in particular, the case of correlated noise in the observation and signal is treated.
The correlated case is considered within our approach in [19] and [20]. We note that in the
uncorrelated case, (1.1)–(1.3), a higher order of convergence of Euler-type methods is proved
in this paper (see also [25]) compared to that which can be proved for the correlated case [13],
[19], [20].

We emphasize that the independent trajectories obtained by the considered methods are
approximate characteristics of the backward filtering equations and they serve only for Monte
Carlo simulation of the conditional expectations. In contrast, the particle methods (see [4],
[5], [9], [10], [13], and the references therein) produce empirical measures approximating
solutions to the Zakai or Kushner–Stratonovich equation which can then be used to evaluate
the conditional expectations.

All the considered methods have such advantages as a capability in principle to solve the
problems of large dimensionality, reliable error control, and recurrency. Their efficiency is
achieved due to the numerical procedures which use effective schemes of numerical integration
of SDEs and variance reduction techniques. Some other numerical approaches to nonlinear
filtering are available in [2], [4], [5], [9], [10], [12], [14], [15], and [22] (see also the references
therein).
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Section 2 contains some preliminary material. In Section 3 we consider numerical methods
for the backward pathwise filtering equation, while in Section 4 we deal with approximation
of solutions to the backward SPDE of nonlinear filtering. Section 5 is devoted to variance
reduction techniques. The results obtained are supported by numerical experiments which are
presented in Section 6.

2. Preliminaries

In this section we recall some known facts from the theory of nonlinear filtering in the form
suitable for our purposes.

2.1. Kallianpur–Striebel formula

We define the stochastic process η(t) as

η−1(t) := exp

{
−

∫ t

0
β�(X(s)) dv(s)− 1

2

∫ t

0
|β(X(s))|2 ds

}

= exp

{
−

∫ t

0
β�(X(s)) dy(s)+ 1

2

∫ t

0
|β(X(s))|2 ds

}
. (2.1)

According to our assumptions, we have

E[η−1(t)] = 1, 0 ≤ t ≤ T .

Using η−1(T ), we introduce the new probability measure P̃ on (�,F ),

P̃(�) =
∫
�

η−1(T ) dP(ω).

The measures P and P̃ are mutually absolutely continuous and the Radon–Nikodym derivative
dP/dP̃ is equal to η(T ):

dP

dP̃
(X(·), y(·)) = η(T ) = exp

{∫ T

0
β�(X(s)) dy(s)− 1

2

∫ T

0
|β(X(s))|2 ds

}
.

We can show, by the Girsanov theorem, that there exists a standard Wiener process (w(t), ṽ(t))
on (�,F ,Ft , P̃) such that its part w(t) coincides with that in (1.1) and that the process
(X(s), y(s)) satisfies the following system of Itô equations:

dX = α(X) ds + σ(X) dw(s), X(0) = x, (2.2)

dy = dṽ(s), y(0) = 0. (2.3)

Thus, the processes X(s) and y(s) are independent on (�,F ,Fs , P̃), and y(s) is a Wiener
process.

The following formula holds for a function F(x, y):

E[F(X(t), y(t))] = Ẽ[F(X(t), y(t))η(T )]
= Ẽ[Ẽ[F(X(t), y(t))η(T ) | Ft ]]
= Ẽ[F(X(t), y(t)) Ẽ[η(T ) | Ft ]]
= Ẽ[F(X(t), y(t))η(t)], (2.4)

where Ẽ is the expectation with respect to P̃.
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Formula (2.4) can be rewritten as

E[F(X(t), y(t))]|(1.1)−(1.2)
= E

[
F(X(t), y(t)) exp

{∫ t

0
β�(X(s)) dy(s)− 1

2

∫ t

0
|β(X(s))|2 ds

}]∣∣∣∣
(2.2)−(2.3)

(2.5)

or
E[F(X(t), y(t))]|(1.1)−(1.2) = E[F(X(t), y(t))η(t)]|(2.7), (2.6)

where the system (2.7) has the form

dX = α(X) ds + σ(X) dw(s), X(0) = x,

dy = dṽ(s), y(0) = 0,

dη = β�(X)η dṽ(s), η(0) = 1. (2.7)

Here E[·]|(1.1)−(1.2),E[·]|(2.2)−(2.3), and E[·]|(2.7) denote the expectation with respect to the
corresponding system of SDEs. Representations (2.5) and (2.6) are constructive: unlike
(2.4), they admit direct application of the Monte Carlo technique using methods of weak
approximation of SDEs (see Section 4).

Let us recall a general version of Bayes’ formula (see, e.g. [16, Chapter 7, Section 9] and
[26, Chapter 6, Section 1.1]).

Lemma 2.1. Suppose that two mutually absolutely continuous measures Q and Q̃ are given
on (�,F ). If ξ is a Q-integrable random variable and G is some σ -subalgebra of F , then,
almost surely,

E[ξ | G] = Ẽ[ξ dQ/dQ̃ | G]
Ẽ[dQ/dQ̃ | G] . (2.8)

Clearly, (2.4) is a particular case of (2.8). Another particular case is the well-known
Kallianpur–Striebel formula for the mean (1.3):

E[f (X(t)) | y(s), 0 ≤ s ≤ t] = Ẽ[f (X(t))η(t) | y(s), 0 ≤ s ≤ t]
Ẽ[η(t) | y(s), 0 ≤ s ≤ t] , (2.9)

where

η(t) = exp

{∫ t

0
β�(X0,x(s)) dy(s)− 1

2

∫ t

0
|β(X0,x(s))|2 ds

}

and X(s) = X0,x(s) is the solution of (2.2).
The numerator and denominator in the Kallianpur–Striebel formula, (2.9), can be written in

the form

Ẽ[f (X(t))η(t) | y(s), 0 ≤ s ≤ t]
= E

[
f (X0,x(t)) exp

{∫ t

0
β�(X0,x(s)) dy(s)− 1

2

∫ t

0
|β(X0,x(s))|2 ds

}]∣∣∣∣
(2.2)

, (2.10)

Ẽ[η(t) | y(s), 0 ≤ s ≤ t]
= E

[
exp

{∫ t

0
β�(X0,x(s)) dy(s)− 1

2

∫ t

0
|β(X0,x(s))|2 ds

}]∣∣∣∣
(2.2)

. (2.11)

The sign ‘|(2.2)’ means that X0,x(s) is the solution of (2.2) under a fixed trajectory y, i.e. the
averaging here is carried out with respect to X only. These formulae are true due to the
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independence of X(·) and y(·) on (�,F , P̃). In what follows we will also use the following
notation for the conditional expectation:

Ẽ
y[F(X(·), y(·))] := Ẽ[F(X(·), y(·)) | y(s′), 0 ≤ s′ ≤ s],

where F(X(·), y(·)) is a functional of X(s′) and y(s′), 0 ≤ s′ ≤ s.

Remark 2.1. Owing to the Itô formula, we have

∫ t

0
β�(X0,x(s)) dy(s) = β�(X0,x(t))y(t)−

∫ t

0

d∑
i=1

∂β�

∂xi
αiy(s) ds

− 1

2

∫ t

0

d∑
i,l=1

d1∑
k=1

σikσlk
∂2β�

∂xi∂xl
y(s) ds

−
∫ t

0

d∑
i=1

∂β�

∂xi
y(s)

d1∑
j=1

σij dwj(s),

which allows us to consider y(·) in (2.10) and (2.11) to be fixed.

2.2. Backward pathwise filtering equations and probabilistic representation of their
solutions

Define the d × d dimensional matrix a = {aij } by

a(x) = σ(x)σ�(x), aij (x) =
d1∑
k=1

σik(x)σjk(x).

Owing to the Itô formula, the process η(t) can be transformed into

η(t) = exp{β�(X0,x(t))y(t)}

× exp

{
−

∫ t

0

d∑
i=1

∂β�

∂xi
αiy(s) ds − 1

2

∫ t

0

d∑
i,l=1

ail
∂2β�

∂xi∂xl
y(s) ds

− 1

2

∫ t

0
|β|2 ds

}
exp

{
−

∫ t

0

d∑
i=1

∂β�

∂xi
y(s)

d1∑
j=1

σij dwj(s))

}

:= exp{β�(X0,x(t))y(t)}ζ(t), (2.12)

where all the functions α, β, ∂β/∂xi, ∂2β/∂xi∂xl , and σ in the integrands haveX0,x(s) as their
arguments.

Introduce the system of SDEs for X and the scalar ζ :

dX = α(X) ds′ + σ(X) dw(s′), X(s) = x, s′ ≥ s, (2.13)

dζ = −ζ
( d∑
i=1

∂β�

∂xi
αiy(s

′)+ 1

2

d∑
i,l=1

ail
∂2β�

∂xi∂xl
y(s′)

)
ds′

+ 1
2ζ(|σ�grad(β�y(s′))|2 − |β|2) ds′

− ζ(σ�grad(β�y(s′)))� dw(s′), ζ(s) = z. (2.14)
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In (2.14) we use the short notation

∂2β�

∂xi∂xl
y(s) =

r∑
k=1

∂2βk

∂xi∂xl
yk(s), σ�grad(β�y) =

d∑
i=1

σij

r∑
k=1

∂βk

∂xi
yk(s).

Let us fix the obtained observation y(s), 0 ≤ s ≤ t . Consider the function

ug(s, x) = E[g(Xs,x(t)) exp{β�(Xs,x(t))y(t)}ζs,x,1(t)]|(2.13)−(2.14), (2.15)

where g is a scalar function on R
d , x ∈ R

d is deterministic now, and Xs,x(s′), ζs,x,1(s′) is the
solution of system (2.13)–(2.14) starting from (x, 1) at the instant s. Clearly, for a deterministic
X(0) = x, the values uf (0, x) and u1(0, x) (here the function 1 = 1(x) is identically equal to
1) coincide with the numerator and denominator of (2.9), respectively. Hence,

f̂ (t, y(·)) = E[f (X(t)) | y(s), 0 ≤ s ≤ t]

= E[f (X0,x(t)) exp{β�(X0,x(t))y(t)}ζ0,x,1(t)]|(2.13)−(2.14)

E[exp{β�(X0,x(t))y(t)}ζ0,x,1(t)]|(2.13)−(2.14)

= uf (0, x)

u1(0, x)
, (2.16)

where x is deterministic.
If X(0) = ξ is random with density ϕ(·) then the numerator is equal to the integral∫
uf (0, x)ϕ(x) dx and the denominator is equal to the integral

∫
u1(0, x)ϕ(x) dx, i.e.

f̂ (t, y(·)) = E[f (X(t)) | y(s), 0 ≤ s ≤ t]

= E[f (X0,ξ (t)) exp{β�(X0,ξ (t))y(t)}ζ0,ξ,1(t)]|(2.13)−(2.14)

E[exp{β�(X0,ξ (t))y(t)}ζ0,ξ,1(t)]|(2.13)−(2.14)

=
∫
uf (0, x)ϕ(x) dx∫
u1(0, x)ϕ(x) dx

.

It is well known that the function ug(s, x) is the solution to the Cauchy problem for the
linear parabolic equation

∂u

∂s
+ 1

2

d∑
i,j=1

aij (x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(s, x)
∂u

∂xi
+ c(s, x)u = 0, s < t, (2.17)

with the following condition on the right-hand side of the time interval [0, t]:
u(t, x) = g(x) exp{β�(x)y(t)} := G(t, x). (2.18)

In (2.17) we have

b(s, x) = {bi(s, x)} = α(x)− a(x)grad(β�(x)y(s)), (2.19)

c(s, x) = −α�(x)grad(β�(x)y(s))− 1

2

d∑
i,l=1

ail(x)
∂2β�(x)
∂xi∂xl

y(s)

− 1
2 |β(x)|2 + 1

2 |σ�(x)grad(β�(x)y(s))|2. (2.20)
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Formula (2.17) is known as the backward pathwise filtering equation (see, e.g. [24]). The
probabilistic representation of its solution satisfying condition (2.18) is given by (2.13)–(2.15).
Formula (2.15) is known as the Feynman–Kac formula. Thus, finding the estimate f̂ (t) amounts
to evaluating means of the form

ug,ϕ :=
∫
ug(0, x)ϕ(x) dx = Ẽ

y[G(t,X0,ξ (t))ζ0,ξ,1(t)]. (2.21)

2.3. Backward SPDE for nonlinear filtering

We fix a time moment t and introduce the function

vg(s, x) = Ẽ
y[g(Xs,x(t))ηs,x,1(t)], (2.22)

where g is a scalar function on R
d , x ∈ R

d is deterministic, and Xs,x(s′), ηs,x,1(s′) is the
solution of the system

dX = α(X) ds′ + σ(X) dw(s′), X(s) = x, (2.23)

dη = β�(X)η dy(s′), η(s) = 1.

Here w(s′) and y(s′) are independent standard Wiener processes on (�,F ,Fs , P̃).
The function vg(s, x) is the solution of the Cauchy problem for the backward linear SPDE

(see, e.g. [14], [23], and [26, Chapter 6, Section 3])

−dv =
[

1

2

d∑
i,j=1

aij (x)
∂2v

∂xi∂xj
+

d∑
i=1

αi(x)
∂v

∂xi

]
ds + β�(x)v ∗ dy, s < t, (2.24)

v(t, x) = g(x). (2.25)

The notation ‘∗ dy’ means backward Itô integral. We recall [26, pp. 36–37] that to define
this integral we introduce the ‘backward’ Wiener process ỹ(s) := y(t) − y(t − s), s ≤ t ,
and a decreasing family of σ -subalgebras F s

t , 0 ≤ s ≤ t , induced by the increments y(t) −
y(s′), s′ ≥ s. A σ -algebra induced by ỹ(s′), s′ ≤ s, coincides with F t−s

t . Then the backward
Itô integral is defined as the Itô integral with respect to ỹ(s):

∫ s′

s

ψ(s′′) ∗ dy(s′′) :=
∫ t−s

t−s′
ψ(t − s′′) dỹ(s′′), s ≤ s′ ≤ t,

where ψ(t − s), s ≤ t , is an F t−s
t -adapted square-integrable function. The process v(s, x) is

F s
t -adapted.
The solution v(s, x) to the SPDE (2.24)–(2.25) relates to the solution u(s, x) of the backward

pathwise PDE (2.17)–(2.18) [3], [7], [16], [23], [26],

v(s, x) = exp{−β�(x)y(s)}u(s, x), (2.26)

and, in particular, v(0, x) = u(0, x). Indeed, by the same arguments as those used in (2.12) we
obtain

ηs,x,1(t) = exp{β�(Xs,x(t))y(t)− β�(x)y(s)}ζs,x,1(t).
We note that in (2.12), η(t) = η0,x,1(t) and ζ = ζ0,x,1(t). Comparing (2.15) and (2.22), we
arrive at (2.26). We note that (2.26) can also be verified by direct substitution of v(s, x) from
(2.26) into (2.24)–(2.25).
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As pointed out before, (2.17) has the form of a usual (not stochastic) PDE whose coefficients
depend on y(s). Clearly, (2.17)–(2.18) is well defined for any continuous function y(s). Then
the solution of (2.17)–(2.18) can be interpreted in the pathwise sense, i.e. we can consider the
PDE problem (2.17)–(2.18) with the fixed observation sample path y(s), 0 ≤ s ≤ t . In its
turn, the pathwise interpretation of the PDE (2.17)–(2.18), together with (2.26), allows us to
interpret the solution to the SPDE (2.24)–(2.25) in the pathwise sense as well [3], [7], [8].
We also note that (2.26) implies some properties of v(s, x). Under the above assumptions,
the function v(s, x) is smooth in x and the function and its derivatives with respect to x are
continuous in s.

If X(0) = ξ is a random variable with density ϕ(·) then we can write (cf. (2.9)–(2.11) and
(2.22))

f̂ (t, y(·)) = E[f (X(t)) | y(s), 0 ≤ s ≤ t] = vf,ϕ

v1,ϕ
, (2.27)

where

vg,ϕ :=
∫
vg(0, x)ϕ(x) dx = Ẽ

y[g(X0,ξ (t))η0,ξ,1(t)].

3. Integrators for SDEs with coefficients nonsmooth in the time variable

In Subsection 2.2, computing the estimate f̂ (t) is reduced to finding ug,ϕ from (2.21), which
can be evaluated using the weak-sense numerical integration of system (2.13)–(2.14) together
with the Monte Carlo technique. More specifically, we have

ug,ϕ � Ẽ
y[G(t, X̄0,ξ (t))ζ̄0,ξ,1(t)] � 1

M

M∑
m=1

G
(
t, X̄

(m)

0,x(m)
(t)

)
ζ̄
(m)

0,x(m),1
(t), (3.1)

where the first approximate equality involves an error due to replacingX and ζ by X̄ and ζ̄ (the
error is related to the approximate integration of system (2.13)–(2.14)), while the error in the
second approximate equality comes from the Monte Carlo technique; x(m), m = 1, . . . ,M ,
are independent realizations of the random variable ξ distributed according to the density ϕ(·),
and X̄(m)

0,x(m)
(t) and ζ̄ (m)

0,x(m),1
(t) are independent realizations of X̄0,ξ (t) and ζ̄0,ξ,1(t).

Since the coefficients of the backward pathwise filtering equation (2.17)–(2.18) depend on
the observation sample path y(s), 0 ≤ s ≤ t , SDEs arising in its probabilistic representations
(e.g. (2.13)–(2.14)) have continuous but not differentiable coefficients with respect to time.
Then their numerical approximation requires special attention and in this section we consider
such approximations.

3.1. Integral methods for SDEs with coefficients nonsmooth in the time variable

Consider the following system of Itô SDEs:

dX = A(s,X) ds + B(s,X) dw(s), X(s0) = x, s0 ≤ s ≤ T , (3.2)

where A(s, x) is an n-dimensional vector, B(s, x) is an n × n1-matrix, and w(s) is an
n1-dimensional standard Wiener process on a filtered probability space (�,F ,Fs ,P). We
assume that the components of A(s, x) and B(s, x) are continuous in s and sufficiently smooth
in x ∈ R

n, and that the spatial derivatives of the components of A and B up to a sufficiently
high order are uniformly bounded on [s0, T ] × R

n. System (2.13)–(2.14) can be written in the
form (3.2). We note that in this section we use the notation X(s) = Xs0,x(s) for a different
process and (�,F ,Fs ,P) for a different space than in the previous sections, but this should not
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lead to any confusion. Weak methods for systems of the form (3.2) with nondifferentiable in s
coefficients were proposed in [27] and [28]. Here we revise them and develop them further. In
particular, our proofs of convergence of the integral methods differ from those in [27] and [28].
To the best of the authors’ knowledge, the analysis of the Euler method given in Subsection 3.2
is done for the first time.

We start with a technical lemma.

Lemma 3.1. Let a function f (s, x), s0 ≤ s ≤ T , x ∈ R
n, be twice continuously differentiable

in x and have growth in x at ∞ not faster than polynomial. Then the following formula holds:

f (s,Xs0,x(s)) = f (s, x)+
∫ s

s0

Ls′f (s,X(s′)) ds′ +
n1∑
j=1

∫ s

s0

�s
′
j f (s,X(s

′)) dwj(s
′), (3.3)

where X(s) = Xs0,x(s) is the solution of (3.2) and

Ls′f (s, x) :=
n∑
i=1

Ai(s′, x) ∂
∂xi

f (s, x)+ 1

2

n∑
i,j=1

n1∑
l=1

Bil(s′, x)Bjl(s′, x) ∂2

∂xi∂xj
f (s, x),

�s
′
j f (s, x) :=

n∑
i=1

Bij (s′, x) ∂
∂xi

f (s, x), j = 1, . . . , n1.

Proof. Fix s and apply the Itô formula to f (s,Xs0,x(s
′)), s0 ≤ s′ ≤ s:

df (s,Xs0,x(s
′)) = Ls′f (s,X(s′)) ds′ +

n1∑
j=1

�s
′
j f (s,X(s

′)) dwj(s
′). (3.4)

Integrating (3.4) from s0 to s, we obtain (3.3).

Now we proceed to constructing numerical methods for (3.2) in the usual way [18, Chapter 1].
Using Lemma 3.1, we expand the solution of (3.2):

Xs0,x(s0 + h) = x +
∫ s0+h

s0

A(s′, x) ds′ +
∫ s0+h

s0

B(s′, x) dw(s′)+ ρ, (3.5)

where

ρ =
∫ s0+h

s0

∫ s′

s0

Ls′′A(s′, X(s′′)) ds′′ ds′ +
n1∑
j=1

∫ s0+h

s0

∫ s′

s0

�s
′′
j A(s

′, X(s′′)) dwj(s
′′) ds′

+
∫ s0+h

s0

∫ s′

s0

Ls′′B(s′, X(s′′)) ds′′ dw(s′)

+
n1∑
j=1

∫ s0+h

s0

∫ s′

s0

�s
′′
j B(s

′, X(s′′)) dwj(s
′′) dw(s′). (3.6)

Here application of the operators to a vector or matrix is understood as their application to each
element of the corresponding vector or matrix.

Truncating expansion (3.5) we obtain the one-step approximation

X̄s0,x(s0 + h) = x +
∫ s0+h

s0

A(s′, x) ds′ +
∫ s0+h

s0

B(s′, x) dw(s′). (3.7)
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We note that the last term in (3.7) is the vector whose components are Gaussian random variables
with zero mean and covariance matrix

R(s0, x, h) =
∫ s0+h

s0

B(s′, x)B�(s′, x) ds′.

We partition the time interval [s0, T ] into N equal parts with step h = (T − s0)/N and
sk = s0 + kh, k = 0, . . . , N . Based on the one-step approximation, (3.7), we obtain the
Euler-type method

X0 = x,

Xk+1 = Xk +
∫ sk+1

sk

A(s′, Xk) ds′ + σ(sk,Xk, h)ξk, k = 0, . . . , N,
(3.8)

where σ(sk,Xk, h) is an n × n-matrix such that σ(s, x, h)σ�(s, x, h) = R(s, x, h), ξk =
(ξ1
k , . . . , ξ

n
k )

�, ξ ik are independent and identically distributed (i.i.d.) Gaussian random variables
with zero mean and unit variance, and ξk are independent of Xk . We call methods of this type
(i.e. which contain integrals of the coefficients with respect to time) integral methods.

Theorem 3.1. Method (3.8) for system (3.2) has the mean-square order 1
2 , i.e.

E[(Xs0,x(sk)−Xk)
2]1/2 ≤ Kh1/2, k = 0, . . . , N,

where the constant K does not depend on the discretization step h.
Let F(x) have four continuous derivatives and let it, together with its derivatives, have

growth at ∞ not faster than polynomial. Method (3.8) for system (3.2) has the weak order
1, i.e.

| E[F(Xs0,x(sk))] − E[F(Xk)]| ≤ Kh, k = 0, . . . , N,

where the constant K does not depend on the discretization step h.

Proof. The mean-square order 1
2 of method (3.8) follows from the estimates of the remainder

in (3.5),
E[ρ] = O(h2) and E[ρ2] = O(h2),

and the fundamental theorem of mean-square convergence [18, p. 4].
To prove the order of weak convergence, introduce the vectors

� = Xs0,x(s0 + h)− x and �̄ = X̄s0,x(s0 + h)− x.

It is not difficult to prove that

E

[ q∏
j=1

�ij −
q∏
j=1

�̄ij
]

= O(h2), q = 1, 2, 3,

E

[ 4∏
j=1

|�̄ij |
]

= O(h2),

where �ij and �̄ij , ij = 1, . . . , n, are ij -components of the vectors � and �̄, respectively.
Then, due to the general weak convergence theorem [18, p. 100], we find that method (3.8) is
of weak order 1. This completes the proof.
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As it is common in the general theory of weak numerical integration [18, Chapter 2], we can
use discrete random variables instead of the Gaussian random variables in (3.8) and obtain the
first order of weak convergence as well. Consider the weak scheme

X0 = x,

Xk+1 = Xk +
∫ sk+1

sk

A(s′, Xk) ds′ + σ(sk,Xk, h)ηk, k = 0, . . . , N,
(3.9)

where the random vectors ηk = (η1
k, . . . , η

n
k )

� are such that

E[ηk] = 0, E[ηkηTk ] = I,

E[ηikηjkηlk] = 0, i, j, l = 1, . . . , n, E

[ 4∏
j=1

η
ij
k

]
= O(h2),

(3.10)

the ηk are independent of Xk , and I is the unit matrix here. For instance, we can take η, whose
components are i.i.d. random variables with the law

P(ηi = ±1) = 1
2 . (3.11)

It is not difficult to prove the following theorem.

Theorem 3.2. Method (3.9)–(3.10) for system (3.2) is of weak order 1.

We note that the coefficients of SDEs from Subsection 2.2 can be written as a sum of products
of functions sufficiently smooth in both time s and spatial variables x and nonsmooth functions
which depend of s only (see, e.g. (2.13)–(2.14)). In this case, methods (3.8) and (3.9)–(3.10)
take a simpler form.

Consider the system

dX = Ã(s,X)A(s) ds + B̃(s,X)B(s) dw(s), X(s0) = x, (3.12)

where Ã(s, x) and B̃(s, x) are n× n-matrices whose components are sufficiently smooth in s
and satisfy the previously stated assumptions with respect to x, while the n-dimensional vector
A(s) and the n× n1-matrix B(s) consist of functions continuous in s. As an example, we give
the first-order weak method for (3.12):

X0 = x,

Xk+1 = Xk + Ã(sk, Xk)

∫ sk+1

sk

A(s′) ds′ + B̃(sk, Xk)σ (sk, h)ηk, k = 0, . . . , N,
(3.13)

where σ(sk, h) is an n× n-dimensional matrix such that

σ(sk, h)σ
�(sk, h) =

∫ sk+1

sk

B(s′)B�(s′) ds′; (3.14)

the random vectors ηk are defined as those in method (3.9)–(3.10).
Since we assume that the functionsA(s) andB(s) are given (which, in particular, corresponds

to fixing the sample path y(s) in the filtering problem), the integrals in (3.13)–(3.14) can be
computed once for all Monte Carlo runs.
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Remark 3.1. By continuing the expansion (3.5)–(3.6) we can construct a more accurate one-
step approximation and, as a result, obtain a weak scheme of order 2 for systems (3.2) and
(3.12) (cf. [27] and [28]).

Remark 3.2. Suppose that the errorR = E[F(Xs0,x(T ))]−E[F(XN)] of, for example, method
(3.9)–(3.10) can be expanded in powers of the time step h, i.e.

R = C0h+O(h2), (3.15)

then it becomes possible to use the Talay–Tubaro extrapolation method (see it in the case
of smooth coefficients in, e.g. [18, Chapter 2]) and to obtain a method of order 2 by applying
method (3.9)–(3.10) twice with different time steps. Namely, let ūh1 and ūh2 be approximations
of u(s0, x) = E[F(Xs0,x(T ))] calculated according to method (3.9)–(3.10) with the time steps
h1 and h2, respectively. Then

ūimp = ūh1
h2

h2 − h1
− ūh2

h1

h2 − h1
, u(s0, x) = ūimp +O(h2). (3.16)

We leave the proof of (3.15) for further study; however, our experiments in Subsection 6.1
confirm the rule expressed by (3.16).

In this paper the nonsmoothness in s of the coefficients of SDEs is due to their dependence
on the observation process y(s) (see, e.g. (2.13)–(2.14)), and A(s) and B(s) in (3.12) can, in
fact, be written as some functions of y(s): A(s) = Ă(y(s)) and B(s) = B̆(y(s)). Output
of practical devices can include integrals of the observation process y(s) and, thus, they can
provide integral methods like (3.13) with the needed values of the integrals (

∫ sk+1
sk

A(s′) ds′ and∫ sk+1
sk

B(s′)B�(s′) ds′ in (3.13)); otherwise, these integrals have to be computed numerically.
It turns out that if we approximate these integrals rather roughly (simply by the left-rectangle
rule with the time step h), the convergence order of the resulting method (which is the Euler
method) is arbitrarily close to 1 (see Theorem 3.4, below).

3.2. The Euler method

To clarify the matter, we consider the following particular case of system (3.2):

dX = A(y(s),X) ds + B(y(s),X) dw(s), X(0) = x, (3.17)

where w(s) and y(s) are independent standard Wiener processes on (�,F ,Fs ,P). Note that
system (2.13)–(2.14) is of the form (3.17). We recall that in this section we use the notation
X(s) = X0,x(s) for a different process and (�,F ,Fs ,P) for a different space than in Sections 1
and 2.

We assume that the components of A(y, x) and B(y, x) are sufficiently smooth in x ∈ R
n

and y ∈ R
r , that the derivatives of the components of A and B up to a sufficiently high order

are bounded in x ∈ R
n, and that the coefficients and their derivatives have growth in y at ∞ not

faster than polynomial. We note that the assumptions made imply, in particular, that moments
of Ai(y(s),X(s)) and Bij (y(s),X(s)) and of their derivatives in x and y are bounded.

Let us apply the standard Euler method to (3.17):

Xk+1 = Xk + A(y(sk),Xk)h+ B(y(sk),Xk)h
1/2ζk, k = 0, . . . , N − 1, (3.18)

where ζk = (ζ 1
k , . . . , ζ

n1
k )

� is a vector whose components are i.i.d. random variables with the
law ζ i ∼ N (0, 1) or P(ζ i = ±1) = 1

2 .
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Since y(s) is a Wiener process, we have, for any 0 < ε < 1
2 ,

|y(s)− y(s′)| ≤ C|s − s′|1/2−ε for any s, s′ ∈ [0, T ] almost surely (a.s.),

where C is a.s. a finite random variable.
When the coefficients of (3.2) are Hölder continuous in s with exponent 1

2 − ε (and satisfy
the other conditions imposed on the coefficients in this section), a straightforward modification
of the proof of Theorem 3.1 shows that the standard Euler method applied to (3.2) has the
mean-square order and weak order equal to 1

2 − ε. The latter implies that, for almost every
trajectory y(·), scheme (3.18) converges with weak order 1

2 − ε, at least. But a more accurate
analysis leads to a more precise weak order of convergence of (3.18) (see Theorem 3.4, below).

Theorem 3.3. Let F(y, x) have four continuous derivatives and let it, together with its deriva-
tives, satisfy the growth condition of the form

|F(y, x)| ≤ C eγ |y|(1 + |x|�) (3.19)

for some positive constants C, γ , and �. Then method (3.18) for system (3.17) satisfies the
inequality

(E[| Ey[F(y(sk),X0,x(sk))] − Ey[F(y(sk),Xk)]|2p])1/2p ≤ Kh, k = 0, . . . , N, (3.20)

for p ≥ 1, where the constant K does not depend on the discretization step h.

We note that in the case of (2.18), the function F(y, x) is equal to g(x)exp{β�(x)y} with
bounded and smooth g and β, and this function satisfies the conditions of Theorem 3.3, in
particular, (3.19) holds for it. Furthermore, since coefficients of (2.13)–(2.14) satisfy the
assumptions stated after (3.17), Theorem 3.3 is applicable in the case of the backward filtering
equations considered in Subsection 2.2.

Proof of Theorem 3.3. Introduce the family of σ -subalgebras F
y
s , 0 ≤ s ≤ T , induced by

the Wiener process y(s′), the operator

Lyf (x) :=
n∑
i=1

Ai(y, x)
∂

∂xi
f (x)+ 1

2

n∑
i,j=1

n1∑
l=1

Bil(y, x)Bjl(y, x)
∂2

∂xi∂xj
f (x),

and the function

u(s, x) = E[F(y(T ),Xs,x(T )) | y(s′)− y(s), s ≤ s′ ≤ T ] =: Ey[F(y(T ),Xs,x(T ))].
We note that u(s, x) is F

y
T -measurable, it depends on y(s′), s ≤ s′ ≤ T ; in fact, the more

precise notation for this conditional expectation is u(s, x; y(·)), but we use the shorter u(s, x)
notation. We also note that the more precise shorter notation for E[· | y(s′)−y(s), s ≤ s′ ≤ T ]
would be, for example, Eys [·], but everywhere in the proof the precise dependence on y(·) can
be easily restored from the context.

Owing to the assumptions made, the function u(s, x) is sufficiently smooth in x and it,
together with its derivatives, has moments of a sufficiently high order which grow at ∞ in x not
faster than polynomial. Furthermore, under the assumptions, moments of a sufficiently high
order of both X(s) and its approximation Xk exist. The moments of Xk are bounded due to
the assumption that the coefficients of (3.18) are globally Lipschitz and due to Lemma 2.2.2
of [18, p. 102].
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We note that below we use the same letterK without any index for various constants which
do not depend on h.

Using the standard technique (see [18, p. 100]), we can write the error from (3.20) for k = N

in the form

RN := Ey[F(y(T ),X0,x(T ))] − Ey[F(y(T ),XN)] = Ey
[N−1∑
i=0

ρ(si, Xi)

]
, (3.21)

where

ρ(si, Xi) = Ey[u(si+1, Xsi ,Xi (si+1))− u(si+1, X̄si ,Xi (si+1)) | Xi],
where X̄si ,Xi (si+1) = Xi+1.

The rest of the proof of the theorem is divided into five steps.
Step 1. Let us analyze the one-step error

ρ(s, x) := Ey[u(s + h,Xs,x(s + h))] − Ey[u(s + h, X̄s,x(s + h))].

Applying Lemma 3.1, using the properties of Itô integrals and the independence of w(s′) and
y(s′), we can obtain

Ey[u(s + h,Xs,x(s + h))] = u(s + h, x)+
∫ s+h

s

Ly(s
′)u(s + h, x) ds′ +O(h2).

Here and in what follows, the random variable O(h2) is such that E[|O(h2)|2p] ≤ K(x)h4p

for any p ≥ 1 with K(x) growing at ∞ not faster than polynomial.
Expanding u(s + h, X̄s,x(s + h)) around x up to the fourth derivatives and using the

independence of w(s′) and y(s′), we obtain

Ey[u(s + h, X̄s,x(s + h))] = u(s + h, x)+ Ly(s)u(s + h, x)h+O(h2).

Therefore,

ρ(s, x) = Ey[u(s + h,Xs,x(s + h))] − Ey[u(s + h, X̄s,x(s + h))]

=
∫ s+h

s

(Ly(s
′)u(s + h, x)− Ly(s)u(s + h, x)) ds′ +O(h2)

=
n∑
i=1

∂

∂xi
u(s + h, x)

∫ s+h

s

(Ai(y(s′), x)− Ai(y(s), x)) ds′

+ 1

2

n∑
i,j=1

n1∑
l=1

∂2

∂xi∂xj
u(s + h, x)

×
∫ s+h

s

[Bil(y(s′), x)Bjl(y(s′), x)− Bil(y(s), x)Bjl(y(s), x)] ds′ +O(h2).

(3.22)
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By the Itô formula we obtain

Ai(y(s′), x)− Ai(y(s), x) =
∫ s′

s

r∑
j=1

∂

∂yj
Ai(y(s′′), x) dyj (s′′)

+ 1

2

∫ s′

s

r∑
j=1

∂2

(∂yj )2
Ai(y(s′′), x) ds′′

=
r∑
j=1

∂

∂yj
Ai(y(s), x)(yj (s′)− yj (s))+O(h),

where E[|O(h)|2p] ≤ K(x)h2p. The analogous relations can be obtained for the differences
Bil(y(s′), x)Bjl(y(s′), x) −Bil(y(s), x)Bjl(y(s), x). Hence, we can write the one-step error
in the form

ρ(s, x) =
r∑
j=1

Uj(s, x)

∫ s+h

s

(yj (s′)− yj (s)) ds′ +O(h2), (3.23)

where the Uj(s, x) are combinations of Bil(y(s), x), their derivatives, and derivatives of u(s+
h, x) andAi(y(s), x). We note that theUj(s, x) are random, they depend on y(s′), s ≤ s′ ≤ T ,
and have moments of a sufficiently high order.

Step 2. Substituting (3.23) into (3.21) and using the independence of w(s′) and y(s′), we
obtain

RN =
N−1∑
i=0

r∑
j=1

Ey[Uj(si, Xi)]
∫ si+1

si

(yj (s′)− yj (si)) ds′ +O(h)

=
N−1∑
i=0

r∑
j=1

ψi,j Ii,j +O(h), (3.24)

where the
ψi,j = Ey[Uj(si, Xi)]

are F
y
T -measurable random variables which have moments of a sufficiently high order bounded

by a constant independent of h,

Ii,j :=
∫ si+1

si

(yj (s′)− yj (si)) ds′,

and O(h) is such that
E[|O(h)|2p] ≤ K(x)h2p.

Introduce the martingales

ϕi,j (s) = E[ψi,j | F
y
s ], 0 ≤ s ≤ T , i = 0, . . . , N − 1.

Owing to the martingale representation theorem, they can be written in the form

ϕi,j (s) = E[ψi,j ] +
∫ s

0
Z�
i,j (s

′) dy(s′) a.s.,
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where the Zi,j (s) are square-integrable F
y
s -adapted processes. Furthermore,

ψi,j = E[ψi,j | F
y
T ] = ϕi,j (T ) = ϕi,j (si)+

∫ si+1

si

Z�
i,j (s

′) dy(s′)+
∫ T

si+1

Z�
i,j (s

′) dy(s′).

Then we have (see (3.24))

� :=
N−1∑
i=0

r∑
j=1

ψi,j Ii,j

=
r∑
j=1

(N−1∑
i=0

ϕi,j (si)Ii,j +
N−1∑
i=0

Ii,j

∫ si+1

si

Z�
i,j (s

′) dy(s′)

+
N−1∑
i=0

Ii,j

∫ T

si+1

Z�
i,j (s

′) dy(s′)
)
. (3.25)

Introduce the notation

S1,j = 0, Sk,j =
k−1∑
i=0

ϕi,j (si)Ii,j ,

P1,j = 0, Pk,j =
k−1∑
i=0

∫ si+1

si

Z�
i,j (s

′) dy(s′)Ii,j ,

for k = 2, . . . , N and j = 1, . . . , r . The terms in the third sum in (3.25),

N−1∑
i=0

∫ T

si+1

Z�
i,j (s

′) dy(s′)Ii,j := QN,j ,

can be rearranged in the following way:

QN,j =
N−1∑
i=0

∫ T

si+1

Z�
i,j (s

′) dy(s′)Ii,j

=
N−1∑
i=0

N−1∑
l=i+1

∫ sl+1

sl

Z�
i,j (s

′) dy(s′)Ii,j

=
N−1∑
l=1

l−1∑
i=0

∫ sl+1

sl

Z�
i,j (s

′) dy(s′)Ii,j

=
N−1∑
l=1

l−1∑
i=0

Ji,j,lIi,j ,

where

Ji,j,l =
∫ sl+1

sl

Z�
i,j (s

′) dy(s′).
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We introduce the notation

Q1,j = 0, Qk,j =
k−1∑
l=1

l−1∑
i=0

Ji,j,lIi,j , k = 2, . . . , N, j = 1, . . . , r.

Now we can rewrite (3.25) as

� =
r∑
j=1

(SN,j + PN,j +QN,j ).

Hence, for any p > 0,

E[|�|2p] ≤ K

r∑
j=1

(E[|SN,j |2p] + E[|PN,j |2p] + E[|QN,j |2p]). (3.26)

Step 3. Let p be integer. We have

E[|Sk+1,j |2p] = E[(Sk,j + ϕk,j (sk)Ik,j )
2p]

= E[(S2
k,j + 2Sk,jϕk,j (sk)Ik,j + [ϕk,j (sk)Ik,j ]2)p]

≤ E[|Sk,j |2p] + 2p E[S2p−1
k,j ϕk,j (sk)Ik,j ]

+K

2p∑
l=2

E[|Sk,j |2p−l |ϕk,j (sk)Ik,j |l]. (3.27)

The second term in (3.27) is equal to 0. Indeed

E[S2p−1
k,j ϕk,j (sk)Ik,j ] = E[S2p−1

k,j ϕk,j (sk)E[Ik,j | F
y
sk ]] = 0. (3.28)

Using the elementary inequality

ab = h

(
ab

h

)
≤ h

(
ap

p
+ bqh−q

q

)
, a, b > 0, p, q > 1,

1

p
+ 1

q
= 1, (3.29)

we obtain

E[|Sk,j |2p−l |ϕk,j (sk)Ik,j |l]
≤ hE

[
2p − l

2p
|Sk,j |2p + l

2p
|ϕk,j (sk)Ik,j |2ph−2p/l

]
, l = 2, . . . , 2p − 1. (3.30)

Owing to the properties of the Itô integral, Ik,j , and the boundedness of moments of ϕk,j , we
have

E[|ϕk,j (sk)Ik,j |2p] ≤ Kh3p. (3.31)

Relations (3.27)–(3.31) imply that

E[|Sk+1,j |2p] ≤ E[|Sk,j |2p] +KhE[|Sk,j |2p] +Kh2p+1, E[|S1,j |2p] = 0,
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whence (see, e.g. [18, Lemma 1.1.6, p. 7])

E[|SN,j |2p] ≤ Kh2p. (3.32)

Note that then, by Jensen’s inequality, this inequality holds for noninteger p as well.
Step 4. Since

E

[∣∣∣∣
∫ si+1

si

Z�
i,j (s

′) dy(s′)Ii,j
∣∣∣∣
2p]

≤ Kh4p,

we obtain, for the second term in (3.26),

E[|PN,j |2p] ≤ Kh2p. (3.33)

Finally, we obtain an accurate estimate for the third term in (3.26). This is the most difficult
step (step 5, below) of the proof. We need two preliminary lemmas before we proceed with its
estimation.

Lemma 3.2. Let ςi+1 be an Fsi+1 -measurable random variable with moments of a sufficiently
high order independent of h. Then, for any integer m ≥ 1,

E[I 2m
i,j ςi+1 | Fsi ] = h3mς̃i, E[I 2m−1

i,j ςi+1 | Fsi ] = h3m−1ς̆i ,

where ς̃i and ς̆i are some Fsi -measurable random variables with moments of a sufficiently high
order which are bounded by a constant independent of h.

Proof. The first equality can be obtained using the properties of Itô integrals and the
conditional expectation. To prove the second inequality, introduce the martingale

γ (s) = E[ςi+1 | Fs], s ≤ si+1.

Then, by the martingale representation theorem we obtain

ςi+1 = γ (si)+
∫ si+1

si

Z̃�(s′) dy(s′),

where Z̃(s′) is a square-integrable F
y

s′ -adapted process.
Owing to the properties of Itô integrals, we have

E[I 2m−1
i,j γ (si) | Fsi ] = γ (si)E[I 2m−1

i,j | Fsi ] = 0.

Furthermore, we can obtain

E

[
I 2m−1
i,j

∫ si+1

si

Z̃�
i,j (s

′) dy(s′)
∣∣∣∣ Fsi

]
= h3m−1ς̆i .

Lemma 3.2 is proved.

Lemma 3.3. We have, for p ≥ 1,

E

[∣∣∣∣
k−1∑
i=0

Ii,j Ji,j,k

∣∣∣∣
2p]

≤ Kh3p,

where K is independent of h.
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Proof. Let p be integer. We have

A := E

[k−1∑
i=0

Ii,j Ji,j,k

]2p

=
k−1∑
i1=0

· · ·
k−1∑
i2p=0

E

[ 2p∏
l=1

Iil ,j

2p∏
l=1

Jil ,j,k

]

=
k−1∑
i1=0

· · ·
k−1∑
i2p=0

E

[ 2p∏
l=1

Iil ,j E

[ 2p∏
l=1

Jil ,j,k

∣∣∣∣ Fmax1≤l≤2p sil+1

]]
.

Using the properties of Itô integrals and the conditional expectation, we obtain

E

[ 2p∏
l=1

Jil ,j,k

∣∣∣∣ Fmax0≤l<k sil+1

]
= hpςj,{i1,...,i2p}

(
max

1≤l≤2p
sil+1

)
,

where ςj,{i1,...,i2p}(max1≤l≤2p sil+1) is an Fmax1≤l≤2p sil+1 -measurable random variable with
finite moments independent of h. Hence,

A = hp
k−1∑
i1=0

· · ·
k−1∑
i2p=0

E

[ 2p∏
l=1

Iil ,j ςj,{i1,...,i2p}
(

max
l
sil+1

)]
.

Let q be the number of distinguished indices il in {i1, . . . , i2p}. For example, if all the il in
{i1, . . . , i2p} are different then q = 2p and if all the il in {i1, . . . , i2p} are the same then q = 1,
etc. Introduce

B{i1,...,i2p} := E

[ 2p∏
l=1

Iil ,j ςj,{i1,...,i2p}
(

max
l
sil+1

)]
.

For each q, the number of the correspondingB{i1,...,i2p} inA is bounded byKkq ≤ KNq (recall
that h = T/N), where K depends on p and is independent of N .

Lemma 3.2 implies the following rule: if Iik,j appears in
∏2p
l=1 Iil ,j with even power 2m, its

contribution (i.e. the contribution of I 2m
ik,j
) to the expectation B{i1,...,i2p} is of order h3m; if Iik,j

appears in
∏2p
l=1 Iil ,j with odd power 2m−1, its contribution (i.e. the contribution of I 2m−1

ik,j
) to

the expectation is of order h3m−1. In particular, I 2
ik,j

contributes h3, while Iik,j with a unique
ik contributes h2. Then we can deduce the following estimates:

B{i1,...,i2p} ≤ Kh3p for 1 ≤ q ≤ p,

B{i1,...,i2p} ≤ Kh2p+q for p < q ≤ 2p.

We note that, for some particular combinations {i1, . . . , i2p}, the terms B{i1,...,i2p} can be of
smaller order than h3p and h2p+q , respectively. To clarify how Lemma 3.2 is used here, let us
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give a particular example. Let p = 2 and i1 < i2. By Lemma 3.2 we obtain

E[Ii1,j I 3
i2,j
ςj,{i1,i2}(si2+1)] = E[Ii1,j E[E[I 3

i2,j
ςj,{i1,i2}(si2+1) | Fsi2 ] | Fsi1+1 ]]

= h5 E[Ii1,j E[ς̆j,{i1,i2}(si2) | Fsi1+1 ]]
= h5 E[Ii1,j ς̆j,{i1,i2}(si1+1)]
= h5 E[E[Ii1,j ς̆j,{i1,i2}(si1+1) | Fsi1 ]]
= h7 E[ς̆i1 ].

Summarizing,

A ≤ hpK

p∑
q=1

h3pNq + hpK

2p∑
q=p+1

h2p+qNq ≤ Kh3p.

Lemma 3.3 is proved.

Step 5. (The final step in the proof of Theorem 3.3.) Now we are in position to obtain an
estimate for the third term in (3.26). Let p be integer. We have

E[|Qk+1,j |2p] = E

[(
Qk,j +

k−1∑
i=0

Ji,j,kIi,j

)2p]

= E

[(
Q2
k,j + 2Qk,j

k−1∑
i=0

Ji,j,k Ii,j +
(k−1∑
i=0

Ji,j,k Ii,j

)2)p]

≤ E[|Qk,j |2p] + 2p E

[
Q

2p−1
k,j

k−1∑
i=0

Ji,j,k Ii,j

]

+K

2p∑
m=2

E

[
|Qk,j |2p−m

∣∣∣∣
k−1∑
i=0

Ji,j,kIi,j

∣∣∣∣
m]
. (3.34)

The second term in (3.34) is equal to 0 because

E

[
Q

2p−1
k,j

k−1∑
i=0

Ji,j,k Ii,j

]
= E

[
Q

2p−1
k,j

k−1∑
i=0

Ii,j E[Ji,j,k | F
y
sk ]

]
= 0. (3.35)

Using inequality (3.29), we obtain

E

[
|Qk,j |2p−m

∣∣∣∣
k−1∑
i=0

Ji,j,k Ii,j

∣∣∣∣
m]

≤ hE

[
2p −m

2p
|Qk,j |2p + m

2p

∣∣∣∣
k−1∑
i=0

Ji,j,k Ii,j

∣∣∣∣
2p

h−2p/m
]
, m = 2, . . . , 2p − 1.

(3.36)

Owing to Lemma 3.3, we have
∣∣∣∣
k−1∑
i=0

Ji,j,k Ii,j

∣∣∣∣
2p

≤ Kh3p. (3.37)
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Relations (3.34)–(3.37) imply that

E[|Qk+1,j |2p] ≤ E[|Qk,j |2p] +KhE[|Qk,j |2p] +Kh2p+1, E[|Q1,j |2p] = 0,

whence
E[|QN,j |2p] ≤ Kh2p. (3.38)

Thus, it follows from (3.32), (3.33), and (3.38) that E[�2p] ≤ Kh2p (see (3.26)), and,
therefore, E[R2p

N ] ≤ Kh2p (see (3.24)). Theorem 3.3 is proved.

Using Theorem 3.3, we prove the following almost-sure convergence result for the Euler
method (3.18).

Theorem 3.4. For almost every trajectory y(·) and any ε > 0, method (3.18) converges with
weak order 1 − ε, i.e.

| Ey[F(y(T ),X0,x(T ))] − Ey[F(y(T ),XN)]| ≤ Ch1−ε a.s., (3.39)

where C is a.s. a finite random variable independent of h.

Proof. Define

R := | Ey[F(y(T ),X0,x(T ))] − Ey[F(y(T ),XN)]|.
Theorem 3.3 and Markov’s inequality imply that

P(R > hγ ) ≤ E[R2p]
h2pγ ≤ Kh2p(1−γ ).

Then, for any γ = 1 − ε, there is a sufficiently large p ≥ 1 such that (recall that h = T/N)

∞∑
N=1

P

(
R >

T γ

Nγ

)
≤ KT 2p(1−γ )

∞∑
N=1

1

N2p(1−γ ) < ∞.

Hence, owing to the Borel–Cantelli lemma, the random variable � := suph>0 h
−γ |R| is

a.s. finite, which implies (3.39).

Remark 3.3. We can use other Euler-type methods to simulate (3.17) and prove their con-
vergence analogously to Theorem 3.4. For instance, the error estimate (3.39) holds for the
scheme

Xk+1 = Xk + A(y(sk+1),Xk)h+ B(y(sk+1),Xk)h
1/2ζk, k = 0, . . . , N − 1. (3.40)

Remark 3.4. We observe in numerical experiments that methods (3.13) and (3.18) directly
applied to system (2.13)–(2.14) can demonstrate numerically unstable behavior in some situa-
tions. We can see that system (2.13)–(2.14) has the peculiar structure. The second component
of its solution can be written as the exponential function

ζs,x,1(s
′) = exp{Zs,x,0(s′)}, (3.41)

where Zs,x,z(s′) satisfies the equation

dZ = −
( d∑
i=1

∂β�

∂xi
αiy(s

′)+ 1

2

d∑
i,l=1

ail
∂2β�

∂xi∂xl
y(s′)+ 1

2
|β|2

)
ds′

− (σ�grad(β�y(s′)))� dw(s′), Z(s) = z. (3.42)
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Obviously, ζs,x,1(s′) is positive. But methods (3.13) and (3.18) applied to (2.13)–(2.14), in
general, do not preserve the positivity, which is apparently the reason for their occasional
failure. We are avoiding this problem when we apply methods (3.13) and (3.18) to system
(2.13), (3.42) and compute (cf. (2.15))

ug(s, x) = Ẽ
y[g(Xs,x(t)) exp{β�(Xs,x(t))y(t)+ Zs,x,0(t)}]. (3.43)

In our experiments, this way of computing ug(s, x) gives quite accurate results, even in the
cases when the direct application of methods (3.13) and (3.18) to (2.13)–(2.14) fails.

We should note that, strictly speaking, we cannot directly use Theorems 3.1–3.4 for functions
F(y, x, z) := g(x) exp{β�(x)y + z} from (3.43) because it has exponential growth in z.
The growth condition on F in Theorems 3.1–3.4 were imposed in order to ensure existence
of corresponding moments required in the proofs of these theorems. At the same time, for
Theorems 3.1–3.4 to be applicable, existence of such moments is sufficient. Since the conditions
imposed on the coefficients of (2.13)–(2.15) in the introduction (in particular, g(x), β(x),
and their derivatives are assumed to be bounded) ensure existence of all the moments of
F(y(T ),X(T ), Z(T )) and its derivatives, the results of Theorems 3.1–3.4 are applicable in
the case (3.42)–(3.43).

3.3. Recurrency of algorithms

We emphasize that the considered methods ensure a recurrent solution of the nonlinear
filtering problem. In this connection we simulate the sample at time sk:

X
(m)
k = X̄

(m)

0,x(m)
(sk), Z

(m)
k = Z̄

(m)

0,x(m),0
(sk), m = 1, . . . ,M.

Then we can estimate the desired quantity f̂ (sk):

f̂ (sk) � f̄ (sk) = (1/M)
∑M
m=1 f (X

(m)
k ) exp{β�(X(m)k )y(sk)+ Z

(m)
k }

(1/M)
∑M
m=1 exp{β�(X(m)k )y(sk)+ Z

(m)
k }

,

and continue the procedure to obtain the sample

X
(m)
k+1 = X̄

(m)

sk,X
(m)
k

(sk+1), Z
(m)
k+1 = Z̄

(m)

sk,X
(m)
k ,Z

(m)
k

(sk+1),

at the next time moment, which can be used for finding f̂ (sk+1), and so on. This note is valid
for Section 4 as well.

4. Numerical methods for the backward SPDE

This section is devoted to the numerical evaluation of the function vg(s, x) from (2.22)–
(2.23). As discussed in Subsection 2.3, this function is the solution of the corresponding
backward linear SPDE (2.24)–(2.25) and the numerator and denominator in the Kallianpur–
Striebel formula, (2.9), have the form

∫
vg(0, x)ϕ(x) dx (see (2.27)). To cover the case of other

probabilistic representations for the SPDEs solution used for variance reduction in Section 5,
we deal here with a slightly more general system than (2.23). We consider

vg(s, x) = Ẽ
y[g(Xs,x(t))ηs,x,1(t)],
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where Xs,x(s′), ηs,x,1(s′) is the solution of the system

dX = [α(X)− σ(X)λ(s′, X)] ds′ + σ(X) dw(s′), X(s) = x, (4.1)

dη = λ�(s′, X)η dw(s′)+ β�(X)η dy(s′), η(s) = 1.

Hereλ(t, x) is ad1-dimensional vector whose components are assumed to be sufficiently smooth
and to satisfy the boundedness conditions as before.

Taking into account Remark 3.4, we also introduce the scalar Zs,x,z(s′), s′ ≥ s, satisfying
the equation

dZ = − 1
2 (|λ|2 + |β|2) ds′ + λ�(s′, X) dw(s′)+ β�(X) dy(s′), Z(s) = z, (4.2)

and we then write

vg(s, x) = Ẽ
y[g(Xs,x(t)) exp{Zs,x,0(t)}]. (4.3)

Recall that the expectation in (4.3) is with respect to w(·) only.
Now we apply the Euler method to (4.1) and (4.2):

Xk+1 = Xk + [α(Xk)− σ(Xk)λ(sk,Xk)]h+ σ(Xk)h
1/2ζk, X0 = x, (4.4)

Zk+1 = Zk − 1
2 (|λ(sk,Xk)|2 + |β(Xk)|2)h+ λ�(sk, Xk)h1/2ζk

+ β�(Xk)�ky, Z0 = z, k = 0, . . . , N − 1, h = t/N,

where ζk = (ζ 1
k , . . . , ζ

d1
k )

� is a vector whose components are i.i.d. random variables with the
law ζ i ∼ N (0, 1) or P(ζ i = ±1) = 1

2 and �ky := y(sk+1)− y(sk). Then

vg(s, x) = Ẽ
y[g(Xs,x(t)) exp{Zs,x,0(t)}]

� v̄g(s, x)

= Ẽ
y[g(XN) exp{ZN }]

� 1

M

M∑
m=1

g(X
(m)
N ) exp{Z(m)N }, (4.5)

where X(m)N and Z(m)N are independent realizations of XN and ZN .
Let us establish correspondence between method (4.4) for solving the backward SPDE and

the methods applied to (2.13) and (3.42) for solving the backward pathwise filtering equation
(see Subsection 2.3 for the relation between the backward SPDE (2.24)–(2.25) and the backward
pathwise PDE (2.17)–(2.18)). For simplicity, we set λ = 0. We have

vg(0, x) � v̄g(0, x)

= Ẽ
y[g(XN) exp{ZN }]

= Ẽ
y
[
g(XN) exp

{
−h

2

N−1∑
k=0

|β(Xk)|2 +
N−1∑
k=0

β�(Xk)�ky
}]
. (4.6)
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We expand β�(Xk+1) at Xk and obtain

β�(Xk)y(sk+1) = β�(Xk+1)y(sk+1)− h

d∑
i=1

∂β�

∂xi
(Xk) y(sk+1)αi(Xk)

− h

2

d∑
i,l=1

ail(Xk)
∂2β�

∂xi∂xl
(Xk) y(sk+1)

− h1/2
d∑
i=1

∂β�

∂xi
(Xk) y(sk+1)

d1∑
j=1

σij (Xk)ζ
j
k + rk, (4.7)

where the reminder rk is a combination of the coefficients αi, σij , βi , the derivatives of βi , and
y(sk+1), and it is such that, for a fixed y(·), we have

Ẽ
y[rk] = O(h2), Ẽ

y[r2
k ] = O(h3), Ẽ

y[rj rk] = O(h4) for j 
= k, Ẽ
y[r4

k ] = O(h6),

Ẽ
y[r2

i rj rk] = O(h7) for nonequal i, j, k, Ẽ
y[r3

j rk] = O(h8) for j 
= k,

and Ẽ
y[rirj rkrl] = O(h8) for nonequal i, j, k, l. (4.8)

Making use of (4.7), we rearrange (4.6) and obtain

v̄g(0, x) = Ẽ
y
[
g(XN) exp

{
β�(XN) y(sN)− h

2

N−1∑
k=0

|β(Xk)|2

−
N−1∑
k=0

[
h

d∑
i=1

∂β�

∂xi
(Xk)αi(Xk) y(sk+1)

+ h

2

d∑
i,l=1

ail(Xk)
∂2β�

∂xi∂xl
(Xk) y(sk+1)

+ h1/2
d∑
i=1

∂β�

∂xi
(Xk) y(sk+1)

d1∑
j=1

σij (Xk)ζ
j
k

]
+
N−1∑
k=0

rk

}]
. (4.9)

When we apply method (3.40) to system (2.13), (3.42), we obtain (see also (3.43))

ug(0, x) � ūg(0, x)

= Ẽ
y
[
g(XN) exp

{
β�(XN) y(sN)− h

2

N−1∑
k=0

|β(Xk)|2

−
N−1∑
k=0

[
h

d∑
i=1

∂β�

∂xi
(Xk) αi(Xk) y(sk+1)+ h

2

d∑
i,l=1

ail(Xk)
∂2β�

∂xi∂xl
(Xk) y(sk+1)

+ h1/2
d∑
i=1

∂β�

∂xi
(Xk) y(sk+1)

d1∑
j=1

σij (Xk)ζ
j
k

]}]
. (4.10)

Recall thatug(0, x) = vg(0, x). Comparing (4.9) and (4.10), we see that method (4.4) coincides
with (3.40) applied to system (2.13), (3.42) up to terms of higher order.
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Lemma 4.1. For almost every trajectory y(·),
|ūg(0, x)− v̄g(0, x)| ≤ Kh, (4.11)

where the constant K does not depend on the discretization step h.

Proof. Denote by ψ̄ the expression under the expectation in (4.10). We have

R := |ūg(0, x)− v̄g(0, x)| =
∣∣∣∣Ẽy

[
ψ̄

(
1 − exp

{N−1∑
k=0

rk

})]∣∣∣∣.
We recall that the coefficients of the SDE systems are assumed to be bounded together with their
derivatives and that the function g has growth not faster than polynomial at ∞. Under these
assumptions, moments of exp{∑N−1

k=0 rk} and moments of ψ̄ up to a sufficiently high order are
finite.

By the Cauchy–Bunyakovskii inequality we obtain

R ≤ (Ẽ
y[(ψ̄)2])1/2

(
Ẽ
y
[(

1 − exp

{N−1∑
k=0

rk

})2])1/2

.

Expanding the exponent and using the Cauchy–Bunyakovskii inequality again, we obtain

Ẽ
y
[(

1 − exp

{N−1∑
k=0

rk

})2]
= Ẽ

y
[(N−1∑

k=0

rk eθ
)2]

≤
(

Ẽ
y
[(N−1∑

k=0

rk

)4]
Ẽ
y[e2θ ]

)1/2

,

where θ is an intermediate (random) point between 0 and
∑N−1
k=0 rk . Using relations (4), we

obtain Ẽ
y[(∑N−1

k=0 rk)
4] = O(h4). Hence, (4.11) holds.

Lemma 4.1 and Theorems 3.3 and 3.4 together with Remark 3.4 imply convergence of
method (4.4), which is stated in the following theorem.

Theorem 4.1. Method (4.4) satisfies the following inequality for p ≥ 1:

(Ẽ[|Ẽy[g(Xs,x(t)) exp{Zs,x,0(t)}] − Ẽ
y[g(XN) exp{ZN }]|2p])1/2p ≤ Kh, (4.12)

where the constant K does not depend on the discretization step h.
For almost every trajectory y(·) and any ε > 0, method (4.4) converges with weak order

1 − ε, i.e.

|Ẽy[g(Xs,x(t)) exp{Zs,x,0(t)}] − Ẽ
y[g(XN) exp{ZN }]| ≤ Ch1−ε a.s.,

where C is a.s. a finite random variable independent of h.

Remark 4.1. In [25], inequality (4.12) is proved for p = 1 and λ = 0.

Remark 4.2. The methods from this section are applicable to more general nonlinear filtering
problems than (1.1)–(1.2), whereas the pathwise approach places some limitations on the
classes of nonlinear filtering problems which can be treated by it.

5. Variance reduction

Variance reduction is of crucial importance for effectiveness of any Monte Carlo procedure.
In this section we exploit various probabilistic representations of solutions to the considered
problems to reduce the Monte Carlo error.
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5.1. Variance reduction in the pathwise approach: deterministic initial data

The error of the Monte Carlo method, (3.1), is evaluated by

ρ̄ = c
[vary(G(t, X̄0,ξ (t))ζ̄0,ξ,1(t))]1/2

M1/2 ,

where, for example, the values c = 1, 2, 3 correspond to the fiducial probabilities 0.68, 0.95,
and 0.997, respectively. We recall (see (2.18)) that

G(t, x) = g(t, x) exp{β�(x)y(t)}.
Since vary(G(t, X̄0,ξ (t))ζ̄0,ξ,1(t)) is close to vary(G(t,X0,ξ (t))ζ0,ξ,1(t)), we can assume that
the error of the Monte Carlo method is estimated by

ρ = c
[vary(G(t,X0,ξ (t))ζ0,ξ,1(t))]1/2

M1/2 .

If vary(G(t,X0,ξ (t))ζ0,ξ,1(t)) is large then to achieve a satisfactory accuracy we have to
simulate a very large number of trajectories. Fortunately, there exist other probabilistic repre-
sentations for ug,ϕ (see (2.21)) which allow us to reach smaller variances.

We begin with the case when ξ is deterministic, i.e. ξ = x. To obtain various probabilistic
representations of the solution to problem (2.17)–(2.18), we introduce the system (see [17],
[18, p. 126], and [21])

dX = b(s′, X) ds′ − σ(X)µ(s′, X) ds′ + σ(X) dw(s′), X(s) = x, (5.1)

dX = c(s′, X)X ds′ + µ�(s′, X)X dw(s′), X(s) = χ, (5.2)

dX = F
�(s′, X)X dw(s′), X(s) = x̃, (5.3)

where b(s, x) is given in (2.19), c(s, x) is given in (2.20), X and X are scalars, and µ and F

are column-vector functions of dimension d1 satisfying some regularity conditions (e.g. they
have bounded derivatives with respect to xi up to some order). We should note that X and w
in (5.1) differ from X and w in (1.1); however, this does not lead to any ambiguity.

In particular, if in (5.1)–(5.3) we take

µ(s′, x) = −σ�(x)grad(β�(x)y(s′)), (5.4)

we obtain the system

dX = α(X) ds′ + σ(X) dw(s′), X(s) = x,

dX = c(s′, X)X ds′ − (σ�(X)grad(β�(X)Y (s′)))�X dw(s′), X(s) = χ,

dX = F
�(s′, X)X dw(s′), X(s) = x̃.

We see that the first two equations of this system coincide with system (2.13)–(2.14).
The solution to problem (2.17)–(2.18) has the following probabilistic representation:

u(s, x) = Ẽ
y[G(t,Xs,x(t))Xs,x,1(t)+ Xs,x,1,0(t)], (5.5)

where Xs,x(s′), Xs,x,1(s
′), Xs,x,1,0(s

′), s′ ≥ s, is the solution of the Cauchy problem,
(5.1)–(5.3). The usual probabilistic representation (when µ = 0 and F = 0) is a particular
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case of (5.5) (see, e.g. [11]). The representation for µ 
= 0 and F = 0 follows from Girsanov’s
theorem, and (5.5) follows from the equality

Ẽ
y
[∫ t

s

F
�(s′, X(s′))X(s′) dw(s′)

]
= 0 for any F.

Consider the random variable

� = �s,x

= �s,x(t)

:= G(t,Xs,x(t))Xs,x,1(t)+ Xs,x,1,0(t)

= g(Xs,x(t)) exp{β�(Xs,x(t))y(t)}Xs,x,1(t)+ Xs,x,1,0(t). (5.6)

It is clear that

u(s, x) = Ẽ
y[�s,x], ug(0, x) = u(0, x) = Ẽ

y[�0,x]. (5.7)

The corresponding Monte Carlo estimate of u(s, x) has the form

u(s, x) � ū(s, x) = 1

M

M∑
m=1

�̄
(m)
0,x , (5.8)

where the �̄(m)0,x , m = 1, . . . ,M , are independent realizations of �̄0,x :

�̄0,x = G(t, X̄0,x(t))X̄0,x,1(t)+ X̄0,x,1,0(t).

The Monte Carlo error of estimate (5.8) is of order (M−1 vary �)1/2, where M is the number
of simulations of the random variable �. While the mean Ẽ

y[�] does not depend on the choice
of µ and F, the variance vary � = Ẽ

y[�2] − (Ẽ
y[�])2 does. Thus, by decreasing the variance

vary �, the Monte Carlo error can be reduced. The following theorem is proved in [21] (see
also [17] and [18, p. 129]).

Theorem 5.1. Let µ and F be such that, for any x ∈ R
d , there exists a solution to system

(5.1)–(5.3) on the interval [s, t]. Then the variance vary � is equal to

vary � = Ẽ
y
[∫ t

s

X2
s,x,1(s

′)
d1∑
j=1

( d∑
i=1

σij
∂u

∂xi
+ uµj + Fj

)2

ds′
]
, (5.9)

provided that the expectation in (5.9) exists. In (5.9), all the functions σij , µj , Fj , u, and
∂u/∂xi have (s′, Xs,x(s′)) as their argument.

In particular, if µ and F are such that

d∑
i=1

σij
∂u

∂xi
+ uµj + Fj = 0, j = 1, . . . , d1, (5.10)

then vary � = 0, i.e. � is deterministic.
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We recall that if we set F = 0 here then we obtain the method of importance sampling, and
if we set µ = 0 then we obtain the method of control variates. Theorem 5.1 establishes the
combining method of variance reduction [18, Section 2.4.2].

Obviously, µ and F satisfying (5.10) cannot be constructed without knowing u(s′, x),
s ≤ s′ ≤ t , x ∈ R

d . Nevertheless, the theorem claims a general possibility of variance
reduction by a proper choice of the functions µj and Fj , j = 1, . . . , d1. Theorem 5.1 can be
used, for example, if we know a function u0(s′, x) connected with an approximating problem
and being close to u(s′, x). In this case we take any µ0

j , F
0
j , j = 1, . . . , d1, satisfying

d∑
i=1

σij
∂u0

∂xi
+ u0µ0

j + F
0
j = 0,

and then the variance vary � is, although not 0, small.

5.2. Variance reduction in the pathwise approach: random initial data

Now let us return to variance reduction for ug,ϕ . Clearly, along with (2.21), ug,ϕ has the
following probabilistic representations:

ug,ϕ = Ẽ
y[�0,ξ ],

where ξ is a random variable with density ϕ and �s,x is defined in (5.6). This representation
gives the following estimate:

ug,ϕ � 1

M

M∑
m=1

�̄
(m)

0,x(m)
,

where x(m) is a sample distributed according to ϕ(·) and

�̄
(m)

0,x(m)
= G

(
t, X̄

(m)

0,x(m)
(t)

)
X̄(m)

0,x(m),1
(t)+ X̄

(m)

0,x(m),1,0
(t). (5.11)

We have (recall that ug(0, x) = u(0, x) = Ẽ
y[�0,x] (see (5.7)))

vary(�0,ξ ) = Ẽ
y[�2

0,ξ ] − (Ẽ
y[�0,ξ ])2

= Ẽ
y[Ẽy[�2

0,ξ | ξ ]] − (Ẽ
y[Ẽy[�0,ξ | ξ ]])2

=
∫

Rd

Ẽ
y[�2

0,x]ϕ(x) dx −
[∫

Rd

Ẽ
y[�0,x]ϕ(x) dx

]2

=
∫

Rd

Ẽ
y[�2

0,x]ϕ(x) dx −
∫

Rd

(Ẽ
y[�0,x])2ϕ(x) dx

+
∫

Rd

(Ẽ
y[�0,x])2ϕ(x) dx −

(∫
Rd

Ẽ
y[�0,x]ϕ(x) dx

)2

=
∫

Rd

vary(�0,x)ϕ(x) dx +
∫

Rd

u2
g(0, x)ϕ(x) dx −

(∫
Rd

ug(0, x)ϕ(x) dx

)2

=
∫

Rd

vary(�0,x)ϕ(x) dx + var(u(0, ξ)). (5.12)

The variance vary(�0,x) in (5.12) can be reduced due to Theorem 5.1 if a suitable function
u0(s′, x), 0 ≤ s′ ≤ t, x ∈ R

d , is known. The second term, var(u(0, ξ)), is connected with
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the Monte Carlo error in evaluation of the deterministic integral
∫
u(0, x)ϕ(x) dx. To reduce

var(u(0, ξ)), we can use the same function at s′ = 0, the function u0(x) := u0(0, x). Let
us assume (without any essential loss of generality) that the function u0(x) is positive and, in
addition, that the value of the integral

I 0 =
∫

Rd

u0(x)ϕ(x) dx

is known. The direct Monte Carlo evaluation is given by

∫
Rd

u(0, x)ϕ(x) dx � 1

M

M∑
m=1

u(0, x(m)), (5.13)

where the x(m), m = 1, . . . ,M , are independent realizations of the random variable distributed
according to the density ϕ(x), while the Monte Carlo evaluation with variance reduction is
given by

∫
Rd

u(0, x)ϕ(x) dx = I 0
∫

Rd

u(0, x)

u0(x)

u0(x)ϕ(x)

I 0 dx � 1

M

M∑
m=1

I 0u(0, x(m))

u0(x(m))
, (5.14)

where the x(m), m = 1, . . . ,M , are independent realizations of the random variable distributed
according to the density

ψ(x) = u0(x)ϕ(x)

I 0 . (5.15)

We note that both M and x(m) are, in general, different in (5.13) and (5.14). We also note that
there is no bias in both (5.13) and (5.14).

The above arguments lead to the following estimate:

ug,ϕ � I 0

M

M∑
m=1

�̄
(m)

0,x(m)

u0(x(m))
, (5.16)

where x(m) is distributed according to ψ(x) in (5.15) and �̄(m)
0,x(m)

is defined in (5.11). The bias
of this estimate is equal to the error of approximate integration (see Section 3), and the Monte
Carlo error is evaluated by

ρ = c
[vary(I 0�0,ξ /u

0(ξ))]1/2

M1/2 ,

where ξ is distributed according to ψ in (5.15). It is not difficult to obtain

vary
(
I 0�0,ξ

u0(ξ)

)
=

∫
Rd

(
I 0

u0(x)

)2

vary(�0,x)ψ(x) dx + var

(
I 0u(0, ξ)

u0(ξ)

)
. (5.17)

Thus, if u0(x) = u(0, x), the variance var(I 0u(0, ξ)/u0(ξ)) in (5.17) vanishes. Combining
this conclusion with Theorem 5.1, we arrive at the following theorem.

Theorem 5.2. If µ and F satisfy (5.10), if u(0, x) is positive, and if ψ(x) is chosen as

ψ(x) = u(0, x)ϕ(x)

I
, I =

∫
Rd

u(0, x)ϕ(x) dx,

then the Monte Carlo error of (5.16) vanishes, i.e. vary(I�0,ξ /u(0, ξ)) = 0.
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We conclude that, by a proper choice of µ and F, the Monte Carlo error can be reduced. At
the same time, the question of how to find them in concrete filtering problems constructively
requires further investigation.

5.3. Variance reduction in the SPDE approach

As discussed in Subsection 2.3, we can realize the Kallianpur–Striebel formula by computing
the SPDEs solution vg,ϕ (see (2.22), (2.27), and (4.5)):

vg,ϕ = Ẽ
y[g(X0,ξ (t))η0,ξ,1(t)]

= Ẽ
y[g(X0,ξ (t)) exp{Z0,ξ,0(t)}]

� v̄g,ϕ

= Ẽ
y[g(X̄0,ξ (t)) exp{Z̄0,ξ,0(t)}]

� 1

M

M∑
m=1

g(X̄
(m)

0,x(m)
(t)) exp{Z̄(m)

0,x(m),0
(t)}, (5.18)

where ξ is a random variable with density ϕ(·). The Monte Carlo error of (5.18) is evaluated by

ρ = c
[vary(g(X0,ξ (t)) exp{Z0,ξ,0(t)})]1/2

M1/2 . (5.19)

To reduce it, we can use the same ideas as in Subsections 5.1 and 5.2.
Let ξ = x be deterministic. Introduce the system

dX = [α(X)− σ(X)λ(s′, X)] ds′ + σ(X) dw(s′), X(s) = x,

dη = λ�(s′, X)η dw(s′)+ β�(X)η dy(s′), η(s) = 1, (5.20)

dX̃ = F̃
�(s′, X)η dw(s′), X̃(s) = 0,

where λ and F are column-vector functions of dimension d1 satisfying some regularity condi-
tions. By similar arguments as in Subsection 5.1 we obtain (see also (4.3))

vg(s, x) = Ey[g(Xs,x(t))ηs,x,1(t)]|(2.23)

= Ey[g(Xs,x(t))ηs,x,1(t)+ X̃s,x,1,0(t)]|(5.20)

= Ey[g(Xs,x(t)) exp{Zs,x,0(t)} + X̃s,x,1,0(t)]|(5.20),(5.22), (5.21)

where

dZ = − 1
2 (|λ|2 + |β|2) ds′ + λ�(s′, X) dw(s′)+ β�(X) dy(s′), Z(s) = 0. (5.22)

For λ = 0 and F̃ = 0, representation (5.18)–(5.20) coincides with (2.22)–(2.23). The variety
of probabilistic representations (5.18)–(5.20) for the backward SPDE (2.24)–(2.25) can be
exploited for variance reduction.

Let us take λ and F̃ in the form

λ(s′, x) = µ(s′, x)+ σ�(x)grad(β�(x)y(s′)), F̃(s′, x) = exp{−β�(x)y(s′)}F(s′, x).
(5.23)
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Then it is not difficult to see that the first equation in (5.20) coincides with (5.1). Furthermore,
solving the linear equations for η in (5.20) and for X in (5.2), and then using calculations
analogous to those in (2.12), we obtain

ηs,x,1(t) = exp{β�(Xs,x(t))y(t)− β�(x)y(s)}Xs,x,1(t) (5.24)

(we note that η(t) in (2.12) corresponds to η0,x,1(t) from (5.20) with λ = 0). Equalities (5.23)
and (5.24) imply that

X̃s,x,1,0(t) = exp{−β�(x)y(s)}Xs,x,1,0(t).
Consequently,

�̃s,x(t) = exp{−β�(x)y(s)}�s,x(t),
where �s,x(t) is defined in (5.6) and (see (5.21))

�̃s,x(t) := g(Xs,x(t))ηs,x,1(t)+ X̃s,x,1,0(t).

Therefore, Theorem 5.1 and the relation (see (2.26))

v(s, x) = exp{−β�(x)y(s)}u(s, x)
imply the following theorem.

Theorem 5.3. Let λ and F be such that, for any x ∈ R
d , there exists a solution to system (5.20)

on the interval [0, t]. Then the variance vary �̃s,x(t) is equal to

vary(�̃s,x(t)) = Ẽ
y
[∫ t

s

η2
s,x,1

d1∑
j=1

( d∑
i=1

σij
∂v

∂xi
+ vλj + F̃j

)2

ds′
]
, (5.25)

provided that the expectation in (5.25) exists. In (5.25), all the functions σij , λj , F̃j , βi , yi , v,
and ∂v/∂xi have (s′, Xs,x(s′)) as their argument.

We see that if λ(s, x) and F̃(s, x) are such that

d∑
i=1

σij
∂v

∂xi
+ vλj + F̃j = 0, j = 1, . . . , d1, (5.26)

then the right-hand side of (5.25) is 0 and, consequently, the variance is 0. We recall that v(s′, x)
depends on y(s′′), s′ ≤ s′′ ≤ t . However, we need to require that λ(s′, x) does not depend
on y(s′′), s′ ≤ s′′ ≤ t , otherwise X(s′) in (5.20) depends on y(s′′), s′ ≤ s′′ ≤ t , and we are
then faced with the problem of interpreting the term β�(X(s′)) dy(s′) in (5.22). At the same
time, dependence of the function F̃(s′, x) on y(s′′) does not cause any trouble in interpreting
the third equation in (5.20), and the identity (5.26) can, in principle, be reached.

Now consider the Monte Carlo error (5.19) in computing vg,ϕ , i.e. when the initial data are
random. Analogously to (5.16), we can propose the following estimate instead of (5.18):

vg,ϕ � v̄g,ϕ

= Ẽ
y[g(X̄0,ξ (t)) exp{Z̄0,ξ,0(t)} + X̄0,ξ,1,0(t)]

� I 0

M

M∑
m=1

1

v0(x(m))

(
g(X̄

(m)

0,x(m)
(t)) exp

{
Z̄
(m)

0,x(m),0
(t)

} + X̄
(m)

0,x(m),1,0
(t)

)
, (5.27)
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where x(m) is distributed according to

ψ(x) = v0(x)ϕ(x)

I0
, v0(x) > 0, x ∈ R

d , I0 =
∫

Rd

v0(x)ϕ(x) dx.

The variance of (5.27) can be estimated by

vary
(
I 0�̃0,ξ (t)

v0(ξ)

)
,

where ξ is distributed according to ψ . Analogously to (5.17), we obtain

vary
(
I 0�̃0,ξ (t)

v0(ξ)

)
=

∫
Rd

(
I 0

v0(x)

)2

vary(�̃0,x(t))ψ(x) dx + var

(
I 0v(0, ξ)

v0(ξ)

)
.

The variance of the estimate in (5.27) can be made smaller than the variance of the estimate in
(5.18) by a proper choice of λ(s, x), F̃(s, x), and v0(x).

6. Numerical experiments

In this section we test the proposed algorithms on two models for which the solution to the
filtering problem is known exactly. First we consider the linear filtering problem for which the
exact solution is given by the Kalman–Bucy filter. The second model is nonlinear, its exact
solution is obtained by the Beneš filter.

6.1. Linear filtering

Consider the linear stochastic system

dX = αX ds′ + σ dw(s′), X(0) = ξ, (6.1)

dy = βX ds′ + dv(s′), y(0) = 0, (6.2)

where X and y are scalars, α, σ , and β are parameters, and the random variable ξ is normally
distributed, i.e. N (m0, P0).

We are interested in computing the estimate

X̂(t) := E[X(t) | y(s′), 0 ≤ s′ ≤ t]. (6.3)

According to the Kalman–Bucy filter, the estimate X̂(s) satisfies the system

dX̂ = αX̂ ds′ + βP (s′)(dy − βX̂ ds′), X̂(0) = m0,

Ṗ = 2αP − β2P 2 + σ 2, P (0) = P0.
(6.4)

In our tests we fix the observation y(t), which is obtained as a result of simulation of (6.1)–
(6.2), by the mean-square Euler method with small time step (h = 0.0001) for a particular,
fixed realization of the Wiener process (w(s′), v(s′)). We compare the algorithms proposed in
the previous sections with the reference value of X̂ obtained by an accurate simulation of the
Kalman–Bucy filter, (6.4), which is done by the Euler method with h = 0.0001.

In Tables 1 and 2 we present results obtained by the three numerical algorithms: the
‘pathwise, integral method’, the ‘pathwise, Euler method’, and the ‘SPDE method’, which
are described below. The first two algorithms solve the filtering problem via the backward
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Table 1: Linear filtering. Simulation of X̂(t) from (6.3) by various algorithms (see their description in
the text) and with various time steps h. The reference value of X̂(t) is found due to the Kalman–Bucy
filter, (6.4). Here α = −1, σ = 1, β = −1, t = 1, m0 = 0, and P0 = 1. The expectations are computed
by the Monte Carlo technique simulating M = 400 000 independent realizations. The ‘±’ reflects the
Monte Carlo error only, it does not reflect the error of the method. All simulations are done along the

same observation path y(t). The corresponding reference value is −0.377 42.

h Pathwise, integral method Pathwise, Euler method SPDE method

0.20 −0.4032 ± 0.0024 −0.4132 ± 0.0023 −0.3311 ± 0.0023
0.10 −0.3860 ± 0.0023 −0.4101 ± 0.0023 −0.3688 ± 0.0023
0.05 −0.3807 ± 0.0023 −0.3933 ± 0.0023 −0.3732 ± 0.0023
0.02 −0.3794 ± 0.0023 −0.3854 ± 0.0023 −0.3778 ± 0.0023
0.01 −0.3774 ± 0.0023 −0.3790 ± 0.0023 −0.3752 ± 0.0023

Table 2: Linear filtering. Simulation of X̂(t) from (6.3). Here α = 1, σ = 1, β = 1, t = 1, m0 = 0,
and P0 = 1. The expectations are computed by the Monte Carlo technique simulating M = 400 000

independent realizations. The corresponding reference value is 2.8655.

h Pathwise, integral method Pathwise, Euler method SPDE method

0.20 3.303 ± 0.039 3.570 ± 0.041 2.698 ± 0.027
0.10 3.083 ± 0.034 3.300 ± 0.038 2.850 ± 0.029
0.05 2.968 ± 0.031 3.114 ± 0.034 2.890 ± 0.030
0.02 2.903 ± 0.030 2.957 ± 0.031 2.869 ± 0.030
0.01 2.888 ± 0.030 2.905 ± 0.030 2.861 ± 0.029

pathwise filtering equation (see Subsection 2.2). To this end, we introduce the following
system (cf. (5.1)–(5.3)):

dX = b(s′, X) ds′ − σµ(s′, X) ds′ + σ dw(s′), X(s) = x, (6.5)

dX = c(s′, X)X ds′ + µ(s′, X)X dw(s′), X(s) = χ, (6.6)

dX = F(s′, X)X dw(s′), X(s) = x̃, (6.7)

where (cf. (2.19)–(2.20))

b(s′, x) = αx − σ 2βy(s′), c(s′, x) = −αxβy(s′)− β2x2

2
+ σ 2

2
β2y2(s′). (6.8)

We also introduce Zs,x,0(s′) such that (see (3.41)–(3.42) and Remark 3.4)

Xs,x,1(s
′) = exp{Zs,x,0(s′)}.

Then Zs,x,z(s′) satisfies the equation

dZ = (
c(s′, X)− 1

2µ
2(s′, X)

)
ds′ + µ(s′, X) dw(s′), Z(s) = z. (6.9)
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The estimate X̂(t) in (6.3) is found as (see (2.16), (2.21), and (3.43))

X̂(t) = Ẽ
y[X0,ξ (t) exp{βX0,ξ (t)y(t)}Xs,ξ,1(s

′)+ X0,ξ,0,0(t)]
Ẽ
y[exp{βX0,ξ (t)y(t)}Xs,ξ,1(s′)+ X0,ξ,0,0(t)]

= Ẽ
y[X0,ξ (t) exp{βX0,ξ (t)y(t)+ Z0,ξ,0(t)} + X0,ξ,0,0(t)]

Ẽ
y[exp{βX0,ξ (t)y(t)+ Z0,ξ,0(t)} + X0,ξ,0,0(t)]

. (6.10)

The results in Tables 1 and 2 are obtained for

µ(s′, x) = −σβy(s′) and F =0. (6.11)

For this µ, (6.5) for X(s′) takes the natural form (6.1) (cf. (5.4)).
The first algorithm, the ‘pathwise, integral method’, gives the results obtained by the integral

method (3.13) applied to (6.5), (6.9), and (6.11), while the second algorithm, the ‘pathwise,
Euler method’, presents the results of the Euler method (3.18) for (6.5), (6.9), and (6.11). In
the realizations of both (3.13) and (3.18) we use the discrete random variables (see (3.11)).

The third algorithm, the ‘SPDE method’, corresponds to simulation by the Euler method
(4.4) with λ = 0. Here this method takes the form

Xk+1 = Xk + αXkh+ σh1/2ζk, X0 = ξ,

Zk+1 = Zk − 1
2β

2Xk
2h+ β�(Xk)�ky, Z0 = 0,

where�ky := y(sk+1)−y(sk) and ζk are i.i.d. random variables with the law P(ζ i = ±1) = 1
2 .

The data in Table 1 correspond to the case of a stable solution of (6.1)–(6.2), while the
data in Table 2 correspond to an unstable solution. The results are in good agreement with the
theoretical results: all the algorithms demonstrate first order of convergence. It is quite natural
that the pathwise integral method gives better results than the pathwise Euler method. We also
note that the ‘SPDE method’ produces the most accurate results.

Let us demonstrate the use of the Talay–Tubaro extrapolation method (see Remark 3.2).
Using the data from Table 1 for the pathwise integral method, we obtain

ūimp = 2ū0.05 − ū0.1 = −0.3754,

and comparing this with the exact solution, we see that it is more accurate than ū0.05 and ū0.1.
Expansion (3.15) can also be exploited for the error control. For instance, in this example

C0 ≈ − ū
0.1 − ū0.05

0.1 − 0.05
= −−0.3860 + 0.3807

0.1 − 0.05
≈ 0.1.

Note that uexact − ū0.1 ≈ 0.01.
In the stable case (as in Table 1) the integral method (3.13) applied to (6.5), (6.6), and (6.11)

produces results similar to those of the integral method (3.13) applied to (6.5), (6.9), and (6.11).
But, in the unstable case (as in Table 2), the integral method (3.13) applied to (6.5), (6.6), and
(6.11) demonstrates numerical instability (see also the discussion before Remark 3.4). For
instance, for the same parameters as in Table 2, it gives 13 ± 32 for h = 0.1, 14 ± 54 for
h = 0.05, 2.260 ±0.023 for h = 0.02, and 2.827 ± 0.029 for h = 0.001. For larger time t ,
the numerical instability becomes worse. Then, in general, it is preferable to use representation
(6.5), (6.9), (6.11) rather than (6.5), (6.6), (6.11).
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The aim of the next experiment is to illustrate the variance reduction techniques from
Section 5. Let ug(s′, x) be the solution of the Cauchy problem, (2.17)–(2.18), with d = 1
and a11(x) = σ 2, and b(s′, x) and c(s′, x) given in (6.8). We can verify that, for g(x) = x,

ug(s
′, x) = (v0(s

′)x + v1(s
′)) exp

{ 1
2Q(s

′)x2 + q(s′)x
}
,

where v0(s
′), v1(s

′), Q(s′), and q(s′), 0 ≤ s′ ≤ t , satisfy

Q̇ = β2 − 2αQ− σ 2Q2, Q(t) = 0, (6.12)

q̇ = y(s′)β(α + σ 2Q)− q(σ 2Q+ α), q(t) = βy(t), (6.13)

v̇0 = −v0
( 3

2σ
2Q+ 1

2σ
2q2 + α − σ 2βy(s′)q + 1

2σ
2β2y2(s′)

)
, v0(t) = 1,

v̇1 = − 1
2σ

2v1(Q+ q2 − 2βy(s′)q + β2y2(s′))
− σ 2v0(q − βy(s′)), v1(t) = 0.

We can also find that, for g(x) = 1,

u1(s
′, x) = v2(s

′) exp
{ 1

2Q(s
′)x2 + q(s′)x

}
,

where Q(s′), q(s′), and v2(s
′), 0 ≤ s′ ≤ t , satisfy (6.12)–(6.13) and

v̇2 = − 1
2σ

2v2(Q+ q2 − 2βy(s′)q + β2y2(s′)), v2(t) = 1.

Now we choose
µ(s′, x) = 0 (6.14)

and

Fg(s
′, x) = −σ ∂ug

∂x
(s′, x), F1(s

′, x) = −σ ∂u1

∂x
(s′, x). (6.15)

We simulate the numerator of (6.10) by substituting Fg from (6.15) into (6.7) and the denomi-
nator of (6.10) by substituting F1 from (6.15) into (6.7).

We see that to produce results of the same quality we need M = 4 · 105 independent
trajectories without variance reduction andM = 4 ·104 independent realizations in the variance
reduction case (compare Tables 1 and 3). We note that the variance reduction technique used
does not give zero variance since we do not exploit the possibility of reducing the variance
associated with the distribution of the initial data (see Subsection 5.2). When we set P0 = 0

Table 3: Linear filtering—an illustration of variance reduction techniques. Simulation of X̂(t) from (6.3)
by the integral method (3.13) applied to (6.5), (6.9), and (6.14)–(6.15). The expectations are computed
by the Monte Carlo technique simulating M = 40 000 independent realizations. The other parameters

are the same as those in Table 1. The corresponding reference value is −0.377 42.

h Pathwise, integral method

0.20 −0.3864 ± 0.0023
0.10 −0.3802 ± 0.0022
0.05 −0.3782 ± 0.0021
0.02 −0.3773 ± 0.0022
0.01 −0.3770 ± 0.0022
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(i.e. the initial data are deterministic), this variance reduction technique gives zero variance
(see Subsection 5.1). Then, taking into account the error of numerical integration, the Monte
Carlo error in simulations using this variance reduction technique becomes proportional to√
h/

√
M . Indeed, for P0 = 0, M = 4000, and the other parameters as those in Table 1, we

have −0.323 ± 0.015 for h = 0.1, −0.3797 ± 0.003 for h = 0.01, and −0.3856 ± 0.0001
for h = 0.001 (the reference solution here is −0.386 12). These experiments demonstrate a
principal possibility of variance reduction for the considered algorithms. A further study is
required to make the discussed variance reduction techniques more practical.

6.2. Beneš’ filter

Consider the nonlinear system

dX = tanh(X) ds′ + dw(s′), X(0) = 0, (6.16)

dy = X ds′ + dv(s′), y(0) = 0, (6.17)

where X and y are scalars.
We consider the estimate

X̂(t) := E[X(t) | y(s′), 0 ≤ s′ ≤ t]. (6.18)

The exact solution of this filtering problem is given by (see [1])

X̂(t) = m(t)+ P(t) tanh(m(t)), (6.19)

where m(s′) and P(s′), 0 ≤ s′ ≤ t , satisfy

dm = P dy −mP ds′, m(0) = 0,

P (s′) = tanh(s′).

We obtain the observation y(t) by simulating (6.16)–(6.17) using the mean-square Euler
method with small time step (h = 0.0001) for a particular, fixed realization of the Wiener
process (w(s′), v(s′)). Here we test the Euler method (4.4) with λ = 0 (the ‘SPDE method’)
by comparing its results with the reference value of X̂ obtained by an accurate simulation of
the Beneš filter, (6.19), which is done by the Euler method with h = 0.0001. The results are
presented in Table 4. We can see that the method produces quite accurate results even for large
time steps.

Table 4: Beneš’ filter. Simulation of X̂(t) from (6.18) at t = 2 by the Euler method (4.4) with λ = 0.
The expectations are computed by the Monte Carlo technique simulating M = 400 000 independent
realizations. All simulations are done along the same observation path y(t). The corresponding reference

value is −1.660 44.

h SPDE method

0.20 −1.7893 ± 0.0024
0.10 −1.7273 ± 0.0022
0.05 −1.6744 ± 0.0022
0.02 −1.6700 ± 0.0021
0.01 −1.6618 ± 0.0021
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